Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2022

Supplementary methods:

2.1 Animals and diet preparation

- 3 The hybrid grouper (*Epinephelus fuscoguttatus* $\mathcal{P} \times E$. *lanceolatus* \mathcal{O}) juveniles (before
- 4 sex differentiation) were purchased from a local fish farm (Zhanjiang, China) and
- 5 acclimated for 7 days by feeding with a commercial diet (50% crude protein, 10% crude
- 6 lipid). Feeding was performed every day at 8:00 and 17:00 until the apparent satiation
- 7 (about 3.0-5.0% of the fish body weight). All feed ingredients were crushed into
- 8 powder through a 380 mm mesh and combined. Fish oil, soy lecithin, and water were
- 9 then added and mixed thoroughly. After pelletization and air drying for 2-3 days at
- 10 room temperature, all prepared feed was kept in a refrigerator (-20°C) until use.

11 2.2 Animals experiment and sample collection

12 **2.2.1** Feeding experiment (8 weeks)

- 13 The CD (control diet, 8.27% lipid) and HD diet (15.32%, added soybean oil to the CD
- 14 diet) were formulated according to the previous findings that 7-13% is an optimal
- 15 dietary lipid level for grouper 1. Five BAs diets (BD) were prepared by adding
- 16 taurocholic acid sodium (TCA, CAS: 345909-26-4, T4009, Sigma Aldrich) levels at
- 17 300 (B300D), 600 (B600D), 900 (B900D), 1200 (B1200D), and 1500 (B1500D) mg
- 18 kg⁻¹ to the HD diet. These tanks were randomly assigned to seven groups (CD, HD,
- 19 B300D, B600D, B900D, B1200D, and B1500D), ensuring four replicates per group (7
- $20 \times 4 = 28$).
- 21 Blood was obtained from the caudal vein using sterile syringes and then centrifuged
- 22 (3000×g) at 4°C for 10 min to obtain the serum, which was quickly frozen in liquid
- 23 nitrogen and stored at -80°C. The serum samples were used for biochemical indicators.
- 24 Each liver was divided into four parts: one was placed in 4% paraformaldehyde solution
- 25 for histological examination, and the remainder was quickly frozen in liquid nitrogen
- 26 and stored at -80°C. The latter three liver samples were used for testing biochemical
- 27 indicators, determining gene and protein expression. Each distal intestine sample (from
- 28 the anus to the first twist of the intestine) was divided into two parts and then quickly
- 29 frozen in liquid nitrogen and stored at -80°C. These samples were used for testing
- 30 biochemical indicators and determining gene expression. The distal intestinal contents

- 31 were carefully collected, frozen in liquid nitrogen, and stored at -80°C till the bacterial
- 32 composition and BAs analysis.

33 2.2.2 Antibiotics experiment (6 days)

- 34 Three common antibiotics were purchased from the Aladdin Company (China):
- 35 vancomycin (CAS: 1404-93-9, V105495), neomycin sulfate (CAS: 1405-10-3,
- 36 N109017), and metronidazole (CAS: 443-48-1, M109874) ^{2, 3}. An ASB900D diet was
- 37 formulated from the B900D diet by supplementing with a mixture of antibiotics
- 38 (metronidazole 4 g kg⁻¹, neomycin sulfate 4 g kg⁻¹, and vancomycin 2 g kg⁻¹). These
- 39 antibiotics concentrations were selected based on a marked decrease in the total
- 40 bacterial quantity in the intestinal content of zebrafish ³. The short-term (6 days)
- 41 antibiotics treatment was selected according to our pilot trials and other studies ⁴.
- 42 Ninety fish (body weight 21.31 ± 0.12 g) were randomly distributed into 6 plastic tanks
- 43 (15 fish per tank, 500L). These tanks were randomly assigned to two groups: a short-
- 44 term B900D diet group (SB900D) and an ASB900D diet group, ensuring three
- 45 replicates per group $(2 \times 3 = 6)$. After 6 days of the feeding trial, six specimens from
- 46 each tank were selected randomly to obtain the blood (2 fish), liver (2 fish) and distal
- 47 intestine (2 fish).

