Network pharmacology combined with metabolomics and lipidomics to reveal the hypolipidemic mechanism of *Alismatis Rhizoma* in hyperlipidemic mice

Pan Yan\(^a\), Yinyu Wei\(^a\), Meiqin Wang\(^a\), Jianmei Tao\(^a\), Hui Ouyang\(^c\), Zhifeng Du\(^a\), Sen Li\(^b\),*, Hongliang Jiang\(^a\),*

\(^a\) Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China;
\(^b\) Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
\(^c\) Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China;

*Corresponding author: Sen Li; E-mail: lisentome728@hotmail.com;

*Corresponding author: Hongliang Jiang; E-mail: jianghongliang@hust.edu.cn;
Fig. S1. The overlaid total ion chromatogram of QC in the metabolomics analysis. (A) Positive ion mode, (B) Negative ion mode.
Fig. S2. The overlaid total ion chromatogram of QC in the lipidomics analysis. (A) Positive ion mode, (B) Negative ion mode.
Fig. S3. PCA score plots of QC samples in the (A) metabolomics and the (B) lipidomics analyses.
Fig. S4. The correlation of QC samples in the (A) metabolomics and the (B) lipidomics analyses.
Fig. S5. Pathway analysis of differential metabolites (lipids) from the (A) metabolomics and the (B) lipidomics analyses.
Fig. S6. The TIC of AR extracts in positive mode detected by UHPLC-Q-TOF/MS.
Fig. S7. The XIC of prototypes and metabolites detected in plasma after oral administration of AR.
Fig. S8. Gene-Metabolite Interaction Network. The circles represent the genes and the rectangles represent the metabolites and lipids.
Fig. S9. Sankey diagram between the active compounds and correlated key targets. The thickness of the ribbon is negatively correlated with the docking score.
Fig. S10. Docking mode between the alisol A 23-acetate and IL1B (A); Docking mode between the 12,22-dihydroxy-alisol G and MMP9 (B).
Table S1. The nutritional composition of AR powder used in this study.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Content (per 100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>10.1 g</td>
</tr>
<tr>
<td>Ashes</td>
<td>2.6 g</td>
</tr>
<tr>
<td>Fats</td>
<td>3.8 g</td>
</tr>
<tr>
<td>Proteins</td>
<td>22.8 g</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>60.7 g</td>
</tr>
<tr>
<td>Na</td>
<td>16.9 mg</td>
</tr>
<tr>
<td>K</td>
<td>788 mg</td>
</tr>
<tr>
<td>Mg</td>
<td>942 mg</td>
</tr>
<tr>
<td>Energy</td>
<td>1560 kJ</td>
</tr>
</tbody>
</table>
Table S2. The primer sequences for qPCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARA</td>
<td>TACTGCCGTTTTCACAAAGTGC</td>
<td>AGGTCGTGTTCACAGGTAAGA</td>
</tr>
<tr>
<td>PPARG</td>
<td>CTCCAAGAATAACCAAAGTGCGA</td>
<td>GCCTGATGCTTATCCCAACA</td>
</tr>
<tr>
<td>ALB</td>
<td>CAGCGGAGCAACTGAAGACT</td>
<td>AAGGTTCAGACCCTCAGTCG</td>
</tr>
<tr>
<td>MMP9</td>
<td>CTCTCCTGGCTTTCGCTG</td>
<td>TAGCGGTACAAGTGTCGGCTC</td>
</tr>
<tr>
<td>TNF</td>
<td>CCCTCACACTCAAAACCAC</td>
<td>ACAAGGTACAACCCTCAGG</td>
</tr>
<tr>
<td>IL1B</td>
<td>GCAGTGGTTCAGGCTTAAT</td>
<td>GCTGCTTCAGACACTTCGCA</td>
</tr>
<tr>
<td>β-actin</td>
<td>CACTGTGAGTCGCGTCC</td>
<td>TCATCCATGGCGAAGTGTTG</td>
</tr>
</tbody>
</table>

Table S3. Food intake of mice fed with AR and simvastatin for 4 weeks.

<table>
<thead>
<tr>
<th>Week</th>
<th>HFD (g/mouse*day) n=8</th>
<th>SIM (g/mouse*day) n=8</th>
<th>AR (g/mouse*day) n=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.42 ± 0.89</td>
<td>6.95 ± 1.63</td>
<td>6.75 ± 1.44</td>
</tr>
<tr>
<td>2</td>
<td>6.11 ± 0.67</td>
<td>6.81 ± 0.92</td>
<td>6.39 ± 0.95</td>
</tr>
<tr>
<td>3</td>
<td>5.53 ± 0.46</td>
<td>5.71 ± 0.76</td>
<td>5.97 ± 0.79</td>
</tr>
<tr>
<td>4</td>
<td>5.71 ± 0.93</td>
<td>5.92 ± 0.65</td>
<td>5.66 ± 0.81</td>
</tr>
</tbody>
</table>
Table S4. Metabolic pathways of AR against hyperlipidemia in metabolomics analysis.

