Supporting Information

Regio- and Stereoselective Electrochemical Synthesis
of Sulfonylated Enethers from Alkynes and Sulfonyl
Hydrazides
Wu-Bo Du, ${ }^{a}$ Ning-Ning Wang, ${ }^{a}$ Chao Pan, ${ }^{a}$ Shao-Fei Ni, ${ }^{*}$ Li-Rong Wen, ${ }^{a}$ Ming Li, ${ }^{a}$ Lin-Bao Zhang*a
${ }^{a}$ State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. E-mail: zhang_linbao@126.com; liming928@qust.edu.cn. ${ }^{\text {b Department of Chemistry and Key Laboratory }}$ for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou,Guangdong 515063, P. R. China. E-mail: shaofeinee@163.com.
Contents
Contents 1
General methods 2
Molecular structure and crystallographic data 3
DFT calculations 4
Calculation for redox potential 9
Preparation of the starting materials 10
General procedure for the synthesis of compounds 4 14
Optimization of reaction conditions 15
The effect of anode materials 16
Gram-scale reaction 17
Cyclic voltammetry study 17
Control experiments 18
Experiments of divided cell 21
The sulfonylation of alkynes promoted by external oxidants 22
Transformation of product 4 aab 22
Detection of H_{2} and N_{2} by GC Analysis 24
Characterization of products 27
References 101

General methods

Unless noted, all commercial reagents and solvents were used without further purification. NMR spectra were recorded in CDCl_{3} on 400 MHz or 500 MHz spectrometers. ${ }^{1} \mathrm{H}$ NMR chemical shifts (δ) are reported in parts per million relative to tetramethylsilane (0 ppm) or residual CHCl_{3} (7.26 ppm). ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to the center line signal of the CDCl_{3} triplet at 77.0 ppm . The following abbreviations are used for multiplicities: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, and $\mathrm{m}=$ multiplet. Mass spectra were obtained on an Ultima Global spectrometer with an ESI source. Silica gel (200-300 mesh) for column chromatography and silica GF254 for TLC were produced by Qingdao Marine Chemical Company (China). DC power supply DPS-305CF was used for all experiments.

Molecular structure and crystallographic data

Table 1 Crystal data and structure refinement for 4aab
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/ $15.43887(9)$
$\alpha{ }^{\circ} \quad 90$
$\beta /{ }^{\circ} \quad 116.8711(9)$
$Y /{ }^{\circ} 90$
Volume $/ \AA^{3} \quad 1528.62(2)$
Z
$\rho_{\text {call }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.314$
$\mu / \mathrm{mm}^{-1} \quad 1.942$
F(000) 640.0
Crystal size $/ \mathrm{mm}^{3} \quad 0.34 \times 0.28 \times 0.19$
Radiation \quad CuK $\alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 6.728$ to 150.838
Index ranges $\quad-17 \leqslant h \leqslant 18,-8 \leqslant k \leqslant 9,-19 \leqslant 1 \leqslant 19$
Reflections collected 23298
Independent reflections $3042\left[R_{\text {int }}=0.0148, R_{\text {sigma }}=0.0074\right]$
Data/restraints/parameters 3042/0/193
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.066$
Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0326, w R_{2}=0.0873$
Final R indexes [all data] $\quad R_{1}=0.0328, w R_{2}=0.0874$
Largest diff. peak/hole / e $\AA^{-3} 0.33 /-0.38$

Table 2 Crystal data and structure refinement for 5

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	270.33
Temperature	298 (2) K
Wavelength	0. 71073 A
Crystal system, space group	Orthorhombic, P2 (1)2 (1)2 (1)
Unit cell dimensions	$\begin{array}{lll} \mathrm{a}=8.5976(8) \mathrm{A} & \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=10.8141(9) \mathrm{A} & \text { beta }=90 \mathrm{deg} . \\ \mathrm{c}=15.2294(14) \mathrm{A} & \text { gamma }=90 \mathrm{deg} . \end{array}$
Volume	1416.0(2) A ${ }^{\text {® }} 3$
Z, Calculated density	4, $1.268 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.223 \mathrm{~mm}^{\wedge}-1$
F (000)	568
Crystal size	$0.40 \times 0.36 \times 0.20 \mathrm{~mm}$
Theta range for data collection	2.31 to 25.01 deg .
Limiting indices	$-10<=\mathrm{h}<=9, \quad-10<=\mathrm{k}<=12, \quad-18<=1<=18$
Reflections collected / unique	$6668 / 2477$ [R(int) $=0.1017]$
Completeness to theta $=25.01$	99.2 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9567 and 0.9161
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	2477 / 0 / 174
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1. 022
Final R indices [I>2sigma (I)]	$\mathrm{R} 1=0.0577, \quad \mathrm{wR} 2=0.1067$
R indices (all data)	$\mathrm{R} 1=0.0850, \mathrm{wR} 2=0.1143$
Absolute structure parameter	0.09 (12)
Largest diff. peak and hole	0.185 and -0.245 e. $\mathrm{A}^{\wedge}-3$

DFT calculations

Computational methods

All calculations were performed using Gaussian 16, Revision A. 03 package. ${ }^{\text {i }}$ All structures were optimized in gas phase at the M062X/6-311G* level of theory. Analytical frequency calculations were carried out at the same level of theory in order
to identify all stationary points as either intermediates (no imaginary frequencies) or transition states (only one imaginary frequency). The Gibbs free energy was then refined through single point calculations at the same functional with a larger basis set $6-311++\mathrm{G}^{* *}$. This was carried out in the presence of solvent through the $\mathrm{SMD}^{\text {ii }}$ method with dichloroethane. All reported energies are free energies at a concentration of 1 M . All the 3D molecular structures of the species were generated by using the CYLview program. ${ }^{\text {iii }}$

Coordinates of the optimized structures

1a

$\mathrm{E}=-347.650138$ a.u.

C	-1.90604600	0.28384000	-0.00107800
C	-0.51670300	0.27923700	-0.00060700
C	0.19184700	1.48834200	0.00001700
C	-0.51577000	2.69801100	0.00013400
C	-1.90511100	2.69451200	-0.00033900
C	-2.60356900	1.48944700	-0.00093000
H	-2.44551700	-0.65660300	-0.00154100
H	0.02897900	-0.65761300	-0.00070200
H	0.03071400	3.63438900	0.00061800
H	-2.44385500	3.63537300	-0.00023100
H	-3.68778600	1.48987600	-0.00127500
C	1.62783200	1.48794400	0.00061300
C	2.83353900	1.48827100	0.00114800
C	4.29349500	1.48944900	0.00249400

4.68009100

1.98016600
-0.89300700
H
4.67841300
2.02152900 0.87475700

H
4.67949600
0.46886600
0.02632400

TS1

$E=-1167.085277$ a.u.

C	0.23030600	-0.08839400	2.13106200
C	1.26843100	0.43943400	1.37909000
C	1.00318900	1.01445600	0.12098700
C	-0.31926500	1.04987500	-0.36028300
C	-1.34718900	0.51822400	0.40258200
C	-1.07726000	-0.05088500	1.64707000
H	0.43892600	-0.53146600	3.09810400
H	2.28765700	0.41494600	1.74791700
H	-0.52014200	1.49183500	-1.32939500
H	-2.36363800	0.54549900	0.02715300
H	-1.88532000	-0.46489200	2.23926400
C	2.06096000	1.54241500	-0.65240100
C	3.00413400	1.80934600	-1.40313900
C	4.04612700	2.68439200	-1.97129700
H	3.94888700	2.74845900	-3.05589100
H	3.95572000	3.68459400	-1.54616000
H	5.04051800	2.29438000	-1.73933500
C	6.44245700	-1.83736900	0.54130900
C	6.88771400	-1.17546800	-0.60420400
C	5.98800300	-0.68544500	-1.54558700
C	4.62999000	-0.88362400	-1.33357100
C	4.15071100	-1.53024400	-0.19654800
C	5.06505100	-2.00851000	0.72981000
H	7.95206200	-1.04037800	-0.76503700
H	6.33630600	-0.17506800	-2.43612900
H	3.08502300	-1.66963100	-0.05112300
H	4.70827000	-2.52604800	1.61472400
S	3.45325700	-0.17913000	-2.47355100
C	7.41200000	-2.35842800	1.56539200
H	7.26779700	-1.85268700	2.52373100
H	7.25778800	-3.42643600	1.73683200
H	8.44441200	-2.20526400	1.25022200
0	2.23720300	-1.00395200	-2.44099700
0	4.13952000	0.04540400	-3.75885800

III
$E=-1167.098854$ a.u.