48 2.2.3 Injection experiment (6 days)

- 49 Two kinds of BAs, two inhibitors, and two activators, were used: TCA,
- 50 taurodeoxycholic acid (TDCA, CAS: 207737-97-1, S168485, Aladdin), obeticholic
- 51 acid (FXR agonist, CAS: 459789-99-2, HY-12222, MCE) ⁵, guggulsterone (FXR
- 52 antagonist, CAS: 95975-55-6, HY-107738, MCE) ⁶, SBI-115 (TGR5 antagonist, CAS:
- 53 882366-16-7, HY-111534, MCE), and INT-777 (TGR5 agonist, CAS: 1199796-29-6,
- 54 HY-15677, MCE) ⁵. Six injection groups were designed as follows: 1) I-TCA group:
- 55 50 mg of TCA per kg of fish body weight (injection three times: days 1, 3, and 5); 2) I-
- 56 TDCA group: 50 mg kg⁻¹ of TDCA (injection on days 1, 3, and 5); 3) I-T747 group: I-
- 57 TCA group + 1 mg kg⁻¹ of obeticholic acid (one injection on day 5); 4) I-TGU group:
- 58 I-TCA group + 25 mg kg⁻¹ of guggulsterone (one injection on day 5); 5) I-TSBI group:
- 59 I-TCA group + 1 mg kg⁻¹ of SBI-115 (one injection on day 5); 6) I-T777 group: I-TCA
- 60 group + 1 mg kg⁻¹ of INT-777 (one injection on day 5). The concentrations and periods

of each treatment were selected according to our pilot trials and other studies ⁷.

2.3.6 The concentrations of BAs in the content of hindgut

63 Preparation of standard and sample solutions

- 64 37 standards were weighed accurately and the stock solutions were prepared using the
- 65 solvent described in Table 1. Working solutions were prepared through serial dilution
- 66 using methanol. The information and final concentration of each standard is shown in
- 67 Table 1 and 2. The standard solutions were stored below -20 °C. About 10 mg of the
- 68 hindgut content sample was collected and 300 μL methanol was added to precipitate
- 69 protein, vortexed for 1min and then centrifuged at 4°C for 10 min (12, 000 g). The
- 70 supernatant was concentrated and dried in a vacuum. The residue was dissolved with
- 71 $100 \mu L$ methanol and the supernatant was ready for the LC-MS analysis.

72 LC/MS method

- 73 The UPLC separation was performed on an Acquity UPLC system (Waters, U.K.)
- 74 equipped with an Acquity UPLC® BEH C18 (1.7um, 2.1x100mm, Waters) column.
- 75 The temperature of the column was set at 40 °C. The sample injection volume was 5μ L.
- 76 Eluents consisted of 0.01% formic acid in water (eluent A) and ACN (eluent B). The
- 77 flow rate was set at 0.25 mL/min. A 38-min elution gradient was performed as follows:
- 78 0–4min, 25% B; 4–9min, 25-30% B; 9–14min, 30-36% B; 14–18min, 36-38% B; 18–
- 79 24min, 38-50% B; 24–32min, 50–75% B; 32–35min, 75–100% B; 35–38min, 100–25%
- 80 B. The MS analysis was performed using an AB 4000 mass spectrometer (AB, USA)
- 81 equipped with an ESI source in the negative-ion mode working in the multiple reaction
- 82 monitoring mode. An ion source voltage of 4.5 kV, a source temperature of 500 °C and
- 83 a desolvation temperature of 380°C were used. Collision gas and the curtain gas were
- set at 6 psi and 30 psi, respectively, while the atomization gas and auxiliary gas were
- 85 both at 50 psi. The parameters for each BA are shown in Table 3.

