Supporting Information for

Novel anti-hyperuricemia hexapeptides derived from *Apostichopus japonicus* hydrolysate and their modulation effects on gut microbiota and host microRNA profile

Siqing Fan^{1,3#}, Yumeng Huang^{1,2#}, Guoding Lu⁴, Na Sun⁴, Rui Wang³, Chenyang Lu^{1,2*}, Lijian Ding³, Jiaojiao Han^{1,2}, Jun Zhou^{1,2}, Ye Li^{1,2}, Tinghong Ming^{1,2}, Xiurong Su^{1,2}

¹ State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China

² School of Marine Science, Ningbo University, Ningbo, China

³ College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China

⁴ Ningbo Green-Health Pharmaceutical Co., Ltd, Ningbo, China

These authors contributed equally to this work

* Corresponding author

Dr. Chenyang Lu

E-mail address: luchenyang@nbu.edu.cn

Postal address: Ningbo University, 169 Qixing South Road, Ningbo, China

SUPPORTING TABLES

Table S1. Primers used in this study.

Table S2. The peptide composition in AJOP.

Table S3. The molecular docking results between XOD and the peptides GPAGPR

 and GPSGRP.

Table S4. Bacterial taxonomic profiles at the phylum level in response to the peptide treatments in the HUA mouse model. Data are represented as the mean \pm SD (n=5).

Table S5. Bacterial taxonomic profiles at the genus level in response to the peptide treatments in the HUA mouse model. Data are represented as the mean \pm SD (n=5).

Table S6. The forty-nine differentially abundant genera identified by the Kruskal-Wallis test in this study. Data are represented as the mean (n=5).

Table S7. Overview of reads from raw data to cleaned sequences. Data are represented as the mean \pm SD (n=3).

Table S8. Twenty-one nonrepetitive and DE-miRNAs were identified among the three groups in this study.

Table S9. miRNAs related to uric acid metabolism and immune response identified among three groups in this study.

 Table S10.
 Spearman's correlation analysis between these 10 miRNAs and 49

 differentially abundant genera.

	Forward primer	Reverse primer
XOD	CGCAGAATACTGGATGAGCGAGGT	GCCGGTGGGTTTCTTCTTCTTGAA
ADA	AATAAGCTCCAAGACCAAGGT	GTCCAGCAGACTCAATACACAC
GLUT9	ATGCACTGGCCACAGATTCA	TGAGGAACCAGATCGGAGGT
URAT1	ATCATCTCCATGCTGTGCTG	AAGTCCACAATCCCGATGAG
ABCG2	GGACCGCGAGAAAGGCATA	ACGTGGTCATTACTGGAAGACA
		AGTTCTTTATCCCAGTACCGTTGA
MRP4	GGTGAAACCCAACCCGCTG	А
TNF-α	CCCTCCTAACCCGTTTTGCT	GACGTGGAACTGGCAGAAGA
IL-1β	CACAGCAGCACATCAACAAG	GTGCTCATGTCCTCATCCTG
IL-10	AGAGGGTTCCCCTACTGTCA	GGCCACAGTTTTCAGGGATG
NLRP3	CAGACCTCCAAGACCACGACTG	CATCCGCAGCCAATGAACAGAG
ACS	AACCCAAGCAAGATGCGGAAG	TTAGGGCCTGGAGGAGCAAG
Caspase-1	TCCAATAATGCAAGTCAAGCC	GCTGTACCCCAGATTTTGTAGCA
TLR4	CCGCATGGTGGTGGTTGTT	GGAATCAGTCGCTTCTGTTGGA
Myd88	CTACAGAGCAAGGAATGTGACT	ACCTGATGCCATTTGCTGTCC
	CTCAGCGCTGTGCAAACTATATATCC	GGCGTATTGTACCCTGGAAGGG
TRAF6	С	
iNOS	ACAGGAGAAGGGGGACGAACT	GGCTGGACTTTTCACTCTGC
COX-2	GTGCGACATACTCAAGCAGG	TCAGGTGTTGCACGTAGTCT
β-actin	CAGGCATTGCTGACAGGATG	TGCTGATCCACATCTGCTGG

Table S1. Primers used in this study.