C	-0.39825400	0.24624000	2.08686800
C	0.75466800	0.62732600	1.42566900
C	0.68402700	1.09534000	0.08729700
C	-0.58328100	1.17370600	-0.54634900
C	-1.72206200	0.78700000	0.13507600
C	-1.63993200	0.32299200	1.45072800
H	-0.33431100	-0.11482000	3.10711100
H	1.71985200	0.57274000	1.91608700
H	-0.64217100	1.53285900	-1.56716700
H	-2.68527300	0.84459900	-0.35911300
H	-2.53853100	0.02343700	1.97725400
C	1.83438000	1.49551600	-0.57617600
C	2.91538600	1.50614800	-1.28648400
C	3.87809100	2.62205100	-1.57969700
H	3.92426900	2.81168600	-2.65318200
H	3.55714800	3.52830000	-1.06828200
H	4.88315700	2.36276800	-1.23543700
C	6.80022200	-1.48903900	0.61078900
C	7.06560800	-0.84793900	-0.60074700
C	6.03177500	-0.42365700	-1.42875300
C	4.72133000	-0.65719000	-1.03173900
C	4.42260400	-1.28850200	0.17342900
C	5.46774800	-1.70217900	0.98503000
H	8.09378600	-0.67654900	-0.90134000
H	6.23898800	0.07071300	-2.37084700
H	3.39191400	-1.46086200	0.46429200
H	5.25039600	-2.19984000	1.92454300
S	3.38108000	-0.08821300	-2.05152600
C	7.91950100	-1.96868700	1.49206600
H	7.69395400	-1.79166200	2.54527000
H	8.06636200	-3.04531000	1.36587100
H	8.85873800	-1.47184100	1.24685500
0	2.26573300	-1.01891400	-1.90799100
0	3.91149700	0.20005800	-3.38435700

TS1-1

$E=-1167.098854$ a.u.

C	1.42866400	1.28503400	-0.76474300
C	2.59469100	1.40520900	-1.18759000
C	6.99485600	-1.16791100	0.03973300
C	7.02933000	-0.57090100	-1.22652600
C	5.86948900	-0.39338600	-1.96595700
C	4.66287900	-0.83998500	-1.43255200

C
C
H
H
H
H
S
C
H
H
H
0
0
C
C
C
C
H
C
H
C
H
H
H
C
H
H
H

4.59220100	-1.42731000	-0.17544500
5.76717900	-1.59837400	0.54844900
7.97831400	-0.23411900	-1.63198300
5.89527500	0.07906300	-2.94118600
3.63923400	-1.75112500	0.22821800
5.72799500	-2.06692600	1.52608300
3.14394400	-0.42530500	-2.26385900
8.26361400	-1.32821000	0.83003000
8.69838000	-0.35194000	1.06016000
8.08404500	-1.85256500	1.76888300
9.00835900	-1.88754900	0.25872600
2.12155200	-1.42900600	-1.93969500
3.44976800	-0.15420100	-3.67715100
3.82907600	2.18735200	-1.20309700
4.29997300	2.74616700	-2.39385400
4.59475900	2.28170100	-0.03616600
5.52539400	3.40390100	-2.41160800
3.71051000	2.65664600	-3.29912100
5.82033200	2.93601000	-0.06304700
4.23035400	1.82898100	0.87946100
6.28913200	3.49403800	-1.25080600
5.88669400	3.84038300	-3.33580100
6.41325700	3.00332000	0.84217600
7.24834600	3.99888600	-1.27092200
0.09067100	0.82266500	-0.45256100
-0.06936200	0.80399700	0.62757300
-0.65922400	1.47453100	-0.90521300
-0.05114200	-0.19237500	-0.84100700

III-1

$E=-1167.098854$ a.u.

C	1.67323800	1.68635400	-0.63794900
C	2.78004000	1.49507000	-1.30331500
C	6.86104100	-1.17026900	0.44399500
C	6.97202400	-0.64603600	-0.84506700
C	5.84074800	-0.36061700	-1.60225400
C	4.59024600	-0.61830300	-1.05525500
C	4.44475300	-1.13254300	0.23081700
C	5.58484800	-1.41043100	0.96886200
H	7.95476900	-0.45467800	-1.26257000
H	5.92871700	0.04843900	-2.60232200
H	3.45804400	-1.31711300	0.64153900
H	5.48796500	-1.81827700	1.96986300

S	3.13306600	-0.16295900	-1.96477600
C	8.08167100	-1.48655900	1.26224200
H	8.01777900	-1.02455200	2.24999300
H	8.17114100	-2.56556900	1.41432500
H	8.99048800	-1.13533200	0.77303500
O	2.03612200	-1.05121600	-1.58677500
O	3.49317100	-0.04485800	-3.37688800
C	3.88302900	2.47640700	-1.49325000
C	4.26452600	2.89785800	-2.76928300
C	4.57193300	2.94803500	-0.37288400
C	5.32247000	3.78884200	-2.91789100
H	3.73406500	2.52743300	-3.63854600
C	5.62843100	3.83911400	-0.52657700
H	4.27996100	2.60507400	0.61431700
C	6.00639400	4.25850600	-1.79937500
H	5.61190600	4.11760300	-3.90969300
H	6.15945100	4.20064700	0.34678700
H	6.83229400	4.95063300	-1.91974400
C	0.42151600	1.13902600	-0.12814600
H	0.26605600	1.44980100	0.90814600
H	-0.41731400	1.51750100	-0.71811000
H	0.41821100	0.04560500	-0.17677900

${ }^{i}$ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
${ }^{\text {ii }}$ A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
${ }^{\text {iii }}$ CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)

Calculation for redox potential

The equation for the stand redox potential \mathbf{E}^{0}

$$
\mathbf{E}^{0}=-\frac{\Delta G_{\text {solv }}^{\text {ored }}}{\mathbf{n F}}
$$

$\Delta G_{\text {solv }}^{o, r e d}$ is the calculated free energy of reduction;

F is the Faraday constant;
n is the number of electrons being transferred.
The reduction process for calculating $\Delta G_{\text {solv }}^{o, r e d}$

$$
\text { Oxsolv }+\mathrm{e}-\longrightarrow \text { Redsolv }
$$

where Oxsolv and Redsolv are the oxidized and reduced species in solution.
The effect of the electron on the free energy is $-0.868 \mathrm{kcal} / \mathrm{mol}$ at 298.15 K .
The Standard Hydrogen Electrode (SHE) potential in water was experimentally estimated to be 4.44 V .

The $E 0$ versus SHE can be obtained via

$$
E^{0} v s S H E=-\frac{\Delta G_{s o l v}^{o, r e d}}{n F}-4.44 V
$$

Preparation of the starting materials

Preparation of substrates 1

The compounds $\mathbf{1 b} \mathbf{-} \mathbf{1 f}, \mathbf{1 h}-\mathbf{1} \mathbf{j}$ were prepared according to previously described methods. ${ }^{[1]}$
To a flame-dried round-bottom flask under N_{2} was added alkyne (10 mmol) followed by dry THF ($50 \mathrm{~mL}, 0.2 \mathrm{M}$). Cool the flask to $0^{\circ} \mathrm{C}$. n-Butyllithium ($8 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, $20 \mathrm{mmol}, 2$ equiv.) was added slowly and the reaction was allowed to stir for 1 hour. Iodomethane ($2 \mathrm{~mL}, 21 \mathrm{mmol}, 2.1$ equiv.) was added at $-20^{\circ} \mathrm{C}$ and the reaction was allowed to stir at room temperature for $3 \sim 5$ hour (when most of alkyne was consumed as detected by TLC). The reaction was quenched with a saturated solution of ammonium chloride and extracted with ethyl acetate. The organics were dried over MgSO_{4} and the solvents were removed under reduced pressure. The residue was purified by silica chromatography to afford the corresponding compounds $\mathbf{1 a} \mathbf{- 1 i}$.