86 Calibration curves, validation and samples analyses

- 87 The calibration graphs were constructed by plotting the peak area versus concentration
- 88 for each individual BA. The results are shown in Table 4. The intra- and inter-day
- 89 precision was determined using a standard mixture of BAs (different final
- 90 concentrations). The intra- and inter-day precision was 1.52%–10.14% and 2.18%–

- 91 23.44%, respectively. The stability of the method was evaluated by quality control (QC)
- 92 in each batch. The relative standard deviations of all QCs were calculated based on the
- 93 peak area. The results showed that the stability of each substance was less than 15%,
- 94 which indicated that this method was stable and reliable, and could be applied to the
- 95 detection of samples. Samples were analyzed and quantified using the method
- 96 described above.

97 References

- 98 1. C. Zou, N. Su, J. Wu, M. Xu, Z. Sun, Q. Liu, L. Chen, Y. Zhou, A. Wang and C. Ye, Dietary Radix
- 99 Bupleuri extracts improves hepatic lipid accumulation and immune response of hybrid grouper
- 100 (Epinephelus lanceolatusmale symbol x Epinephelus fuscoguttatusfemale symbol), Fish
- 101 *Shellfish Immunol*, 2019, **88**, 496-507.
- 102 2. P. Pathak, C. Xie, R. G. Nichols, J. M. Ferrell, S. Boehme, K. W. Krausz, A. D. Patterson, F. J.
- Gonzalez and J. Y. L. Chiang, Intestine farnesoid X receptor agonist and the gut microbiota
- activate G-protein bile acid receptor-1 signaling to improve metabolism, *Hepatology*, 2018, **68**,
- 105 1574-1588.
- 106 3. Y. Sheng, H. Ren, S. M. Limbu, Y. Sun, F. Qiao, W. Zhai, Z. Y. Du and M. Zhang, The Presence or
- 107 Absence of Intestinal Microbiota Affects Lipid Deposition and Related Genes Expression in
- Zebrafish (Danio rerio), Front Microbiol, 2018, 9, 1124.
- 109 4. E. L. Wang, Z. H. Yuan, K. Y. Wang, D. Y. Gao, Z. J. Liu and M. R. Liles, Consumption of florfenicol
 - medicated feed alters the composition of the channel catfish intestinal microbiota including
- enriching the relative abundance of opportunistic pathogens, Aquaculture, 2019, **501**, 111-
- 112 118.
- 113 5. W. Jia, G. Xie and W. Jia, Bile acid-microbiota crosstalk in gastrointestinal inflammation and
- carcinogenesis, *Nat Rev Gastroenterol Hepatol*, 2018, **15**, 111-128.
- 115 6. F. Huang, X. Zheng, X. Ma, R. Jiang, W. Zhou, S. Zhou, Y. Zhang, S. Lei, S. Wang, J. Kuang, X. Han,
- M. Wei, Y. You, M. Li, Y. Li, D. Liang, J. Liu, T. Chen, C. Yan, R. Wei, C. Rajani, C. Shen, G. Xie, Z.
- 117 Bian, H. Li, A. Zhao and W. Jia, Theabrownin from Pu-erh tea attenuates hypercholesterolemia
- 118 via modulation of gut microbiota and bile acid metabolism, Nat Commun, 2019, 10, 4971.
- 119 7. P. Xu, K. Xu, J. Wang, J. P. Jiang and L. Q. Chen, Pioglitazone: a promising therapeutic tool in
- sodium taurocholate-induced severe acute pancreatitis, *Dig Dis Sci*, 2011, **56**, 1082-1089.