Saguanaa	Contont $(0/)$	-
		_
IEPLV	6.382	
IIILV	2.374	
ILLLV	1.037	
LPELV	1.384	
GPSGRP	2.932	
KIGRP	2.555	
GPAGPR	2.275	
GGGKHV	2.901	
PKGRP	2.274	
KPGPR	1.593	
PQGRP	3.271	
PEILV	3.178	
PNKPV	1.101	

 Table S2. The peptide composition in AJOP.

Table S3. The molecular docking results between XOD and GPAGPR and GPSGRP.

Peptide	Dantida Nama	-CIE	-E _{VDW}
Abbreviation	Peptide Name	(kJ/mol)	(kJ/mol)
GPAGPR	Gly-Pro-Ala-Gly-Pro-Arg	99.500	12.484
GPSGRP	Gly-Pro-Ser-Gly-Arg-Pro	92.096	12.293

	control	model	GPAGPR	GPSGRP
Bacteroidetes	71.05±9.16	52.66±10.86	29.84±6.51	50.59±12.13
Firmicutes	18.03 ± 4.76	24.34 ± 8.4	31.85±9.34	42.3±11.31
Verrucomicrobia	6.02 ± 5.48	8.49±8.19	30.72±11.22	0.36±0.6
Actinobacteria	1.4 ± 0.65	7.45 ± 5.9	$2.97{\pm}1.65$	1.47 ± 0.52
Proteobacteria	1.31 ± 0.39	3.88 ± 2.29	$1.47{\pm}0.54$	3.07±2.18
Patescibacteria	1.05 ± 0.71	1.2 ± 0.51	2.52 ± 0.46	$1.39{\pm}0.48$
others	1.15±0.23	1.99 ± 2.23	0.62 ± 0.07	0.81 ± 0.34

Table S4. Bacterial taxonomic profiles at the phylum level in response to the peptide treatments in the HUA mouse model. Data are represented as the mean \pm SD (n=5).

Table S5. Bacterial taxonomic profiles at the genus level in response to the peptide treatments in the HUA mouse model. Data are represented as the mean \pm SD (n=5).

	control	model	GPAGRP	GPSGRP
Muribaculaceae	55.26±7.77	39.92±6.86	24.54±5.42	38.59±11.66
Bacteria unclassified	6.02 ± 5.48	8.49±8.19	30.72±11.22	$0.36{\pm}0.6$
Muribaculum	4.79±5.27	3.48 ± 2.74	9.4±6.17	21.49±15.13
Muribaculaceae unclassified	$4.02{\pm}1.91$	3.89±3	11.22±5	$1.46{\pm}1.06$
Bacteroides	5.67±4.51	4.41±2.13	$0.95 {\pm} 0.69$	4.5±2.16
Prevotella	$1.63{\pm}1.08$	6.2 ± 5.81	$1.7{\pm}1.78$	5.86 ± 6.99
Candidatus Amulumruptor	$3.84{\pm}1.04$	3.13±0.52	1.85 ± 0.62	2 ± 0.71
Akkermansia	$1.92{\pm}1.29$	$1.58{\pm}0.82$	2.55 ± 0.82	$1.93{\pm}1.09$
Bacteroidales unclassified	$0.02{\pm}0.02$	4.28±3.19	1.58 ± 1.24	0.61 ± 0.35
Bacteria noname	2.09 ± 0.31	1.82 ± 1.11	0.71 ± 0.21	1.73 ± 1.16
Duncaniella	1.05 ± 0.71	$1.2{\pm}0.51$	2.52 ± 0.46	$1.39{\pm}0.48$
Lachnospiraceae noname	0.45 ± 0.2	1.3 ± 1.31	0.88±0.3	$1.74{\pm}1.15$
Paramuribaculum	1.35 ± 0.71	$0.81 {\pm} 0.33$	0.62 ± 0.24	$1.39{\pm}0.43$
Bacteroidales noname	$0.52{\pm}0.29$	$1.92{\pm}1.43$	0.55 ± 0.33	1.11 ± 1.22
Alistipes	$0.57{\pm}0.6$	2.57±2.62	0.46 ± 0.29	$0.29{\pm}0.33$
Clostridium	10.8 ± 3.32	14.99 ± 7.62	9.76±2	15.54 ± 7.84
Others	55.26±7.77	$39.92{\pm}6.86$	24.54±5.42	38.59±11.66