<table>
<thead>
<tr>
<th>No</th>
<th>Pathway Name</th>
<th>Match Status</th>
<th>P-value</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aminoacyl-tRNA biosynthesis</td>
<td>3/48</td>
<td>0.056953</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Linoleic acid metabolism</td>
<td>1/5</td>
<td>0.089683</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Cysteine and methionine metabolism</td>
<td>2/33</td>
<td>0.12363</td>
<td>0.1263</td>
</tr>
<tr>
<td>4</td>
<td>Glycine, serine and threonine metabolism</td>
<td>2/34</td>
<td>0.1299</td>
<td>0.08668</td>
</tr>
<tr>
<td>5</td>
<td>Valine, leucine and isoleucine biosynthesis</td>
<td>1/8</td>
<td>0.13972</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Taurine and hypotaurine metabolism</td>
<td>1/8</td>
<td>0.13972</td>
<td>0.28571</td>
</tr>
<tr>
<td>7</td>
<td>Biosynthesis of unsaturated fatty acids</td>
<td>2/36</td>
<td>0.14265</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Glycerophospholipid metabolism</td>
<td>2/36</td>
<td>0.14265</td>
<td>0.11182</td>
</tr>
<tr>
<td>9</td>
<td>Arachidonic acid metabolism</td>
<td>2/36</td>
<td>0.14265</td>
<td>0.33292</td>
</tr>
<tr>
<td>10</td>
<td>Arginine and proline metabolism</td>
<td>2/38</td>
<td>0.15566</td>
<td>0.08992</td>
</tr>
<tr>
<td>11</td>
<td>Phenylalanine metabolism</td>
<td>1/12</td>
<td>0.20232</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>alpha-Linolenic acid metabolism</td>
<td>1/13</td>
<td>0.21727</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Arginine biosynthesis</td>
<td>1/14</td>
<td>0.23195</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Histidine metabolism</td>
<td>1/16</td>
<td>0.26051</td>
<td>0.12295</td>
</tr>
<tr>
<td>15</td>
<td>Pantothenate and CoA biosynthesis</td>
<td>1/19</td>
<td>0.30145</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Citrate cycle (TCA cycle)</td>
<td>1/20</td>
<td>0.3146</td>
<td>0.11782</td>
</tr>
<tr>
<td>17</td>
<td>Sphingolipid metabolism</td>
<td>1/21</td>
<td>0.32752</td>
<td>0.26978</td>
</tr>
<tr>
<td>18</td>
<td>Pentose phosphate pathway</td>
<td>1/22</td>
<td>0.3402</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Pyruvate metabolism</td>
<td>1/22</td>
<td>0.3402</td>
<td>0.00156</td>
</tr>
<tr>
<td>20</td>
<td>Glycolysis / Gluconeogenesis</td>
<td>1/26</td>
<td>0.38865</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Alanine, aspartate and glutamate metabolism</td>
<td>1/28</td>
<td>0.41157</td>
<td>0.09135</td>
</tr>
<tr>
<td>22</td>
<td>Glyoxylate and dicarboxylate metabolism</td>
<td>1/32</td>
<td>0.45495</td>
<td>0.02381</td>
</tr>
<tr>
<td>23</td>
<td>Valine, leucine and isoleucine degradation</td>
<td>1/40</td>
<td>0.53265</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Fatty acid biosynthesis</td>
<td>1/47</td>
<td>0.59178</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Steroid hormone biosynthesis</td>
<td>1/77</td>
<td>0.77309</td>
<td>0</td>
</tr>
</tbody>
</table>
Table S5. Metabolic pathways of AR against hyperlipidemia in lipidomics analysis.

<table>
<thead>
<tr>
<th>No</th>
<th>Pathway Name</th>
<th>Match Status</th>
<th>P-value</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glycerophospholipid metabolism</td>
<td>4/36</td>
<td>3.1904E-5</td>
<td>0.23128</td>
</tr>
<tr>
<td>2</td>
<td>Linoleic acid metabolism</td>
<td>1/5</td>
<td>0.029564</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>alpha-Linolenic acid metabolism</td>
<td>1/13</td>
<td>0.075253</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Glycosylphosphatidylinositol (GPI)-anchor biosynthesis</td>
<td>1/14</td>
<td>0.080828</td>
<td>0.00399</td>
</tr>
<tr>
<td>5</td>
<td>Glycerolipid metabolism</td>
<td>1/16</td>
<td>0.091887</td>
<td>0.01402</td>
</tr>
<tr>
<td>6</td>
<td>Sphingolipid metabolism</td>
<td>1/21</td>
<td>0.11902</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Arachidonic acid metabolism</td>
<td>1/36</td>
<td>0.19615</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Biosynthesis of unsaturated fatty acids</td>
<td>1/36</td>
<td>0.19615</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Steroid biosynthesis</td>
<td>1/42</td>
<td>0.22528</td>
<td>0</td>
</tr>
</tbody>
</table>
Table S6. Characterization of prototype compounds of AR extracts based on UHPLC-QTOF-MS/MS.