The compounds $\mathbf{1 k}-\mathbf{1 n}$ were prepared according to previously described methods. ${ }^{[2]}$

To a 50 mL flame-dried round-bottom flask, under N_{2}, was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05$ mmol, 0.01 equiv.), CuI ($0.1 \mathrm{mmol}, 0.02$ equiv.), iodobenzene ($5 \mathrm{mmol}, 1.0$ equiv.), terminal alkynes ($6 \mathrm{mmol}, 1.2$ equiv.) and dry $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$, the reaction was allowed to stir at room temperature. The reaction was stirred overnight checked by TLC. The reaction is filtered over celite, washing with dichloromethane. The solvent was removed and the residue purified by flash column chromatography on silica gel to give compounds $\mathbf{1 k} \mathbf{k} \mathbf{1 n}$.

The compound $\mathbf{1 q}$ were prepared according to previously described methods. ${ }^{[3]}$

To a 50 mL flame-dried round-bottom flask under N_{2} was charged with thienylacetylene ($5 \mathrm{mmol}, 1$ equiv.), THF (15 mL) and a stir bar. The reaction mixture was cooled to $78{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{KN}(\mathrm{TMS})_{2}(1.0 \mathrm{M}, 6.5 \mathrm{mmol}, 1.3$ equiv.) was added dropwise over a 10 min period. After allowing the reaction to stir at the temperature for 1 h , methyl iodide ($6.5 \mathrm{mmol}, 1.3$ equiv.) was added. The reaction was slowly allowed to warm to room temperature. After stirring for 4 h , the reaction was quenched with water. The aqueous phase was extracted with ethyl acetate. The combined organic phase was dried with MgSO_{4}, filtered. The solvent was removed and the residue purified by flash column chromatography on silica gel to give compound $\mathbf{1 q}$

The compound $\mathbf{1 0}-\mathbf{1 p}$ were prepared according to previously described methods. ${ }^{[4]}$

1p

To a 50 mL Schlenk flask, under N_{2}, was added N-Hydroxyphthalimide ($6.5 \mathrm{mmol}, 1.3$ equiv.), triphenylphosphine ($7.5 \mathrm{mmol}, 1.5$ equiv.), 30 mL of dry THF, and then pent-$4-\mathrm{yn}-1$-ol ($5 \mathrm{mmol}, 1.0$ equiv.) was added. The flask is immersed in an ice bath, and diisopropyl azodicarboxylate ($7.5 \mathrm{mmol}, 1.5$ equiv.) was added dropwise, upon completion of the addition, the flask is removed from the ice bath and the solution is allowed to stir at room temperature overnight. The solvent was removed and the residue purified by flash column chromatography on silica gel to give compound 2-(pent-4-yn-1-yloxy)isoindoline-1,3-dione.Then, to a 50 mL Schlenk flask under N_{2} was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05 \mathrm{mmol}, 0.01$ equiv.), $\mathrm{CuI}(0.1 \mathrm{mmol}, 0.02$ equiv.), iodobenzene (6 mmol, 1.2 equiv.), compound 2-(pent-4-yn-1-yloxy)isoindoline-1,3-dione ($5 \mathrm{mmol}, 1.0$ equiv.) and dry $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$, then the reaction was allowed to stir at room temperature for 10 h and checked by TLC. The reaction is filtered over celite, washing with dichloromethane. The solvent was removed and the residue purified by flash column chromatography on silica gel to give compound $\mathbf{1 p}$.

10
To a 50 mL Schlenk flask, under N_{2}, was added isoindoline-1,3-dione ($6.5 \mathrm{mmol}, 1.3$ equiv.), triphenylphosphine ($7.5 \mathrm{mmol}, 1.5$ equiv.), 30 mL of dry THF, and then but-3-yn-1-ol ($5 \mathrm{mmol}, 1.0$ equiv.) was added. The flask is immersed in an ice bath, and diisopropyl azodicarboxylate ($7.5 \mathrm{mmol}, 1.5$ equiv.) was added dropwise, upon completion of the addition, the flask is removed from the ice bath and the solution is allowed to stir at room temperature overnight. The solvent was removed and the residue purified by flash column chromatography on silica gel to give compound 2-(but-3-yn-1-yl)isoindoline-1,3-dione.Then, to a 50 mL Schlenk flask under N_{2} was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05 \mathrm{mmol}, 0.01$ equiv.), $\mathrm{CuI}(0.1 \mathrm{mmol}, 0.02$ equiv.), iodobenzene (6 mmol, 1.2 equiv.), compound 2-(but-3-yn-1-yl)isoindoline-1,3-dione ($5 \mathrm{mmol}, 1.0$ equiv.) and dry $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$, then the reaction was allowed to stir at room temperature
for 10 h and checked by TLC. The reaction is filtered over celite, washing with dichloromethane. The solvent was removed and the residue purified by flash column chromatography on silica gel to give compound $\mathbf{1 0}$.

The compound $1 \mathbf{r}$ were prepared according to previously described methods. ${ }^{[5]}$

To a solution of estrone ($5 \mathrm{mmol}, 1$ equiv.) and pyridine ($10 \mathrm{mmol}, 2$ equiv.) in dry DCM (50 mL) was added $\mathrm{Tf}_{2} \mathrm{O}\left(6 \mathrm{mmol}, 1.2\right.$ equiv.) dropwise at $0^{\circ} \mathrm{C}$. After that, the mixture was warmed to rt , and stirred 3 h . The mixture was then quenched with 10% HCl and extracted with DCM. The combined organic layer was dried over anhydrous MgSO_{4}. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography to afford $\mathbf{1 r}$ '. A mixture of $\mathbf{1 r}{ }^{\prime}(1.61 \mathrm{~g}, 4 \mathrm{mmol})$, pent-1-yne ($0.5 \mathrm{~mL}, 5 \mathrm{mmol}$), trimethylamine (3.0 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(84 \mathrm{mg}, 0.12 \mathrm{mmol}) \mathrm{CuI}(84$ $\mathrm{mg}, 0.12 \mathrm{mmol}$) in 15 mL DMF was stirred at $90^{\circ} \mathrm{C}$ for 4 h under nitrogen. The mixture was quenched with water and extracted with EtOAc. The combined organic phases are washed with brine and dried over MgSO_{4}. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography to afford compound $\mathbf{1 r}$.

Preparation of substrates 2

The compound $\mathbf{2 b}$ and $\mathbf{2 d}-\mathbf{2 k}$ according to previously described methods. ${ }^{[6]}$

The hydrazine hydrate $(80 \%, 30 \mathrm{mmol})$ was added dropwise into the solution of sulfonyl chloride (10 mmol) in THF (50 mL) under air at $0{ }^{\circ} \mathrm{C}$. Subsequently, the mixture was further stirred at $0^{\circ} \mathrm{C}$ for 5 minutes. After the completion of the reaction, the esidue was extracted with dichloromethane, and the combined organic layer was ashed with water, and brine, and dried over MgSO_{4}. Concentration in vacuum followed by silicael column purification with petroleum ether/ethyl acetate eluent gave the
desired products $\mathbf{2 b}, \mathbf{2 d}-\mathbf{2 k}$.

Preparation of substrates 15

The compound $\mathbf{1 5}$ according to previously described methods. ${ }^{[7]}$

Into a 250 mL Schlenk flask equipped with a magnetic stir-bar was added solution of N-methylaniline (1 equiv) in dry DCM (60 mL) and triethylamine (2 equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$, and methacryloyl chloride (1.5 equiv) was added under nitrogen atmosphere. The resulting solution was allowed to warm up to room temperature and stirred for 6 hours, followed by the addition of saturated sodium bicarbonate solution (150 mL) to quench excess acyl chloride. The mixture was settled in a separation funnel, and the organic layer was extracted, and extracted with dichloromethane, and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography gave the desired product 15.