Table S6. The forty-nine differentially abundant genera identified by the Kruskal-

	control	model	GPAGRP	GPSGRP
Paramuribaculum	2.0946	1.822	0.7084	1.7322
Alloprevotella	5.6651	4.41	0.9475	4.4967
Muribaculaceae unclassified	55.2566	39.9233	24.5444	38.5892
Muribaculum	3.8424	3.135	1.8459	2.0016
Akkermansia	6.0168	8.4875	30.725	0.3646
Dubosiella	4.0192	3.8882	11.2168	1.4577
Candidatus Saccharimonas	1.0456	1.1953	2.5185	1.3941
Lactobacillus	4.7899	3.4837	9.4006	21.4872
Alistipes	1.3536	0.8071	0.6154	1.3926
Desulfovibrio	0.352	1.3478	0.2343	1.5619
Coriobacteriaceae UCG-002	0.0209	4.2828	1.5841	0.6119
Bifidobacterium	0.5709	2.5672	0.46	0.2898
Bacteroidetes unclassified	0.0133	0.0969	0	0.0406
Anaeroplasma	0.0095	0.0031	0	0.0183
Odoribacter	0.2678	0.3747	0.0877	0.375
Enterococcus	0.0988	0.0188	0.0121	0
Insolitispirillum	0.0226	0.0022	0.0029	0.0029
Prevotellaceae UCG-001	0.5083	0.3918	0.1809	0.219
Escherichia-Shigella	0.0647	0.0903	0.0279	0.0314
Methylobacterium	0.0067	0	0	0.002
Parabacteroides	0.321	0.168	0.1063	0.1217
Turicibacter	0.449	0.0447	0.0268	0
Bacteroides	0.7858	0.6714	0.4452	0.4586
Acidaminococcus	0.0871	0.0554	0.0229	0.0302
Fusobacterium	0.0405	0.0269	0.009	0.0101
Eggerthella	0.0368	0.0105	0.0543	0.018
Dorea	0.0437	0	0.0054	0.0367
Rikenellaceae RC9 gut group	0.4958	0.3836	0.1459	0.7621
Ruminococcaceae UCG-004	0.0281	0.0183	0.1339	0.8643
Eubacterium xylanophilum	0.349	0.1362	0.2233	1.1964
group				
Ruminococcaceae unclassified	0.0104	0.0572	0.0249	0.0679
Stenotrophomonas	0.0055	0.0065	0.0045	0.04
Candidatus Bacilloplasma	0	0	0.0093	0.0267
Eisenbergiella	0	0.0018	0.0008	0.0239
Oligella	0	0	0	0.0322
Pygmaiobacter	0	0	0	0.0423
Oxyphotobacteria unclassified	0	0	0	0.0069
Eubacterium coprostanoligenes group	0.0937	0.1092	1.325	0.1567

Wallis test in this study. Data are represented as the mean (n=5).

Blautia	0	0.0017	0.0253	0.0057
Candidatus_Stoquefichus	0	0.0076	0.0172	0
Prevotellaceae NK3B31 group	0	0.0092	0.0516	0
Enterorhabdus	0.6853	0.3503	0.5928	0.4296
Christensenellaceae_R-7_group	0.0949	0.0376	0.0808	0.0351
Olsenella	0	0.1549	0.0241	0.0039
Parasutterella	0.3578	0.7386	0.5704	0.1745
Erysipelotrichaceae_unclassified	0.0379	0.104	0.0678	0.0301
Eubacterium_nodatum_group	0.0268	0.0156	0.0384	0.0038
Erysipelatoclostridium	0.0067	0.0326	0.0525	0
Catabacter	0.0044	0.0262	0.0406	0.0035

Table S7. Overview of reads from raw data to cleaned sequences. Data are represented as the mean \pm SD (n=3).