<table>
<thead>
<tr>
<th>No.</th>
<th>t<sub>R</sub> (min)</th>
<th>Formula</th>
<th>Experimental (m/z)</th>
<th>Calculated (m/z)</th>
<th>Error (ppm)</th>
<th>Characteristics ions</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.99</td>
<td>C<sub>30</sub>H<sub>48</sub>O<sub>6</sub></td>
<td>505.3524</td>
<td>505.3524</td>
<td>0.1</td>
<td>353.2465</td>
<td>16-oxo-Alisol A</td>
</tr>
<tr>
<td>2</td>
<td>9.44</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>7</sub></td>
<td>529.3489*</td>
<td>529.3465</td>
<td>4.5</td>
<td>353.2478</td>
<td>16-oxo-Alisol A 23-acetate</td>
</tr>
<tr>
<td>3</td>
<td>11.19</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>5</sub></td>
<td>487.3420</td>
<td>487.3418</td>
<td>0.4</td>
<td>353.2482</td>
<td>Alisol C</td>
</tr>
<tr>
<td>4</td>
<td>12.02</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>5</sub></td>
<td>487.3412</td>
<td>487.3418</td>
<td>-1.2</td>
<td>353.2487</td>
<td>11-anhydro-16-oxo-Alisol A</td>
</tr>
<tr>
<td>5</td>
<td>12.16</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>5</sub></td>
<td>489.3561</td>
<td>489.3575</td>
<td>-2.8</td>
<td>355.2635</td>
<td>11-deoxy-16-oxo-Alisol A</td>
</tr>
<tr>
<td>6</td>
<td>13.13</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>6</sub></td>
<td>513.3573*</td>
<td>513.3575</td>
<td>-0.3</td>
<td>381.2788, 337.2526</td>
<td>16-acetoxy-Alisol B</td>
</tr>
<tr>
<td>7</td>
<td>13.80</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>7</sub></td>
<td>547.3621</td>
<td>547.3629</td>
<td>-1.5</td>
<td>381.2779, 337.2527</td>
<td>16-hydroperoxylisol B 23-acetate</td>
</tr>
<tr>
<td>8</td>
<td>14.00</td>
<td>C<sub>30</sub>H<sub>48</sub>O<sub>5</sub></td>
<td>471.3465*</td>
<td>471.3469</td>
<td>-0.8</td>
<td>381.2787, 339.2674</td>
<td>Alisol F</td>
</tr>
<tr>
<td>9</td>
<td>14.16</td>
<td>C<sub>32</sub>H<sub>48</sub>O<sub>6</sub></td>
<td>529.3525</td>
<td>529.3524</td>
<td>0.3</td>
<td>353.2484</td>
<td>Alisol C 23-acetate</td>
</tr>
<tr>
<td>10</td>
<td>14.77</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>4</sub></td>
<td>471.3466</td>
<td>471.3469</td>
<td>-0.6</td>
<td>355.2637</td>
<td>11-deoxy-Alisol C</td>
</tr>
<tr>
<td>11</td>
<td>14.86</td>
<td>C<sub>30</sub>H<sub>44</sub>O<sub>4</sub></td>
<td>469.3314</td>
<td>469.3312</td>
<td>0.3</td>
<td>353.2474</td>
<td>Alisol L</td>
</tr>
<tr>
<td>12</td>
<td>15.29</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>6</sub></td>
<td>513.3572*</td>
<td>513.3575</td>
<td>-0.5</td>
<td>381.2787, 339.2684</td>
<td>Alisol F 24-acetate</td>
</tr>
<tr>
<td>13</td>
<td>15.98</td>
<td>C<sub>32</sub>H<sub>46</sub>O<sub>4</sub></td>
<td>527.3341</td>
<td>527.3367</td>
<td>-5.0</td>
<td>369.2449</td>
<td>Alisol K 23-acetate</td>
</tr>
<tr>
<td>14</td>
<td>16.13</td>
<td>C<sub>30</sub>H<sub>50</sub>O<sub>5</sub></td>
<td>473.3621*</td>
<td>473.3625</td>
<td>-0.9</td>
<td>383.2952, 339.2687</td>
<td>Alisol A</td>
</tr>
<tr>
<td>15</td>
<td>16.56</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>4</sub></td>
<td>453.3366*</td>
<td>453.3363</td>
<td>0.6</td>
<td>381.2798, 339.2694</td>
<td>16,23-oxido-Alisol B</td>
</tr>
<tr>
<td>16</td>
<td>16.62</td>
<td>C<sub>32</sub>H<sub>52</sub>O<sub>6</sub></td>
<td>515.3729*</td>
<td>515.3731</td>
<td>-0.4</td>
<td>383.2953, 339.2683</td>
<td>Alisol A 23-acetate</td>
</tr>
<tr>
<td>17</td>
<td>17.97</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>6</sub></td>
<td>531.3661</td>
<td>531.3680</td>
<td>-3.6</td>
<td>355.2546</td>
<td>Alismaketone A 23-acetate</td>
</tr>
<tr>
<td>18</td>