General procedure for the synthesis of compounds 4

In a undivided Schlenk flask (10 mL) equipped with a stir bar, sulfonyl hydrazides 2 ($0.6 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$ were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \mathrm{x} 0.5 \mathrm{~cm}$) and a graphite felt cathode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and then flushed with nitrogen.Then alcohol $\mathbf{3}(4.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$ and alkyne $\mathbf{1}(0.2 \mathrm{mmol}$, 1 equiv.) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at RT for 8 h . When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether
/EtOAc to give the product 4.

Optimization of reaction conditions

23	no electric current	n.r.
24	divided cell	5

${ }^{a}$ Standard conditions: 1a (0.2 mmol), 2a (0.6 mmol), 3a (4.5 mL), $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$, $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$, graphite felt anode ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 5 \mathrm{~mm}$), graphite felt cathode (10 $\mathrm{mm} * 10 \mathrm{~mm} * 5 \mathrm{~mm}$), constant current $=5 \mathrm{~mA}, \mathrm{RT}, 8 \mathrm{~h}$, undivided cell (7.46 F , faradaic efficiency: 42%). ${ }^{b}$ Isolated yield. ${ }^{c}$ Nickel foam ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 1 \mathrm{~mm}$). ${ }^{d}$ Pt plate (10 $\mathrm{mm} * 10 \mathrm{~mm} * 0.1 \mathrm{~mm})$. n.d. $=$ not detected. n.r. $=$ not reaction.

The effect of anode materials

${ }^{a}$ Standard conditions: 1a (0.2 mmol), 2a (0.6 mmol), 3a (4.5 mL), $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$, $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$, graphite felt cathode ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 5 \mathrm{~mm}$), constant current $=5 \mathrm{~mA}$, RT, 8 h , undivided cell. ${ }^{b}$ Isolated yield. ${ }^{c}$ Pt plate ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 0.1 \mathrm{~mm}$). ${ }^{d}$ Nickel foam ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 1 \mathrm{~mm}$). ${ }^{e}$ Glassy carbon ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 1 \mathrm{~mm}$). ${ }^{f}$ Carbon paper ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 0.1 \mathrm{~mm}$). ${ }^{g}$ Carbon cloth $(10 \mathrm{~mm} * 10 \mathrm{~mm} * 1 \mathrm{~mm}) .{ }^{h}$ Graphite felt anode ($10 \mathrm{~mm} * 10 \mathrm{~mm} * 5 \mathrm{~mm}$).

SEM image of graphite felts:

Gram-scale reaction

In a undivided Schlenk flask (250 mL) equipped with a stir bar, sulfonyl hydrazides 2a (15 mmol , 3 equiv.), and $\mathrm{Et}_{4} \mathrm{NPF}_{6}$ (5 mmol) were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ($1 \mathrm{~cm} \times 5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$) and a graphite felt cathode ($1 \mathrm{~cm} \times 5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$) and then flushed with nitrogen. Then alcohol 3b (112.5 mL), $\mathrm{CH}_{3} \mathrm{NO}_{2}(12.5 \mathrm{~mL}$) and alkyne $\mathbf{1 a}$ (5 mmol , 1 equiv.) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant voltage of 3.5 V at RT for 49 h . When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether /EtOAc to give the product 4aab ($1.41 \mathrm{~g}, 93 \%$).

Cyclic voltammetry study

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of and 2a $(0.1 \mathrm{mmol})$ were performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution. A solvent (10 mL MeCN) containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{mmol})$ were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$,
ranging from -2 V to 3.5 V .

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of 1a (0.2 $\mathrm{mmol})$, and $\mathbf{2 a}(0.1 \mathrm{mmol})$ were performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode submerged in solution of 10 mM AgNO_{3} and $10 \mathrm{mM} \mathrm{Et} 4 \mathrm{NPF}_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$. A solvent ($10 \mathrm{~mL} \mathrm{CH} 3 \mathrm{NO}_{2}$) containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{mmol})$ were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$, ranging from 0 to 3.5 V . 1a (0.02 M), 2a (0.01 M), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.01 \mathrm{M}), \mathrm{AcOH}(0.01 \mathrm{M})$.

Control experiments

1.

a) $\mathbf{1 a}+\mathbf{2 a}+\mathbf{3 a} \frac{\text { TMEPO (} 1.5 \text { equiv.) }}{\text { standard conditions }} 4 \mathbf{a a a}, 0 \%+\mathrm{N}_{-\mathrm{O}^{-\mathrm{Ts}} \text { detected by }}^{\mathrm{HPLC-MS}}$

b)

c)

13, 80\%
d) $1 \mathbf{a}+2 \mathbf{a}+3 \mathbf{a}+$

4aaa, $<5 \%+$

15, 78\%

e) $2 \mathbf{a}+\mathbf{3 a} \xrightarrow[\text { standard conditions }]{\mathrm{GF}+\mid \mathrm{GF}-2.7 \mathrm{~V}}$

17, 48\%
a) In a undivided Schlenk flask (10 mL) equipped with a stir bar, sulfonyl hydrazides 2a ($0.6 \mathrm{mmol}, 3$ equiv.), TEMPO ($0.3 \mathrm{mmol}, 1.5$ equiv.) or BHT ($0.3 \mathrm{mmol}, 1.5$ equiv.), and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$ were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and a graphite felt cathode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and then flushed with nitrogen. Then alcohol 3a (4.5 mL), $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$ and alkyne $\mathbf{1 a}(0.2 \mathrm{mmol}$, 1 equiv.) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at RT for 8 h .
b) In a undivided Schlenk flask (10 mL) equipped with a stir bar, compound 4aaa (0.2 mmol), sulfonyl hydrazides $\mathbf{2 a}$ ($0.6 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$ were combined and added. The flask was equipped with a rubber stopper, a graphite felt
anode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and a graphite felt cathode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and then flushed with nitrogen. Then alcohol $\mathbf{3 a}(4.5 \mathrm{~mL})$, and $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$ were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at RT for 8 h .
c) In a undivided Schlenk flask (10 mL) equipped with a stir bar, diphenylphosphine oxide (0.2 mmol), and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$ were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and a graphite felt cathode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and then flushed with nitrogen. Then alcohol (4.5 mL), and $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$ were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at RT for 8 h .
d) In a undivided Schlenk flask (10 mL) equipped with a stir bar, sulfonyl hydrazides 2a ($0.6 \mathrm{mmol}, 3$ equiv.), $\mathbf{1 4}$ ($0.3 \mathrm{mmol}, 1.5$ equiv.) or $\mathbf{1 6 (0 . 3 ~ \mathrm { mmol } , 1 . 5 \text { equiv.), and }}$ $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$ were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and a graphite felt cathode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and then flushed with nitrogen. Then alcohol 3a $(4.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$ and alkyne $\mathbf{1 a}(0.2 \mathrm{mmol}, 1$ equiv.) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at RT for 8 h .
e) In a undivided Schlenk flask (10 mL) equipped with a stir bar, sulfonyl hydrazides 2a (0.2 mmol .) , and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2 \mathrm{mmol})$ were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and a graphite felt cathode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) and then flushed with nitrogen. Then alcohol 3a (4.5 mL), and $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$ were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 2.7 V at RT for 8 h .
2.

Experiments of divided cell

$\mathbf{A}, \mathbf{C}, \mathbf{E}$ cell: anode; $\mathbf{B}, \mathbf{D}, \mathbf{F}$ cell: cathode. Separation of anode and cathode cell using hydrogen proton exchange membranes.
$\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{F}$ cell: In this cell equipped with a stir bar, sulfonyl hydrazides $\mathbf{2 a}(0.3 \mathrm{mmol}$, 3 equiv.), and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{mmol})$ were combined and added. The cell was equipped with a rubber stopper, a graphite felt anode $(1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm})$ and then flushed with nitrogen. Then alcohol 3a $(2.25 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(0.25 \mathrm{~mL})$ and alkyne $\mathbf{1 a}(0.1 \mathrm{mmol}$, 1 equiv.) were injected respectively into the cell via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at RT for 8 h .
D, E cell: In this cell equipped with a stir bar, $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{mmol})$ were combined and added. The cell was equipped with a rubber stopper, a graphite felt cathode ($1 \mathrm{~cm} \times 1$ $\mathrm{cm} \times 0.5 \mathrm{~cm}$) and then flushed with nitrogen. Then alcohol (2.25 mL), $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.25$ mL) were injected respectively into the cell via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA at RT for 8 h .