	control	model	GPSGRP
Raw reads	14,949,618±5,098,975	11,585,807±1,121,781	16,114,506±3,922,372
Clean reads	3,718,484±1,271,019	2,369,893±174,885	$2,800,077\pm689,950$

miR	Sequence	P-value	Control	Model	GPSGRP	Expression level
mmu-miR-188-5p	CATCCCTTGCATGGTGGAGGGT	0.0245	14.21	4.31	3.10	middle
mmu-miR-598-3p	TACGTCATCGTCGTCATCGTTAT	0.0437	22.59	27.83	8.03	middle
mmu-miR-411-3p	TATGTAACACGGTCCACTAAC	0.0080	1.27	0.1	7.48	middle
mmu-miR-3084-3p	CTGCCAGTCTCCTTCAGACAAAA	0.0082	4.97	0.1	1.33	low
mmu-miR-20a-3p	ACTGCATTACGAGCACTTAAAGT	0.0094	9.06	0.1	2.09	middle
mmu-miR-152-5p	TAGGTTCTGTGATACACTCCGACT	0.0233	11.65	0.1	5.43	middle
mmu-miR-15a-3p	CAGGCCATACTGTGCTGCCTCA	0.0261	8.68	0.1	2.03	middle
tch-miR-26a-2-5p	TTCAAGTAACCCAGGATAGGCT	0.0436	8.08	0.1	2.68	middle
mmu-miR-125b-5p	TCCCTGAGACCCTAACTTGTGA	0.0144	8776.15	10531.86	7902.99	high
hsa-miR-378c	ACTGGACTTGGAGTCAGAAGGCT	0.0087	2153.94	1794.13	1537.99	middle
mmu-miR-200c-3p	TAATACTGCCGGGTAATGATGGA	0.0417	3717.20	3637.58	2552.11	high
hsa-mir-636-p5	CGCGCGGGCGGGGGCCGGG	0.0451	56.03	44.99	125.61	middle
cgr-miR-1973	TATCCTGACCGTGCAAAGGTAGC	0.0487	98.66	63.38	135.54	middle
	A					
cgr-miR-1260_2	ATCCCACCGCTGCCACCAT	0.0179	38.70	55.67	74.48	middle
cgr-miR-1260_1	ATCCCACCGCTGCCACCAA	0.0179	38.70	55.67	74.48	middle
mmu-mir-3535-p3	GATAGTCAAGTTCTGATC	0.0325	67.79	38.06	42.04	middle
mmu-miR-501-5p	AATCCTTTGTCCCTGGGTGA	0.0339	65.95	43.24	62.55	middle
mmu-miR-501-3p	AATGCACCCGGGCAAGGATTTGG	0.0303	600.60	713.68	493.76	middle
bta-miR-378	ACTGGACTTGGAGTCAGAAGGAT	0.0045	260.23	179.46	148.79	middle
mmu-miR-128-3p	TCACAGTGAACCGGTCTCTTT	0.0087	262.80	276.45	350.38	middle
mmu-miR-345-5p	TGCTGACCCCTAGTCCAGTGCT	0.0464	412.32	342.57	365.76	middle

Table S8. Twenty-one nonrepetitive and DE-miRNAs were identified among the three groups in this study.

miR	Reported target mRNA	Control	Model	GPSGRP	Expression level
miR-143-3p	GLUT9	27346.75	25895.85	28048.07	High
miR-34a	URAT1	570.82	680.99	507.83	Middle
miR-223	NLRP3 inflammasome	168.33	204.76	626.83	Middle
miR-17-5p	Thioredoxin-interacting protein	808.94	730.23	918.29	Middle
miR-186	TLR4/ NF-κB pathway	513.34	521.51	695.31	Middle
miR-125b-5p	related to renal injury	8776.15	10531.86	7902.99	High
miR-152-5p	related to renal injury	11.65	0.1	5.43	Middle
miR-188-5p	PTEN/PI3K/AKT	14.21	4.31	3.10	Middle
miR-128-3p	SIRT1	262.80	276.45	350.38	Middle
miR-30b	IL-6 receptor	13363.08	10188.33	9902.47	High