<td>18.15</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>6</sub></td>
<td>515.3726</td>
<td>515.3731</td>
<td>-1.0</td>
<td>383.2952, 339.2689</td>
<td>Alisol A 24-acetate</td>
</tr>
<tr>
<td>19</td>
<td>18.20</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>6</sub></td>
<td>531.3674</td>
<td>531.3680</td>
<td>-1.2</td>
<td>355.2655</td>
<td>Alisol D</td>
</tr>
<tr>
<td>20</td>
<td>18.35</td>
<td>C<sub>32</sub>H<sub>46</sub>O<sub>5</sub></td>
<td>511.3403</td>
<td>511.3418</td>
<td>-2.9</td>
<td>353.2472</td>
<td>Alisol L 23-acetate</td>
</tr>
<tr>
<td>21</td>
<td>18.79</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>6</sub></td>
<td>531.3677</td>
<td>531.3680</td>
<td>-0.6</td>
<td>381.2785, 337.2522</td>
<td>16-hydroxy-Alisol B 23-acetate</td>
</tr>
<tr>
<td>22</td>
<td>18.80</td>
<td>C<sub>30</sub>H<sub>44</sub>O<sub>4</sub></td>
<td>469.3308</td>
<td>469.3312</td>
<td>-0.9</td>
<td>379.2635, 339.2693</td>
<td>Alismanol E</td>
</tr>
<tr>
<td>No.</td>
<td>t<sub>R</sub> (min)</td>
<td>Formula</td>
<td>Experimental (m/z)</td>
<td>Calculated (m/z)</td>
<td>Error (ppm)</td>
<td>Characteristics ions</td>
<td>Identification</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>23</td>
<td>18.90</td>
<td>C<sub>32</sub>H<sub>48</sub>O<sub>5</sub></td>
<td>513.3573</td>
<td>513.3575</td>
<td>-0.3</td>
<td>355.2634</td>
<td>11-deoxy-Alisol C 23-acetate</td>
</tr>
<tr>
<td>24</td>
<td>19.12</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>4</sub></td>
<td>471.3459</td>
<td>471.3469</td>
<td>-2.1</td>
<td>381.2790, 339.2669</td>
<td>24-deacetyl-Alisol O</td>
</tr>
<tr>
<td>25</td>
<td>19.62</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>4</sub></td>
<td>471.3467</td>
<td>471.3469</td>
<td>-0.4</td>
<td>381.2774, 339.2674</td>
<td>25-anhydro-Alisol F</td>
</tr>
<tr>
<td>26</td>
<td>19.63</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>4</sub></td>
<td>455.3522*</td>
<td>455.3520</td>
<td>0.5</td>
<td>383.2949, 339.2684</td>
<td>Alisol G</td>
</tr>
<tr>
<td>27</td>
<td>19.89</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>6</sub></td>
<td>531.3675</td>
<td>531.3680</td>
<td>-1.0</td>
<td>355.2637</td>
<td>Alisol N 23-actate</td>
</tr>
<tr>
<td>28</td>
<td>20.15</td>
<td>C<sub>30</sub>H<sub>48</sub>O<sub>4</sub></td>
<td>455.3513*</td>
<td>455.3520</td>
<td>-1.5</td>
<td>383.2939, 339.2683</td>
<td>Alisol B</td>
</tr>
<tr>
<td>29</td>
<td>21.13</td>
<td>C<sub>32</sub>H<sub>48</sub>O<sub>5</sub></td>
<td>513.3574</td>
<td>513.3575</td>
<td>-0.1</td>
<td>381.2795, 339.2680</td>
<td>Alisol O</td>
</tr>
<tr>
<td>30</td>
<td>22.66</td>
<td>C<sub>32</sub>H<sub>50</sub>O<sub>5</sub></td>
<td>515.3721</td>
<td>515.3731</td>
<td>-1.9</td>
<td>383.2950, 339.2685</td>
<td>Alisol B 23-acetate</td>
</tr>
<tr>
<td>31</td>
<td>23.35</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>4</sub></td>
<td>471.3465</td>
<td>471.3469</td>
<td>-0.8</td>
<td>381.2791, 339.2693</td>
<td>Alismanol Q</td>
</tr>
<tr>
<td>32</td>
<td>24.15</td>
<td>C<sub>30</sub>H<sub>46</sub>O<sub>3</sub></td>
<td>455.3519</td>
<td>455.3520</td>
<td>-0.2</td>
<td>383.2942, 339.2677</td>
<td>Alisol X</td>
</tr>
<tr>
<td>33</td>
<td>24.18</td>
<td>C<sub>30</sub>H<sub>44</sub>O<sub>3</sub></td>
<td>453.3365</td>
<td>453.3363</td>
<td>0.4</td>
<td>381.2799, 339.2689</td>
<td>11,25-anhydro-Alisol F</td>
</tr>
<tr>
<td>34</td>
<td>24.64</td>
<td>C<sub>30</sub>H<sub>48</sub>O<sub>3</sub></td>
<td>457.3674</td>
<td>457.3676</td>
<td>-0.5</td>
<td>385.3103, 341.2841</td>
<td>11-deoxy-Alisol B</td>
</tr>
</tbody>
</table>