The sulfonylation of alkynes promoted by external oxidants

 $1 \mathbf{1 a}$		
		4aaa
Entry	Conditions	Yield
1	TBAI ($20 \mathrm{~mol} \%$), TBHP (2.0 eq.), $\mathrm{CH}_{3} \mathrm{NO}_{2}, 80^{\circ} \mathrm{C}$	< 5%
2	$\begin{gathered} \mathrm{I}_{2}(50 \mathrm{~mol} \%), \text { TBHP (2.0 eq.) }, \\ \mathrm{CH}_{3} \mathrm{NO}_{2}, 80^{\circ} \mathrm{C} \end{gathered}$	<5\%
3	$\begin{gathered} \mathrm{FeCl}_{3}(10 \mathrm{~mol} \%), \text { air, } \mathrm{CH}_{3} \mathrm{NO}_{2}, \\ 80^{\circ} \mathrm{C} \end{gathered}$	trace
4	$\begin{gathered} \mathrm{CAN}\left(2.0 \text { equiv.), air, } \mathrm{CH}_{3} \mathrm{NO}_{2},\right. \\ \text { RT } \end{gathered}$	< 5%
5	$\begin{gathered} \mathrm{PCC}(2.0 \text { equiv. }) \text {, air, } \mathrm{CH}_{3} \mathrm{NO}_{2}, \\ \mathrm{RT} \end{gathered}$	N.R.
6	KMnO_{4} ($10 \mathrm{~mol} \%$), air, $\mathrm{CH}_{3} \mathrm{NO}_{2}$, RT	N.R.

Transformation of product 4aab

A solution of $4 \mathbf{a a b}(0.2 \mathrm{mmol})$ in dry THF $(1 \mathrm{~mL})$ was added to a cold solution $\left(-78^{\circ} \mathrm{C}\right)$ of $n-\mathrm{BuLi}(0.4 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) in THF (1 mL), under an argon atmosphere. After 10 min , the reaction mixture was quenched with a sat aq solution of $\mathrm{NH}_{4} \mathrm{Cl}(1$ $\mathrm{mL})$ and diluted with EtOAc $(1 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was chromatographed through silica gel eluting with petroleum ether /EtOAc to give the product 5 .

To a 50 mL Schlenk flask, under N_{2}, was added $\mathbf{4} \mathbf{a} \mathbf{a b}$ (0.2 mmol), dry THF (10 mL), and dry $\mathrm{MeOH}(10 \mathrm{~mL})$. After the mixture cooled to $-78{ }^{\circ} \mathrm{C}$, add the NBS $(0.24 \mathrm{mmol})$ to the flask. Then the reaction was stirred overnight at RT and checked by TLC. The reaction is filtered over celite, washing with dichloromethane. The solvent was removed and the residue was purified by flash column chromatography on silica gel (petroleum ether: $\mathrm{EtOAc}=20: 1$) to pure product $\mathbf{6} . \mathbf{6}$ is further transformed to $\mathbf{7}$ under the action of HCl (aq.)

In a undivided Schlenk flask (10 mL) equipped with a stir bar, $\mathbf{4 a a b}(0.2 \mathrm{mmol}), \mathrm{MgCl}_{2}$ (3 equiv.), LiClO_{4} (5 equiv.), and $\mathrm{Mn}(\mathrm{OAc}) \cdot 4 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5$ $\mathrm{cm})$ and a platinum foil cathode ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.01 \mathrm{~cm}$) and then flushed with nitrogen.Then $\mathrm{AcOH}(0.5 \mathrm{~mL})$, and $\mathrm{MeCN}(4.5 \mathrm{~mL})$ were injected respectively into the flask via syringes. Electrolysis was initiated at a cell potential of 2.3 V at $40^{\circ} \mathrm{C}$ (oil bath temperature). When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether /EtOAc to give the product $\mathbf{8}$.

To a 10 mL schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{4 a a b}$ (0.2 $\mathrm{mmol})$, and $\mathrm{LiAlH}_{4}(0.4 \mathrm{mmol})$ in 2 mL of THF. Then the mixture was stirred at RT for 10 min . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{SO}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and diluted with

EtOAc. The layers were separated and the aqueous phase was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was chromatographed through silica gel eluting with petroleum ether /EtOAc to give the product 9 .

A solution of $\mathbf{4 a a b}(0.2 \mathrm{mmol})$ in dry THF $(1 \mathrm{~mL})$ was added to a cold solution $\left(-78^{\circ} \mathrm{C}\right)$ of $n-\mathrm{BuLi}(0.4 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) in THF (1 mL), under an argon atmosphere. After 1 h , the reaction mixture was quenched with a sat aq solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and diluted with EtOAc (1 mL). The layers were separated and the aqueous phase was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was chromatographed through silica gel eluting with petroleum ether to give the product $\mathbf{1 0}$.

Detection of \mathbf{H}_{2} and \mathbf{N}_{2} by GC Analysis

Standard $\mathbf{H}_{\mathbf{2}}$ for reference:

Standard $\mathbf{N}_{\mathbf{2}}$ for reference:

Collected gas from gram-scale experiment :
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝
uv

\mathbf{N}_{2} from anode：

2020／12／24 17：12：27 1／1
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝
uV

H_{2} from cathode：

Characterization of products

（E）－1－（（1－ethoxy－1－（4－methoxyphenyl）prop－1－en－2－yl）sulfonyl）－4－methylbenzene （4baa）

4baa
4baa was obtained in $80 \%(55.4 \mathrm{mg})$ as a colorless oil after column chromatography （eluent：petroleum ether／ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$ ）．
${ }^{\mathbf{1}} \mathbf{H}$ NMR（500 MHz，CDCl3）：$\delta 7.40(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.89-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{q}, \mathrm{J}=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $1.14(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ．
${ }^{13} \mathbf{C}$ NMR（126 MHz， $\left.\mathbf{C D C l}_{3}\right): ~ \delta=162.86,160.50,142.89,139.43,131.31,129.08$ ， $127.23,124.28,118.79,113.19,77.34,77.08,76.83,64.95,55.25,21.47,15.18,12.87$.

HRMS（ESI－TOF，［M＋Na］${ }^{+}$）：For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{4} \mathrm{~S}, 369.1136$ ，Found：369．1136．
（E）－1－（（1－ethoxy－1－（p－tolyl）prop－1－en－2－yl）sulfonyl）－4－methylbenzene（4caa）

4caa
4caa was obtained in $75 \%(49.6 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v})$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 7.42(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ - $7.13(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{q}, \mathrm{J}=7.0,7.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl3): $\delta=163.02,142.92,139.53,139.35,129.67,129.30$, $129.09,128.49,127.34,118.41,77.28,77.03,76.78,64.97,21.49,15.19,12.81$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3} \mathrm{~S}, 353.1187$, Found: 353.1187.

(E)-1-(1-ethoxy-2-tosylprop-1-en-1-yl)-3-methylbenzene (4daa)

4daa
4daa was obtained in $36 \%(29.7 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v})$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $: \delta 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{q}, J=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl 3): $\delta=163.05,142.83,139.47,137.37,132.07,130.20$, $130.17,129.04,127.67,127.31,127.06,118.69,77.29,77.03,76.78,65.04,21.46$, $21.34,15.19,12.70$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~S}, 331.1368$, Found: 331.1372 .
(E)-1-(1-ethoxy-2-tosylprop-1-en-1-yl)-3-methoxybenzene (4eaa)

4eaa

4eaa was obtained in 50% (34.6 mg) as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.14$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (dd, $J=2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=$ $1.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{q}, J=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 1.15(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=162.42,158.96,142.92,139.32,133.35,129.08$, 128.87, 127.34, 122.46, 118.97, 115.40, 114.87, 77.29, 77.04, 76.78, 65.07, 55.17, 21.45, 15.22, 12.68.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}, 347.1317$, Found: 347.1320.