110

Table 1 The detailed information for bile acids

Bile acid	Full name	CAS	Solvent
alloLCA	Allolithocholic acid	2276-93-9	methanol
LCA	Lithocholic acid	434-13-9	methanol
isoLCA	Isolithocholic acid	1534-35-6	methanol
NorDCA	23-Nordeoxycholic acid	53608-86-9	methanol
12-ketoLCA	12-ketolithocholic acid	5130-29-0	methanol
7-ketoLCA	7-ketolithocholic acid	4651-67-6	methanol
β-UDCA	3β-Ursodeoxycholic acid	78919-26-3	methanol
DCA	Deoxycholic acid	83-44-3	methanol
CDCA	Chenodeoxycholic acid	474-25-9	methanol
UDCA	Ursodeoxycholic acid	128-13-2	methanol
HDCA	Hyodeoxycholic acid	83-49-8	methanol
NorCA	Norcholic acid	60692-62-0	methanol
DHCA	Dehydrocholic acid	81-23-2	methanol
7,12-diketoLCA	7,12-diketolithocholic acid	517-33-9	methanol
α-MCA	α-Muricholic acid	2393-58-0	methanol
UCA	Ursocholic acid	2955-27-3	methanol
β-ΜСΑ	β-Muricholic acid	2393-59-1	methanol
CA	Cholic acid	81-25-4	methanol
ACA	Allocholic acid	2464-18-8	methanol
βCA	3β-Cholic acid	3338-16-7	methanol
			50%
GLCA	Glycolithocholic acid Sodium Salt	24404-83-9	methanol
GHDCA	Glycohyodeoxycholic acid	13042-33-6	methanol
GCDCA	Glycochenodeoxycholic acid Sodium Salt	16564-43-5	methanol
GUDCA	Glycoursodeoxycholic acid	64480-66-6	methanol
GDCA	Glycodeoxycholic acid Sodium Salt	16409-34-0	methanol
			50%
LCA-3S	Lithocholic acid 3-sulfate Sodium Salt	34669-57-3	methanol
GCA	Sodium Glycocholate Hydrate	863-57-0	methanol
TLCA	Taurolithocholic acid Sodium Salt	6042-32-6	methanol
THDCA	Taurohyodeoxycholic acid Sodium Salt	38411-85-7	methanol
TUDCA	Tauroursodeoxycholic acid Sodium Salt	35807-85-3	methanol
TDCA	Taurodeoxycholic acid Sodium Salt	1180-95-6	methanol
TCDCA	Taurochenodeoxycholic acid	6009-98-9	methanol
TCA	Taurocholic acid Sodium Salt	145-42-6	methanol

T-α-MCA	Tauro-α-muricholic acid Sodium Salt	25696-60-0	methanol
Τ-β-ΜСΑ	Tauro-β-muricholic acid Sodium Salt	145022-92-0	methanol
CDCA-3G	Chenodeoxycholic acid-3-β-D-glucuronide	58814-71-4	methanol
CDCA-24G	Chenodeoxycholic acid 24-Acyl-β-D-glucuronide	208038-27-1	methanol

Table 2 The final concentration of each standard solution (ng/mL)

								No.					
Name	S 1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13
alloLCA	/	/	/	2	4	10	20	40	100	200	400	1000	2000
LCA	/	/	5	10	20	50	100	200	500	1000	/	/	/
isoLCA	/	/	5	10	20	50	100	200	500	1000	2000	/	/
NorDCA	/	/	1	2	4	10	20	40	100	200	400	/	/
12-ketoLCA	1	2	5	10	20	50	100	200	500	1000	2000	/	/
7-ketoLCA	/	/	1	2	4	10	20	40	100	200	400	1000	2000
β-UDCA	/	/	5	10	20	50	100	200	500	1000	2000	/	/
DCA	/	/	5	10	20	50	100	200	500	1000	/	/	/
CDCA	/	/	5	10	20	50	100	200	500	1000	2000	/	/
UDCA	/	/	1	2	4	10	20	40	100	200	400	/	/
HDCA	/	/	5	10	20	50	100	200	500	1000	2000	/	/
NorCA	/	/	/	2	4	10	20	40	100	200	400	1000	2000
DHCA	/	/	/	/	/	10	20	40	100	200	400	1000	2000
7,12-diketoLCA	/	/	/	/	4	10	20	40	100	200	400	1000	2000
6,7-diketoLCA	/	/	/	/	4	10	20	40	100	200	400	1000	2000
α-MCA	/	/	5	10	20	50	100	200	500	1000	2000	/	/
UCA	/	/	1	2	4	10	20	40	100	200	400	1000	2000
β-ΜСΑ	/	/	5	10	20	50	100	200	500	1000	2000	5000	/
CA	/	/	5	10	20	50	100	200	500	1000	2000	/	/
ACA	/	/	1	2	4	10	20	40	100	200	400	1000	/
β-СА	/	/	/	2	4	10	20	40	100	200	400	1000	2000
GUCA	/	/	/	2	4	10	20	40	/	/	/	/	/
GLCA	/	/	1	2	4	10	20	40	100	200	400	1000	2000
GHDCA	/	0.4	1	2	4	10	20	40	100	200	400	1000	2000
GCDCA	/	/	5	10	20	50	100	200	500	1000	2000	/	/
GUDCA	/	/	1	2	4	10	20	40	100	200	400	1000	2000
GDCA	/	/	1	2	4	10	20	40	100	200	400	1000	2000
LCA-3S	/	/	1	2	4	10	20	40	100	200	400	1000	2000