Table S9. miRNAs related to uric acid metabolism and immune response identified among three groups in this study.

	miR-143-3p	miR-223	miR-17-5p	miR-186	miR-125b-5p	miR-152-5p	miR-188-5p	miR-128-3p	miR-30b	miR-34a
Paramuribaculum	-0.042	-0.742	-0.328	-0.72	0.049	0.752	0.99	-0.789	0.986	0.084
Alloprevotella	0.257	-0.508	-0.032	-0.481	-0.251	0.914	0.987	-0.57	0.991	-0.216
Muribaculaceae_unclassified	0.126	-0.619	-0.165	-0.594	-0.119	0.852	1	-0.675	1	-0.084
Muribaculum	-0.442	-0.949	-0.682	-0.939	0.448	0.422	0.849	-0.97	0.835	0.48
Akkermansia	-0.913	-0.931	-0.992	-0.942	0.916	-0.254	0.316	-0.902	0.293	0.929
Dubosiella	-0.72	-1	-0.889	-1	0.725	0.09	0.62	-0.995	0.6	0.748
Candidatus_Saccharimonas	0.395	0.932	0.643	0.92	-0.402	-0.468	-0.875	0.956	-0.863	-0.434
Lactobacillus	0.792	0.991	0.934	0.995	-0.796	0.021	-0.529	0.978	-0.508	-0.817
Alistipes	0.965	0.49	0.848	0.517	-0.963	0.809	0.357	0.424	0.38	-0.953
Desulfovibrio	-0.032	0.69	0.257	0.667	0.025	-0.799	-0.998	0.742	-0.996	-0.011
Coriobacteriaceae_UCG-002	-0.899	-0.318	-0.735	-0.348	0.896	-0.905	-0.525	-0.247	-0.546	0.88
Bifidobacterium	-0.978	-0.536	-0.876	-0.562	0.976	-0.777	-0.306	-0.472	-0.329	0.968
Bacteroidetes_unclassified	-0.795	-0.126	-0.587	-0.157	0.791	-0.971	-0.682	-0.052	-0.7	0.769
Anaeroplasma	0.958	0.876	1	0.89	-0.96	0.379	-0.189	0.838	-0.165	-0.97
Odoribacter	-0.195	0.563	0.096	0.536	0.188	-0.886	-0.995	0.622	-0.997	0.153
Enterococcus	0.018	-0.7	-0.271	-0.677	-0.011	0.79	0.997	-0.751	0.994	0.024
Insolitispirillum	0.227	-0.535	-0.064	-0.508	-0.22	0.901	0.992	-0.596	0.995	-0.185
Prevotellaceae UCG-001	-0.423	-0.943	-0.666	-0.932	0.43	0.441	0.86	-0.965	0.847	0.461
Escherichia-Shigella	-0.963	-0.868	-1	-0.883	0.965	-0.393	0.174	-0.829	0.149	0.973
Methylobacterium	0.474	-0.296	0.2	-0.265	-0.467	0.983	0.923	-0.365	0.933	-0.436
Parabacteroides	-0.025	-0.73	-0.312	-0.708	0.032	0.763	0.992	-0.779	0.989	0.068
Turicibacter	0.108	-0.633	-0.183	-0.608	-0.101	0.842	1	-0.689	1	-0.065
Bacteroides	-0.477	-0.961	-0.71	-0.952	0.483	0.386	0.828	-0.979	0.813	0.514
Acidaminococcus	-0.256	-0.869	-0.524	-0.853	0.263	0.592	0.936	-0.903	0.927	0.297
Fusobacterium	-0.376	-0.924	-0.627	-0.912	0.383	0.486	0.885	-0.95	0.873	0.415
Eggerthella	0.461	-0.31	0.186	-0.279	-0.455	0.98	0.929	-0.379	0.938	-0.423
Dorea	0.889	0.298	0.72	0.328	-0.886	0.914	0.543	0.227	0.564	-0.869
Rikenellaceae_RC9	0.909	0.934	0.991	0.945	-0.912	0.246	-0.324	0.906	-0.301	-0.926
Ruminococcaceae_UCG-004	0.757	0.997	0.913	0.999	-0.762	-0.034	-0.575	0.988	-0.555	-0.784
Eubacterium_xylanophilum_group	0.862	0.966	0.972	0.974	-0.866	0.146	-0.419	0.944	-0.396	-0.883
Ruminococcaceae_unclassified	-0.023	0.697	0.266	0.674	0.016	-0.793	-0.997	0.748	-0.995	-0.02
Stenotrophomonas	0.733	0.999	0.898	1	-0.738	-0.07	-0.604	0.993	-0.584	-0.762
Candidatus_Bacilloplasma	0.75	0.997	0.909	0.999	-0.755	-0.044	-0.583	0.989	-0.563	-0.778
Eisenbergiella	0.704	1	0.879	1	-0.709	-0.112	-0.637	0.997	-0.618	-0.734