(E)-1-(1-ethoxy-2-tosylprop-1-en-1-yl)-2-methoxybenzene (4faa)

4faa
4faa was obtained in $91 \%(63.1 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.41$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (ddd, $J=1.8,7.4,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=1.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{td}, J=1.0,7.4$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, 2.11 (s, 3H), 1.15 (t, $J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta=160.61,156.76,142.56,139.45,132.33,131.33$, $128.85,127.30,120.91,120.00,117.31,110.14,77.40,77.08,76.76,64.27,55.10$, 21.47, 15.14, 12.47.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{4} \mathrm{~S}, 369.1136$, Found: 369.1141.

(()-1-chloro-3-(1-ethoxy-2-tosylprop-1-en-1-yl)benzene (4gaa)

4gaa
4gaa was obtained in $36 \%(25.3 \mathrm{mg})$ as a colorless oil after column chromatography
(eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.39$ (d, J = $8.3 \mathrm{~Hz}, \mathbf{2 H}$), $7.32(\mathrm{t}, \mathrm{J}=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18 (dd, J = 4.5, $7.7 \mathrm{~Hz}, 4 \mathrm{H}$), $7.03(\mathrm{t}, \mathrm{J}=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{q}, \mathrm{J}=7.0,7.0,7.0 \mathrm{~Hz}$, 2H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=160.82,143.37,139.01,136.28,133.98,129.65$, 129.27, 129.14, 128.48, 127.88, 127.28, 120.19, 77.28, 77.03, 76.77, 65.37, 21.51, 15.16, 12.72.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClNaO}_{3} \mathrm{~S}, 373.0641$, Found: 373.0642
(E)-1-chloro-2-(1-ethoxy-2-tosylprop-1-en-1-yl)benzene (4haa)

4haa was obtained in 45% (31.6 mg) as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{ddq}, J=7.0,7.0,7.0,9.7,69.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}$, $3 \mathrm{H}), 1.19$ (t, $J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=159.32,143.27,138.59,133.35,132.42,131.69$, $130.94,129.25,127.61,126.30,117.72,77.29,77.03,76.78,64.63,21.53,15.18,12.49$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClO}_{3} \mathrm{~S}, 351.0822$, Found: 351.0825.
(E)-1-chloro-4-(1-ethoxy-2-tosylprop-1-en-1-yl)benzene (4iaa)

4iaa
4iaa was obtained in $69 \%(48.4 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13$ (m, 4H), $3.48(\mathrm{q}, \mathrm{J}=6.9,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.0$, 7.0 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3) : $\delta=161.30,143.32,138.98,135.75,131.16,130.74$, 129.27, 128.16, 127.32, 119.70, 77.37, 77.05, 76.74, 65.27, 21.53, 15.18, 12.84.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClO}_{3} \mathrm{~S}$, 351.0822, Found: 351.0823.
(E)-1-((1-ethoxy-1-phenylpent-1-en-2-yl)sulfonyl)-4-methylbenzene (4jaa)

4jaa
4jaa was obtained in $74 \%(51.0 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{q}, J=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.54(\mathrm{~m}$, 2H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.4,7.4$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=163.66,142.63,139.99,132.17,130.01,129.35$, $128.94,127.72,127.23,124.22,77.30,77.05,76.80,65.06,29.21,22.69,21.45,15.15$, 14.07.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}, \mathbf{3 4 5 . 1 5 2 4}$, Found: 345.1525.
(E)-1-((1-ethoxy-1-phenylhex-1-en-2-yl)sulfonyl)-4-methylbenzene (4kaa)

4kaa
4kaa was obtained in $71 \%(50.9 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.36(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=3.7,8.7,9.3$ $\mathrm{Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{q}, J=7.0,7.0,7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~h}, J=7.2,7.2,7.2$, $7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.42,142.62,139.95,132.18,129.99,129.33$, 128.92, 127.71, 127.25, 124.42, 77.28, 77.02, 76.77, 65.05, 31.57, 26.97, 22.68, 21.43,
15.14, 13.88.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}, 359.1681$, Found: 359.1679 .

(E)-1-((1-ethoxy-1-phenylhept-1-en-2-yl)sulfonyl)-4-methylbenzene (4laa)

4laa was obtained in $71 \%(61.8 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $_{3}$): $\delta 7.36$ (t, J = 7.3, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 - 7.24 (m, 4H), 7.15 $-7.05(\mathrm{~m}, 4 \mathrm{H}), 3.44(\mathrm{q}, \mathrm{J}=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{t}, \mathrm{J}=7.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-$ 0.88 (m, 3H).
${ }^{13}$ C NMR (126 MHz, CDC13): $\delta=163.41,142.64,139.90,132.17,129.98,129.34$, 128.94, 127.72, 127.25, 124.35, 77.29, 77.04, 76.78, 65.06, 31.80, 29.00, 27.22, 22.37, 21.45, 15.16, 14.05.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~S}, 373.1837$, Found: 373.1836 .
(E)-1-((1-ethoxy-1-phenyloct-1-en-2-yl)sulfonyl)-4-methylbenzene (4maa)

4maa was obtained in $87 \%(67.2 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.40-7.33$ (m, 1H), 7.33 - 7.25 (m, 4H), 7.16 - 7.10 (m, 2H), $7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{q}, J=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.53(\mathrm{~m}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 5 \mathrm{H}), 1.14(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95-0.88(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.41,142.64,139.90,132.17,129.98,129.34$, $128.94,127.72,127.25,124.35,77.29,77.04,76.78,65.06,31.80,29.00,27.22,22.37$,
21.45, 15.16, 14.05.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{~S}, 409.1813$, Found 409.1807.

(E)-1-((1-cyclopropyl-2-ethoxy-2-phenylvinyl)sulfonyl)-4-methylbenzene (4naa)

4naa
4naa was obtained in $49 \%(33.6 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J$ $=6.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{q}, J=7.0,7.0$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.78$ (m, 3H).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.60,142.75,139.67,132.87,129.78$, 129.68, $128.93,127.85,127.62,124.85,77.25,77.00,76.74,65.65,21.45,15.21,9.29,8.22$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{3} \mathrm{~S}, 365.1187$, Found: 365.1188.
(E)-2-(4-ethoxy-4-phenyl-3-tosylbut-3-en-1-yl)isoindoline-1,3-dione (4oaa)

40aa was obtained in $20 \%(19.0 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.86(\mathrm{dd}, J=3.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=3.0,5.4$ Hz, 2H), 7.38 (dd, $J=7.2,8.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.31$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ - 7.11 (m, 2H), $7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{q}, J=7.0,7.0,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.96(\mathrm{t}, J=6.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=168.34,164.89,142.60,138.85,133.40,132.18$, $129.41,129.19,128.77,128.34,127.53,127.34,126.98,122.72,119.28,77.00,76.75$, $76.50,65.15,36.51,26.03,21.19,14.59$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}$, 476.1532, Found: 476.1531.

(E)-2-((5-ethoxy-5-phenyl-4-tosylpent-4-en-1-yl)oxy)isoindoline-1,3-dione (4paa)

4paa
4paa was obtained in $75 \%(75.8 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) : $\delta 7.85(\mathrm{dd}, J=3.1,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=3.1,5.5$ Hz, 2H), $7.43-7.34$ (m, 1H), $7.35-7.26$ (m, 4H), $7.17-7.11$ (m, 2H), 7.09 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{q}, J=7.0,7.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.78(\mathrm{~m}$, 2H), 2.35 (s, 3H), 2.14 (dq, $J=6.9,6.9,6.9,9.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.14 (t, $J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=164.44,163.69,142.92,139.58,134.48,131.81$, 129.86, 129.52, 129.10, 129.01, 127.81, 127.26, 123.49, 122.41, 78.27, 77.40, 77.09, 76.77, 65.34, 27.86, 23.64, 21.48, 15.17.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NNaO}_{6} \mathrm{~S}, 528.1457,528.1461$.

(E)-2-(1-ethoxy-2-tosylprop-1-en-1-yl)thiophene (4qaa)

4qaa
4qaa was obtained in $74 \%(47.7 \mathrm{mg})$ as a yellow oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.46-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=1.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=3.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{q}, \mathrm{J}=7.0,7.0,7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=154.41,142.28,137.94,131.97,131.01,128.28$, 128.16, 126.45, 125.65, 122.48, 76.45, 76.20, 75.94, 64.53, 20.65, 14.36, 12.49 .