GCA	/	/	5	10	20	50	100	200	500	1000	2000	5000	/
TLCA	/	/	1	2	4	10	20	40	100	200	400	1000	2000
TDCA	/	/	5	10	20	50	100	200	500	1000	2000	5000	10000
TCDCA	/	/	/	10	20	50	100	200	500	1000	2000	5000	10000
TCA	/	/	5	10	20	50	100	200	500	1000	2000	5000	10000
T-α-MCA	/	/	5	10	20	50	100	200	500	1000	2000	5000	10000
THCA	/	/	1	2	4	10	20	40	100	200	400	1000	2000
Τ-β-ΜСΑ	/	/	/	10	20	50	100	200	500	1000	2000	5000	10000
CDCA-G	/	/	2	4	8	20	40	80	200	400	800	2000	4000

 Table 3 The parameters of each bile acid

						_
Name	Q1 (m/z)	Q3 (m/z)	DP (v)	EP (v)	CE (v)	CXP (v)
alloLCA	375.145	375.145	-40	-10	-32	-1
LCA	375.3	375.3	-150	-10	-18	-9
isoLCA	375.301	375.301	-150	-10	-18	-9
NorDCA	377.3	377.3	-145	-10	-18	-9
12-ketoLCA	389.301	389.301	-145	-10	-18	-9
7-ketoLCA	389.302	389.302	-150	-10	-18	-9
β-UDCA	391.254	391.254	-150	-10	-26	-9
DCA	391.3	391.3	-145	-10	-18	-9
CDCA	391.301	391.301	-145	-10	-18	-9
UDCA	391.302	391.302	-150	-10	-18	-9
HDCA	391.303	391.303	-150	-10	-18	-9
NorCA	393.211	329.1	-130	-10	-46	-3
DHCA	401.2	401.2	-138	-10	-18	-9
7,12-diketoLCA	403.14	403.14	-125	-10	-38	-10
6,7-diketoLCA	403.3	403.3	-140	-10	-18	-9
α-MCA	407.3	407.3	-166	-10	-18	-9
UCA	407.301	407.301	-140	-10	-18	-9
β-ΜСΑ	407.302	407.302	-155	-10	-18	-5
CA	407.303	407.303	-140	-10	-18	-5
ACA	407.304	407.304	-140	-10	-18	-9
β-СА	407.362	407.362	-155	-10	-44	-9
GUCA	416.2	73.9	-120	-10	-58	-3
GLCA	432.401	73.9	-90	-10	-62	-5

GHDCA	448.2	74	-105	-10	-44	-13
GCDCA	448.276	73.9	-135	-10	-68	-5
GUDCA	448.277	73.9	-130	-10	-58	-5
GDCA	448.279	73.9	-90	-10	-68	-5
LCA-3S	455.196	96.9	-140	-10	-72	-1
GCA	464.281	73.9	-115	-10	-64	-5
TLCA	482.223	80	-115	-10	-100	-1
TDCA	498.35	79.8	-175	-10	-102	-5
TCDCA	498.357	79.8	-40	-10	-100	-5
TCA	514.332	79.8	-155	-10	-102	-7
T-α-MCA	514.337	79.9	-145	-10	-100	-5
THCA	514.343	79.9	-185	-10	-98	-7
Τ-β-ΜСΑ	514.346	79.9	-125	-10	-100	-5
CDCA-G	567.525	391.1	-100	-10	-48	-5