*: dehydrated form of compound was detected as the major peak in MS because dehydration in-source occurs easily, and the peak of undehydrated compound was too weak to get enough MS/MS fragments, therefore identification was based on MS/MS fragments of dehydrated form.
Table S7. Characterization of prototypes and metabolites of AR triterpenes in plasma based on UHPLC-QTOF-MS/MS.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>RT (min)</th>
<th>Experimental m/z</th>
<th>Calculated m/z</th>
<th>Error (ppm)</th>
<th>Characteristic ions</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1#</td>
<td>Alisol C</td>
<td>11.21</td>
<td>487.3413</td>
<td>487.3418</td>
<td>-1.0</td>
<td>353.2496</td>
<td>C_{30}H_{46}O_{5}</td>
</tr>
<tr>
<td>P2#</td>
<td>Alisol C 23-acetate</td>
<td>14.18</td>
<td>529.3518</td>
<td>529.3524</td>
<td>-1.1</td>
<td>353.2485</td>
<td>C_{32}H_{48}O_{6}</td>
</tr>
<tr>
<td>P3</td>
<td>11-deoxy alisol C</td>
<td>14.81</td>
<td>471.3485</td>
<td>471.3469</td>
<td>3.4</td>
<td>355.2636</td>
<td>C_{30}H_{46}O_{4}</td>
</tr>
<tr>
<td>P4#</td>
<td>Alisol A</td>
<td>16.14</td>
<td>473.3625*</td>
<td>473.3626</td>
<td>0.1</td>
<td>383.2952, 339.2690</td>
<td>C_{30}H_{46}O_{5}</td>
</tr>
<tr>
<td>P5#</td>
<td>Alisol A 23-acetate</td>
<td>16.63</td>
<td>515.3731*</td>
<td>515.3717</td>
<td>-2.7</td>
<td>339.2688</td>
<td>C_{32}H_{50}O_{6}</td>
</tr>
<tr>
<td>P6#</td>
<td>Alisol G</td>
<td>19.67</td>
<td>455.3517*</td>
<td>455.3520</td>
<td>-0.7</td>
<td>383.2935, 339.2728</td>
<td>C_{30}H_{48}O_{4}</td>
</tr>
<tr>
<td>P7#</td>
<td>Alisol B</td>
<td>20.21</td>
<td>455.3528*</td>
<td>455.3520</td>
<td>1.8</td>
<td>383.2954, 339.2683</td>
<td>C_{32}H_{50}O_{4}</td>
</tr>
<tr>
<td>P8#</td>
<td>Alisol B 23-acetate</td>
<td>22.69</td>
<td>515.3731</td>
<td>515.3725</td>
<td>3.9</td>
<td>383.2964, 339.2696</td>
<td>C_{32}H_{50}O_{5}</td>
</tr>
<tr>
<td>M1</td>
<td>1-hydroxy-alisol C</td>
<td>7.35</td>
<td>503.3362</td>
<td>503.3367</td>
<td>-1.1</td>
<td>351.2315</td>
<td>C_{30}H_{48}O_{6}</td>
</tr>
<tr>
<td>M2</td>
<td>20-hydroxy-alisol F</td>
<td>8.64</td>
<td>505.3517</td>
<td>505.3524</td>
<td>-1.3</td>
<td>379.2631, 337.2559</td>
<td>C_{30}H_{48}O_{6}</td>
</tr>
<tr>
<td>M3</td>
<td>Alisol C 23-acetate-11-O-GluA</td>
<td>9.98</td>
<td>705.3810</td>
<td>705.3844</td>
<td>-4.9</td>
<td>529.3494</td>
<td>C_{38}H_{56}O_{12}</td>
</tr>
<tr>
<td>M4</td>
<td>19-hydroxy-alisol A</td>
<td>10.70</td>
<td>507.3674</td>
<td>507.3680</td>
<td>-1.2</td>
<td>381.2788, 337.2525</td>
<td>C_{30}H_{50}O_{6}</td>
</tr>
<tr>
<td>M5</td>
<td>19,22-dihydroxy-alisol B</td>
<td>11.93</td>
<td>505.3518</td>
<td>505.3524</td>
<td>-1.2</td>
<td>379.2593, 337.2492</td>
<td>C_{30}H_{50}O_{6}</td>
</tr>
<tr>
<td>M6</td>
<td>11-oxo-alisol A</td>
<td>13.71</td>
<td>489.3565</td>
<td>489.3574</td>
<td>-1.9</td>
<td>355.2654</td>
<td>C_{30}H_{48}O_{5}</td>
</tr>
<tr>
<td>M7</td>
<td>19-hydroxy-alisol B</td>
<td>14.43</td>
<td>489.3570</td>
<td>489.3574</td>
<td>-1.0</td>
<td>381.2780, 337.2532</td>
<td>C_{30}H_{48}O_{5}</td>
</tr>
<tr>
<td>M8</td>
<td>23-oxo-24-deoxy-alisol A</td>
<td>14.84</td>
<td>473.3613</td>
<td>473.3625</td>
<td>-2.6</td>
<td>383.2978, 339.2641</td>
<td>C_{30}H_{48}O_{4}</td>
</tr>
<tr>
<td>M9</td>
<td>12,22-dihydroxy-alisol G</td>
<td>15.99</td>
<td>505.3517</td>
<td>505.3524</td>
<td>-1.4</td>
<td>355.2654</td>
<td>C_{30}H_{48}O_{6}</td>
</tr>
<tr>
<td>M10</td>
<td>11-oxo-alisol G</td>
<td>16.55</td>
<td>471.3467</td>
<td>471.3469</td>
<td>-0.4</td>
<td>355.2627</td>
<td>C_{30}H_{46}O_{4}</td>
</tr>
</tbody>
</table>