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{3} \mathrm{~S}_{2}, 345.0595$, Found: 345.0600. ($8 R, 9 S, 13 S, 14 S$)-3-((E)-1-ethoxy-2-tosylpent-1-en-1-yl)-13-methyl-

6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta $[a]$ phenanthren-17-one (4raa)

4raa
4ara was obtained in $71 \%(73.9 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.28(\mathrm{dd}, J=2.6,9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.05 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=1.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, J=7.0$, $7.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dt}, J=4.5,4.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $2.21-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.14(\mathrm{t}, J=7.1,7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07(\mathrm{t}, J=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.83,142.28,141.03,140.10,135.77,130.25$, $129.39,128.69,127.55,127.22,124.60,124.09,65.02,50.54,47.93,44.48,38.03$, $35.83,31.59,29.17,29.04,26.40,25.62,22.74,21.61,21.46,15.17,14.08,13.89$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{~S}, 521.2726$, Found: 521.2729.
(E)-1-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aaa)

4aaa
4aaa was obtained in $78 \%(49.4 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.40(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.28$ (m, 2H), 7.23 $7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{q}, \mathrm{J}=7.0,7.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=162.78,142.99,139.29,132.27,129.78$, 129.49, $129.16,127.78,127.31,118.75,77.31,77.06,76.80,65.11,21.49,15.19,12.78$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{3} \mathrm{~S}, 339.1031$, Found: 339.1038.

(E)-1-(tert-butyl)-4-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4aba)

4aba was obtained in $67 \%(48.0 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 7.45-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17$ $(\mathrm{m}, 2 \mathrm{H}), 3.48(\mathrm{q}, \mathrm{J}=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.1$, $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): ~ \delta=162.67,155.92,139.13,132.26,129.81,129.43$, $127.78,127.12,125.49,118.99,77.36,77.04,76.73,65.11,35.04,31.10,15.20,12.73$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): For $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{~S}, 381.1500$, Found: 381.1496.

(E)-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4aca)

4aca
4aca was obtained in $67 \%(40.5 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38$ (m, 1H), 7.34 (ddd, $J=2.7,6.9,8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{q}, J=7.0,7.0$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl3): $\delta=163.22,142.20,132.24,132.10,129.80,129.55$, $128.52,127.84,127.22,118.55,77.37,77.06,76.74,65.20,15.20,12.76$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{3} \mathrm{~S}, 325.0874$, Found: 325.0872.
(E)-1-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)-4-fluorobenzene (4ada)

4ada

4ada was obtained in $81 \%(51.9 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=$ $7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=8.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{q}, \mathrm{J}=7.0,7.0$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=165.86,163.84,163.36,138.37,138.35,132.00$, 129.94, 129.87, 129.80, 129.66, 127.90, 118.66, 115.75, 115.57, 77.31, 77.06, 76.81, 65.29, 15.17, 12.68.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FNaO}_{3} \mathrm{~S}, 343.0780$, Found: 343.0784.
(E)-1-chloro-4-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4aea)

4aea
4aea was obtained in $78 \%(52.5 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28$ (m, 2H), $7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{q}, \mathrm{J}=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}$ $=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.64,140.80,138.72,131.93,129.78$, 129.71, 128.76, 128.68, 127.91, 118.35, 77.30, 77.04, 76.79, 65.34, 15.18, 12.67.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClNaO}_{3} \mathrm{~S}, 359.0485$, Found: 359.0480 .
(E)-1-bromo-4-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4afa)

4afa
4afa was obtained in $72 \%(54.9 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}$): $\delta 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37-$
7.30 (m, 4H), $7.19-7.14$ (m, 2H), 3.49 (q, J = 7.0, 7.0, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.13 (s, 3H), 1.15 (t, J = 7.0, 7.0 Hz, 3H).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=163.68,141.33,131.91,131.74,129.77,129.72$, $128.78,127.92,127.23,118.28,77.31,77.05,76.80,65.34,15.19,12.67$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrNaO}_{3} \mathrm{~S}, 381.0160$, Found: 381.0162
(E)-1-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)-4-(trifluoromethyl)benzene (4aga)

4aga was obtained in $65 \%(48.2 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~s}, 4 \mathrm{H}), 7.42(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{q}, J=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}), 1.16$ (t, $J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=164.28,145.80,133.97,133.71,131.72,130.46$, 129.81, 129.77, 128.85, 128.24, 127.96, 127.68, 125.63, 125.60, 125.57, 124.39, 122.22, 117.94, 77.29, 77.04, 76.78, 65.47, 15.16, 12.60.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}, 371.0929$, Found: 371.0932
(E)-1-bromo-3-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4aha)

4aha
4aha was obtained in $42 \%(32.0 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.57$ (dt, $J=1.3,1.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (t, $J=1.9,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{dtd}, J=1.8,3.4,3.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}$, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{q}, J=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}$, $3 \mathrm{H}), 1.16(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.99,144.14,135.23,131.59,130.26,130.03$, $129.88,129.80,127.92,125.68,122.45,118.35,77.29,77.03,76.78,65.40,15.18$, 12.62.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrO}_{3} \mathrm{~S}$, 381.0160, Found: 381.0161.
(E)-1-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)-2-fluorobenzene (4aia)

4aia
4aia was obtained in $67 \%(42.9 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=$ $1.9,7.4,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{td}, J=1.1,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{q}, J$ $=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.85,160.30,157.77,134.51,134.43,131.45$, $130.20,130.06,129.90$, 129.77, 129.51, 127.73, 123.72, 123.68, 119.25, 116.57, $116.36,77.38,77.06,76.74,65.32,15.19,12.10,12.07$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FO}_{3} \mathrm{~S}, 321.0961$, Found: 321.0968.

(E)-1-chloro-2-((1-ethoxy-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4aja)

4aja
4aja was obtained in $47 \%(31.7 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.33(\mathrm{dd}, J=1.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H})$, $7.10(\mathrm{dd}, J=6.9,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{q}, J=$ $7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl3): $\delta=162.82,139.60,132.85,131.97,131.18,130.84$,
$130.34,129.96,129.54,127.69,126.35,119.53,77.36,77.04,76.72,65.38,15.22$, 12.13.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClO}_{3} \mathrm{~S}, 337.0665$, Found: 337.0669
(E)-(2-(cyclopropylsulfonyl)-1-ethoxyprop-1-en-1-yl)benzene (4aka)

4aka
4aka was obtained in $46 \%(24.5 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.48-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.55(\mathrm{q}, \mathrm{J}=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{dt}, \mathrm{J}=4.8,4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-0.97$ (m, 2H), $0.92-0.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=162.20,132.44,129.82,129.68,127.88,118.46$, $77.29,77.03,76.78,65.09,31.63,15.23,12.91,4.97$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{3} \mathrm{~S}, 289.0874$, Found: 289.0876.
(E)-1-((1-methoxy-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aab)

4aab
4aab was obtained in 90% (54.4 mg) as a white solid after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.44$ - $7.33(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.29,143.05,139.27,131.60,129.77,129.58$, 129.19, 127.91, 127.32, 118.16, 77.38, 77.06, 76.74, 56.64, 21.51, 12.54.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}, 303.1055$, Found: 303.1061.
(E)-1-methyl-4-((1-phenyl-1-propoxyprop-1-en-2-yl)sulfonyl)benzene (4aac)

4aac

4aac was obtained in $35 \%(23.1 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v})$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{t}, J=$ $6.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~h}, J=7.1,7.1,7.1,7.1,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $0.86(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl3): $\delta=162.97$, 142.97, 139.33, 132.31, 129.79, 129.46, $129.15,127.78,127.31,118.46,77.31,77.06,76.81,70.99,22.99,21.50,12.67,10.37$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~S}, 331.1368$, Found: 331.1371 .
(E)-1-((1-butoxy-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aad)

4aad
4aad was obtained in $26 \%(17.9 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 4 \mathrm{H}), 3.40(\mathrm{t}, J=$ $6.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{dq}, J=6.4,6.5,6.5,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.35$ $-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3): $\delta=.162 .99,142.96,139.32,132.31,129.77,129.45$, $129.14,127.77,127.30,118.45,77.30,77.05,76.79,69.14,31.68,21.49,18.98,13.65$, 12.68.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}, 345.1524$, Found: 345.1528 .
(E)-1-((1-isopropoxy-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aae)