Table S10. Spearman's correlation analysis between these 10 miRNAs and 49 differentially abundant genera.

Oligella	0.75	0.997	0.909	0.999	-0.755	-0.044	-0.583	0.989	-0.563	-0.778
Pygmaiobacter	0.75	0.997	0.909	0.999	-0.755	-0.044	-0.583	0.989	-0.563	-0.778
Oxyphotobacteria_unclassified	0.75	0.997	0.909	0.999	-0.755	-0.044	-0.583	0.989	-0.563	-0.778
Eubacterium_coprostanoligenes_group	0.573	0.986	0.785	0.98	-0.579	-0.279	-0.759	0.996	-0.742	-0.607
Blautia	0.526	0.975	0.749	0.968	-0.532	-0.333	-0.794	0.989	-0.779	-0.562
Candidatus_Stoquefichus	-0.948	-0.437	-0.815	-0.465	0.945	-0.843	-0.412	-0.369	-0.434	0.933
Prevotellaceae_NK3B31_group	-0.948	-0.437	-0.815	-0.465	0.945	-0.843	-0.412	-0.369	-0.434	0.933
Enterorhabdus	0.414	-0.359	0.134	-0.329	-0.408	0.969	0.947	-0.426	0.954	-0.375
Christensenellaceae_R-7_group	0.161	-0.591	-0.13	-0.565	-0.154	0.87	0.998	-0.649	0.999	-0.119
Olsenella	-0.94	-0.417	-0.802	-0.446	0.938	-0.855	-0.432	-0.349	-0.454	0.925
Parasutterella	-1	-0.701	-0.957	-0.723	1	-0.628	-0.1	-0.646	-0.125	0.999
Erysipelotrichaceae_unclassified	-0.974	-0.521	-0.867	-0.548	0.972	-0.787	-0.322	-0.457	-0.346	0.963
Eubacterium_nodatum_group	-0.334	-0.906	-0.591	-0.892	0.34	0.525	0.905	-0.935	0.894	0.373
Erysipelatoclostridium	-0.992	-0.604	-0.912	-0.629	0.991	-0.722	-0.226	-0.543	-0.251	0.985
Catabacter	-0.958	-0.468	-0.835	-0.496	0.956	-0.824	-0.379	-0.402	-0.402	0.945

SUPPORTING FIGURE LEGENDS

Fig. S1 *In vitro* **XOD** inhibitory rate of allopurinol. Data are shown as mean ± SD, n=3.

Fig. S2 The effects of GPAGPR and GPSGRP on body weight. A. body weight curve; **B.** Body weight gain. Data are shown as mean \pm SD, n=5. ** p<0.01.

Fig. S3 Effects of peptides on the mRNA levels of the NF- κ B signaling pathway. A. TLR4. B. MyD88. C. TRAF6. D. iNOS. E. COX-2. Data are shown as mean \pm SD, n=5. * p<0.05, ** p<0.01, and *** p<0.001.

Fig. S4 DE-miRNAs (nonrepetitive) in the pairwise comparison among the three treatments (p < 0.05). The abundance of DE-miRNAs increased in the model group and reduced by GPSGRP treatment is marked in red, and the abundance of DE-miRNAs decreased in the model group and enhanced by the GPSGRP treatment is marked in green.

Fig. S1

Fig. S2

Fig. S4