*: dehydrated form of compound was detected as the major peak in MS because dehydration in-source occurs easily, and the peak of undehydrated compound was too weak to get enough MS/MS fragments, therefore identification was based on MS/MS fragments of dehydrated form; P: prototypes; M: metabolites; #: confirmed with reference standards.
Table S8. The hub genes filtrated from PPI by CytoHubba.

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>MCC</th>
<th>MNC</th>
<th>Degree</th>
<th>EPC</th>
<th>BottleNeck</th>
<th>EcCentricity</th>
<th>Closeness</th>
<th>Radiality</th>
<th>Betweenness</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALB</td>
<td>45823894</td>
<td>53</td>
<td>53</td>
<td>25.648</td>
<td>9</td>
<td>0.33333</td>
<td>66.83333</td>
<td>4.71605</td>
<td>1037.153</td>
<td>5832</td>
</tr>
<tr>
<td>TNF</td>
<td>45824123</td>
<td>51</td>
<td>52</td>
<td>25.037</td>
<td>33</td>
<td>0.25</td>
<td>66.08333</td>
<td>4.67901</td>
<td>878.288</td>
<td>4770</td>
</tr>
<tr>
<td>PPARG</td>
<td>40423970</td>
<td>44</td>
<td>44</td>
<td>24.412</td>
<td>2</td>
<td>0.25</td>
<td>62.08333</td>
<td>4.58025</td>
<td>468.5296</td>
<td>3146</td>
</tr>
<tr>
<td>PPARA</td>
<td>131746</td>
<td>41</td>
<td>41</td>
<td>23.266</td>
<td>10</td>
<td>0.25</td>
<td>60.58333</td>
<td>4.54321</td>
<td>521.7559</td>
<td>3470</td>
</tr>
<tr>
<td>EGFR</td>
<td>45692162</td>
<td>35</td>
<td>35</td>
<td>22.846</td>
<td>1</td>
<td>0.25</td>
<td>57.41667</td>
<td>4.45679</td>
<td>304.0837</td>
<td>2304</td>
</tr>
<tr>
<td>IL1B</td>
<td>45120696</td>
<td>33</td>
<td>33</td>
<td>21.808</td>
<td>1</td>
<td>0.25</td>
<td>56.08333</td>
<td>4.40741</td>
<td>174.2581</td>
<td>1396</td>
</tr>
<tr>
<td>IGF1</td>
<td>45691728</td>
<td>31</td>
<td>31</td>
<td>21.451</td>
<td>1</td>
<td>0.25</td>
<td>55.41667</td>
<td>4.40741</td>
<td>133.3232</td>
<td>1172</td>
</tr>
<tr>
<td>FASN</td>
<td>196256</td>
<td>28</td>
<td>28</td>
<td>20.366</td>
<td>2</td>
<td>0.25</td>
<td>54.08333</td>
<td>4.38272</td>
<td>242.1478</td>
<td>1818</td>
</tr>
<tr>
<td>ESR1</td>
<td>4974902</td>
<td>27</td>
<td>27</td>
<td>19.706</td>
<td>1</td>
<td>0.25</td>
<td>53.25</td>
<td>4.34568</td>
<td>105.0921</td>
<td>888</td>
</tr>
<tr>
<td>MMP9</td>
<td>45147050</td>
<td>25</td>
<td>25</td>
<td>18.952</td>
<td>2</td>
<td>0.25</td>
<td>52.08333</td>
<td>4.30864</td>
<td>72.80311</td>
<td>600</td>
</tr>
</tbody>
</table>
Table S9. KEGG enrichment analysis of 83 genes.