Q1: precursor ion; Q3: fragment ion; DP: distribution potential; EP: entrance potential; CE: collision energy; CXP: collision cell exit potential.

Table 4 Calibration curves and LOQ of each bile acid

Name	RT (min)	Linear equation	Correlation coefficient (r)	Linear Range (ng/mL)	LOQ (ng/mL)
alloLCA	30.08	Y=1530X+68	0.9984	2-2000	2
LCA	32.09	Y=11700X+7670	0.9972	5-1000	5
isoLCA	30.49	Y=6320X+3940	0.9968	5-2000	5
NorDCA	24.59	Y=12900X+5790	0.9963	1-400	1
12-ketoLCA	24.68	Y=5280X+4140	0.9968	1-2000	1
7-ketoLCA	24.08	Y=6740X+2070	0.9947	1-2000	1
β-UDCA	20.02	Y=6650X+5560	0.9973	5-2000	5
DCA	27.49	Y=12300X+12000	0.9973	5-1000	5
CDCA	26.89	Y=9950X+17400	0.9931	5-2000	5
UDCA	21.72	Y=15500X+7490	0.9962	1-400	1
HDCA	22.12	Y=6950X+9130	0.9968	5-2000	5
NorCA	16.21	Y=350X+198	0.9986	2-2000	2
DHCA	14.07	Y=4920X+3220	0.9985	10-2000	10
7,12-diketoLCA	13.44	Y=1260X+232	0.998	4-2000	4
6,7-diketoLCA	24.24	Y=3350X+886	0.996	4-2000	4

α-MCA	15.93	Y=5560X+3750	0.9972	5-2000	5
UCA	12.88	Y=9920X+1630	0.9985	1-2000	1
β-MCA	16.75	Y=4810X+7710	0.9962	5-5000	5
CA	21.11	Y=13700X+26400	0.9966	5-2000	5
ACA	20.64	Y=9490X+105	0.9985	1-1000	1
β-CA	15.39	Y=1470X+1030	0.9968	2-2000	2
GUCA	36.72	Y=681X+23.8	0.9984	2-40	2
GLCA	27.98	Y=3180X+267	0.9983	1-2000	1
GHDCA	15.53	Y=1040X+13.2	0.9965	0.4-2000	0.4
GCDCA	21.88	Y=2180X+1500	0.9974	5-2000	5
GUDCA	15.23	Y=2450X+1890	0.996	1-2000	1
GDCA	22.87	Y=2430X+101	0.9987	1-2000	1
LCA-3S	26.44	Y=5700X+59	0.9991	1-2000	1
GCA	15.51	Y=1730X+1430	0.9974	5-5000	5
TLCA	24.41	Y=2220X+3630	0.9982	1-2000	1
TDCA	18.87	Y=2520X+1800	0.9975	5-10000	5
TCDCA	17.53	Y=1280X-550	0.999	10-10000	10
TCA	12.86	Y=1750X+951	0.9987	5-10000	5
T-α-MCA	7.45	Y=564X+368	0.9991	5-10000	5
THCA	10.27	Y=1900X-57.8	0.9992	10-10000	10
Τ-β-ΜСΑ	7.77	Y=707X+184	0.9989	10-10000	10
CDCA-G	20.62	Y=569X+350	0.999	2-4000	2
00:1			. (275) 1:1:		

LOQ is determined by the signal-to-noise ratio (S/N), which is calculated by comparing the signals of known samples with blank samples. Generally, the corresponding concentration is defined as LOQ when the S/N is 10:1 (S/N=10).