<table>
<thead>
<tr>
<th>No</th>
<th>Pathway</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPAR signaling pathway</td>
<td>3.04E-08</td>
</tr>
<tr>
<td>2</td>
<td>Regulation of lipolysis in adipocytes</td>
<td>1.9E-06</td>
</tr>
<tr>
<td>3</td>
<td>Insulin resistance</td>
<td>1.96E-06</td>
</tr>
<tr>
<td>4</td>
<td>Prostate cancer</td>
<td>3.96E-05</td>
</tr>
<tr>
<td>5</td>
<td>AMPK signaling pathway</td>
<td>4.67E-05</td>
</tr>
<tr>
<td>6</td>
<td>HIF-1 signaling pathway</td>
<td>6.94E-05</td>
</tr>
<tr>
<td>7</td>
<td>Hepatitis C</td>
<td>8.15E-05</td>
</tr>
<tr>
<td>8</td>
<td>Non-alcoholic fatty liver disease (NAFLD)</td>
<td>0.000198</td>
</tr>
<tr>
<td>9</td>
<td>Pathways in cancer</td>
<td>0.000244</td>
</tr>
<tr>
<td>10</td>
<td>Proteoglycans in cancer</td>
<td>0.000267</td>
</tr>
<tr>
<td>11</td>
<td>Non-small cell lung cancer</td>
<td>0.000313</td>
</tr>
<tr>
<td>12</td>
<td>Renin secretion</td>
<td>0.000585</td>
</tr>
<tr>
<td>13</td>
<td>Calcium signaling pathway</td>
<td>0.000625</td>
</tr>
<tr>
<td>14</td>
<td>Estrogen signaling pathway</td>
<td>0.000642</td>
</tr>
<tr>
<td>15</td>
<td>Neuroactive ligand-receptor interaction</td>
<td>0.000699</td>
</tr>
<tr>
<td>16</td>
<td>Bile secretion</td>
<td>0.000827</td>
</tr>
<tr>
<td>17</td>
<td>TNF signaling pathway</td>
<td>0.000967</td>
</tr>
<tr>
<td>18</td>
<td>PI3K-Akt signaling pathway</td>
<td>0.001047</td>
</tr>
<tr>
<td>19</td>
<td>Thyroid hormone signaling pathway</td>
<td>0.001407</td>
</tr>
<tr>
<td>20</td>
<td>cGMP-PKG signaling pathway</td>
<td>0.001462</td>
</tr>
<tr>
<td>21</td>
<td>Ovarian steroidogenesis</td>
<td>0.001813</td>
</tr>
<tr>
<td>22</td>
<td>Ras signaling pathway</td>
<td>0.00279</td>
</tr>
<tr>
<td>23</td>
<td>mTOR signaling pathway</td>
<td>0.003376</td>
</tr>
<tr>
<td>24</td>
<td>Central carbon metabolism in cancer</td>
<td>0.004818</td>
</tr>
<tr>
<td>25</td>
<td>Chagas disease (American trypanosomiasis)</td>
<td>0.005059</td>
</tr>
<tr>
<td>26</td>
<td>Pancreatic cancer</td>
<td>0.005092</td>
</tr>
<tr>
<td>27</td>
<td>Glioma</td>
<td>0.005092</td>
</tr>
<tr>
<td>28</td>
<td>cAMP signaling pathway</td>
<td>0.005188</td>
</tr>
<tr>
<td>29</td>
<td>Adipocytokine signaling pathway</td>
<td>0.006624</td>
</tr>
<tr>
<td>30</td>
<td>Prolactin signaling pathway</td>
<td>0.006963</td>
</tr>
<tr>
<td>31</td>
<td>Rap1 signaling pathway</td>
<td>0.007116</td>
</tr>
<tr>
<td>32</td>
<td>Metabolism of xenobiotics by cytochrome P450</td>
<td>0.00805</td>
</tr>
<tr>
<td>33</td>
<td>Aldosterone-regulated sodium reabsorption</td>
<td>0.008274</td>
</tr>
<tr>
<td>34</td>
<td>Sphingolipid signaling pathway</td>
<td>0.009185</td>
</tr>
<tr>
<td>35</td>
<td>Osteoclast differentiation</td>
<td>0.0131</td>
</tr>
<tr>
<td>36</td>
<td>Measles</td>
<td>0.013916</td>
</tr>
<tr>
<td>37</td>
<td>ErbB signaling pathway</td>
<td>0.01403</td>
</tr>
<tr>
<td>38</td>
<td>Fatty acid metabolism</td>
<td>0.014619</td>
</tr>
<tr>
<td>39</td>
<td>Insulin signaling pathway</td>
<td>0.016106</td>
</tr>
<tr>
<td>40</td>
<td>Endometrial cancer</td>
<td>0.018119</td>
</tr>
<tr>
<td>41</td>
<td>Hepatitis B</td>
<td>0.019543</td>
</tr>
<tr>
<td>No</td>
<td>Pathway</td>
<td>(P)-value</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>42</td>
<td>Inflammatory mediator regulation of TRP channels</td>
<td>0.020852</td>
</tr>
<tr>
<td>43</td>
<td>NOD-like receptor signaling pathway</td>
<td>0.022046</td>
</tr>
<tr>
<td>44</td>
<td>Acute myeloid leukemia</td>
<td>0.022046</td>
</tr>
<tr>
<td>45</td>
<td>T cell receptor signaling pathway</td>
<td>0.022277</td>
</tr>
<tr>
<td>46</td>
<td>Focal adhesion</td>
<td>0.022956</td>
</tr>
<tr>
<td>47</td>
<td>Amoebiasis</td>
<td>0.026905</td>
</tr>
<tr>
<td>48</td>
<td>Toll-like receptor signaling pathway</td>
<td>0.026905</td>
</tr>
<tr>
<td>49</td>
<td>Arachidonic acid metabolism</td>
<td>0.027557</td>
</tr>
<tr>
<td>50</td>
<td>VEGF signaling pathway</td>
<td>0.027557</td>
</tr>
<tr>
<td>51</td>
<td>Apoptosis</td>
<td>0.02874</td>
</tr>
<tr>
<td>52</td>
<td>Toxoplasmosis</td>
<td>0.030289</td>
</tr>
<tr>
<td>53</td>
<td>Serotonergic synapse</td>
<td>0.031172</td>
</tr>
<tr>
<td>54</td>
<td>Inflammatory bowel disease (IBD)</td>
<td>0.031186</td>
</tr>
<tr>
<td>55</td>
<td>Transcriptional misregulation in cancer</td>
<td>0.033378</td>
</tr>
<tr>
<td>56</td>
<td>Fc epsilon RI signaling pathway</td>
<td>0.036395</td>
</tr>
<tr>
<td>57</td>
<td>Drug metabolism - cytochrome P450</td>
<td>0.036395</td>
</tr>
<tr>
<td>58</td>
<td>Complement and coagulation cascades</td>
<td>0.037763</td>
</tr>
<tr>
<td>59</td>
<td>Linoleic acid metabolism</td>
<td>0.038442</td>
</tr>
<tr>
<td>60</td>
<td>Influenza A</td>
<td>0.038801</td>
</tr>
<tr>
<td>61</td>
<td>Melanoma</td>
<td>0.040577</td>
</tr>
<tr>
<td>62</td>
<td>Graft-versus-host disease</td>
<td>0.048643</td>
</tr>
<tr>
<td>63</td>
<td>African trypanosomiasis</td>
<td>0.048643</td>
</tr>
</tbody>
</table>
Table S10. The docking scores between 6 key targets and the corresponding components.

<table>
<thead>
<tr>
<th>Protein</th>
<th>PDB</th>
<th>Small molecule</th>
<th>Docking score (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>Alisol A</td>
<td>-7.8</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>11-deoxy-alisol C</td>
<td>-8.0</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>Alisol A 23-acetate</td>
<td>-7.4</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>Alisol B</td>
<td>-8.4</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>Alisol B 23-acetate</td>
<td>-8.6</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>Alisol C</td>
<td>-8.4</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>1-hydroxy-alisol C</td>
<td>-8.5</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>19-hydroxy-alisol B</td>
<td>-7.9</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>19,22-dihydroxy-alisol B</td>
<td>-7.8</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>11-oxo-alisol A</td>
<td>-7.7</td>
</tr>
<tr>
<td>ALB</td>
<td>1AO6</td>
<td>19-hydroxy-alisol B</td>
<td>-7.9</td>
</tr>
<tr>
<td>TNF</td>
<td>7KPA</td>
<td>Alisol A</td>
<td>-9.6</td>
</tr>
<tr>
<td>TNF</td>
<td>7KPA</td>
<td>Alisol A 23-acetate</td>
<td>-9.1</td>
</tr>
<tr>
<td>TNF</td>
<td>7KPA</td>
<td>Alisol G</td>
<td>-10.4</td>
</tr>
<tr>
<td>TNF</td>
<td>7KPA</td>
<td>23-oxo-24-deoxy-alisol A</td>
<td>-10.9</td>
</tr>
<tr>
<td>TNF</td>
<td>7KPA</td>
<td>11-oxo-alisol G</td>
<td>-10.8</td>
</tr>
<tr>
<td>IL1B</td>
<td>1ITB</td>
<td>Alisol A 23-acetate</td>
<td>-5.3</td>
</tr>
<tr>
<td>MMP9</td>
<td>1GKC</td>
<td>12,22-dihydroxy-alisol G</td>
<td>-7.5</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>Alisol A</td>
<td>-7.2</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>Alisol C</td>
<td>-7.3</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>Alisol C 23-acetate</td>
<td>-7.4</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>Alisol G</td>
<td>-8.3</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>11-deoxy-alisol C</td>
<td>-9.2</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>19-hydroxy-alisol B</td>
<td>-7.3</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>11-oxo-alisol A</td>
<td>-7.4</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>23-oxo-24-deoxy-alisol A</td>
<td>-8.2</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>12,22-dihydroxy-alisol G</td>
<td>-7.4</td>
</tr>
<tr>
<td>PPARG</td>
<td>6TSG</td>
<td>11-oxo-alisol G</td>
<td>-7.2</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>Alisol A</td>
<td>-5.8</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>Alisol A 23-acetate</td>
<td>-5.8</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>Alisol B 23-acetate</td>
<td>-5.1</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>Alisol C</td>
<td>-5.5</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>Alisol C 23-acetate</td>
<td>-5.3</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>Alisol G</td>
<td>-6.6</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>1-hydroxy-alisol C</td>
<td>-5.6</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>20-hydroxy-alisol F</td>
<td>-5.1</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>19-hydroxy-alisol A</td>
<td>-6.6</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>11-oxo-alisol A</td>
<td>-5.4</td>
</tr>
</tbody>
</table>
Table S10 (continued)

<table>
<thead>
<tr>
<th>Protein</th>
<th>PDB</th>
<th>Small molecule</th>
<th>Docking score (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>19-hydroxy-alisol B</td>
<td>-7.1</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>23-oxo-24-deoxy-alisol A</td>
<td>-6.7</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>12,22-dihydroxy-alisol G</td>
<td>-4.9</td>
</tr>
<tr>
<td>PPARA</td>
<td>5HYK</td>
<td>11-oxo-alisol G</td>
<td>-5.4</td>
</tr>
</tbody>
</table>