4aae

4aae was obtained in $53 \%(35.0 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.44$ - 7.29 (m, 5H), 7.27 - 7.22 (m, 2H), 7.13 (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{p}, J=6.1,6.1,6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}$, $3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=162.14,142.96,139.17,132.74,129.97,129.53$, $129.12,127.69,127.31,120.58,77.31,77.06,76.80,71.62,22.44,21.48,13.13$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{3} \mathrm{~S}, \mathbf{3 5 3 . 1 1 8 7}$, Found: 353.1189.
(E)-1-((1-(sec-butoxy)-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aaf)

4aaf
4aaf was obtained in $50 \%(34.4 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.39(\mathrm{dd}, J=6.5,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{dd}, J=6.7,8.2$ Hz, 2H), $7.25-7.19$ (m, 2H), 7.13 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.59 (h, $J=6.2,6.2,6.2,6.2$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{dp}, J=7.3,7.3,7.3,7.3,14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.46-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDC1 3): $\delta=162.57,142.93,139.27,132.73,130.01,129.47$, $129.13,127.68,127.30,119.98,77.38,77.06,76.74,76.30,29.43,21.50,19.98,13.05$, 9.60 .

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3} \mathrm{~S}, \mathbf{3 6 7 . 1 3 4 4 , ~ F o u n d : ~} 367.1346$
(E)-1-methyl-4-((1-(pentan-2-yloxy)-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4aag)

4aag
4aag was obtained in 38% (27.2 mg) as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.38(\mathrm{dd}, J=6.5,8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.3,7.3 \mathrm{~Hz}$, 2H), $7.24-7.19$ (m, 2H), 7.13 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.69-3.59$ (m, 1H), 2.36 (s, 3H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{dddd}, J=1.9,5.2,7.4$, $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl 3): $\delta=162.57,142.92,139.27,132.74,130.00,129.48$, 129.12, 127.67, 127.31, 119.99, 77.37, 77.05, 76.73, 74.97, 38.82, 21.50, 20.53, 18.52, 13.94, 13.06.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{~S}, 381.1500$, Found: 381.1500.
(E)-1-methyl-4-((1-(pentan-3-yloxy)-1-phenylprop-1-en-2-yl)sulfonyl)benzene (4aah)

4aah
4ahh was obtained in $38 \%(25.8 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17$ (m, 2H), 7.14 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43$ (p, $J=5.9,5.9,5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (s, 3H), $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=163.04,142.88,139.39,132.69,130.09,129.40$, $129.13,127.64,127.29,119.29,80.84,77.36,77.05,76.73,26.63,21.50,12.94,9.41$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{~S}, 381.1500$, Found: 381.1501.

(E)-1-((1-(tert-butoxy)-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aai)

4aai
4aai was obtained in 30% (20.7 mg) as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.38-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=161.16,142.99,138.76,135.77,130.82,129.37$, $129.00,127.29,127.14,127.08,82.34,77.28,77.03,76.77,29.55,21.47,14.36$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3} \mathrm{~S}, 367.1344$, Found: 367.1343.
(E)-1-((1-(cyclopentyloxy)-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aaj)

4aaj
4aaj was obtained in $47 \%(33.5 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.51$ -1.47 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=162.21,142.96,139.24,132.77,130.09,129.39$, $129.14,127.68,127.31,120.40,81.04,77.38,77.06,76.74,32.99,23.74,21.50,12.94$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{3} \mathrm{~S}, 379.1344$, Found: 379.1344
(E)-1-((1-(cyclohexyloxy)-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (4aak)

4aak
4aak was obtained in $43 \%(31.9 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.44-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{tt}, J=3.4,3.4,8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.68-$ $1.59(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.05(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=162.24,142.91,139.25,132.66,129.96,129.47$, $129.10,127.66,127.29,120.20,77.30,77.05,76.79,76.42,32.25,25.24,23.35,21.48$, 13.15.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{~S}, 393.1500$, Found: 393.1500.
(E)-1-methyl-4-((1-phenyl-1-(2,2,2-trifluoroethoxy)prop-1-en-2-

yl)sulfonyl)benzene (4aal)

4aal was obtained in $43 \%(38.5 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.52-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{ddt}, J=1.4,1.4,6.8,8.3$ $\mathrm{Hz}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (q, $J=8.2,8.2,8.2 \mathrm{~Hz}$, 2H), 2.38 ($\mathrm{s}, 3 \mathrm{H}$), 2.14 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=160.11,143.60,138.38,130.45,130.31,130.22$, $129.34,128.35,127.49,126.35,124.12,122.66,121.90,119.69,77.30,77.04,76.79$, 65.41, 65.13, 64.85, 64.56, 21.52, 12.73.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}, 393.0748$, Found: 393.0750.

1-phenyl-2-tosylpropan-1-one (4aam)

4aam
4aam was obtained in 62% (35.8 mg) as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.01-7.94$ (m, 2H), 7.66 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{q}, J=6.9,6.9,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=192.66,145.38,136.27,134.03,133.02,129.84$, $129.55,129.20,128.75,77.38,77.06,76.74,64.99,21.70,13.23$.

HRMS (ESI-TOF, [M+ H] ${ }^{+}$): For $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}$, 289.0898, Found: 289.0900.
2,5-dimethyl-3-phenylbenzo[b]thiophene 1,1-dioxide (5)

5
5 was obtained in $78 \%(42.2 \mathrm{mg})$ as a white solid after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.68(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.39-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta=144.43,137.89,135.74,133.89,133.44,130.58$, $129.72,129.39,129.07,128.70,124.13,121.40,77.36,77.05,76.73,21.86,7.55$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}, 271.0793$, Found: 271.0795.

1-((2-bromo-1,1-dimethoxy-1-phenylpropan-2-yl)sulfonyl)-4-methylbenzene (6)

6
6 was obtained in $95 \%(78.5 \mathrm{mg})$ as a white solid after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDC13): $\delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.40-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 2.00(\mathrm{~s}$, 2 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=144.63,135.23,135.00,131.84,130.32,129.04$, 128.70, 127.27, 104.84, 86.53, 77.41, 77.09, 76.78, 53.33, 52.88, 26.51, 21.67.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrO}_{4} \mathrm{~S}, 413.0422$, Found: 413.0422.

2-bromo-1-phenyl-2-tosylpropan-1-one (7)

7

7 was obtained in 98% (35.9 mg) as a white solid after column chromatography (eluent:
petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.23-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.23$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=191.20,146.22,135.13,133.25,131.31,131.05$, $130.81,130.17,129.76,129.52,127.99,77.73,77.35,77.03,76.71,27.45,21.80$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrO}_{3} \mathrm{~S}, 367.0004$, Found: 367.0004
2-chloro-1-phenyl-2-tosylpropan-1-one (8)

8
8 was obtained in $63 \%(40.7 \mathrm{mg})$ as a white solid after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.14(\mathrm{dd}, J=1.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, 2.06 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=191.55,146.32,134.84,133.25,131.25,131.04$, 130.64, 129.60, 128.01, 86.50, 77.29, 77.03, 76.78, 26.26, 21.79.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClO}_{3} \mathrm{~S}$, 323.0509, Found: 323.0511.
1-methyl-4-((1-phenylpropan-2-yl)sulfonyl)benzene (9)

9
9 was obtained in $91 \%(49.7 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$
$-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=3.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dqd}, J=3.2$, $6.9,6.9,6.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dd, $J=11.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (s, 3H), 1.14 (d, $J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=144.77,137.08,134.16,129.86,129.12,129.08$, 128.71, 126.89, 77.40, 77.08, 76.77, 61.67, 35.43, 21.67, 12.71.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}, 275.1106$, Found: 275.1106.

7-butyl-8-tosylbicyclo[4.2.0]octa-1,3,5,7-tetraene (10)

10
10 was obtained in $15 \%(6.8 \mathrm{mg})$ as a colorless oil after column chromatography (petroleum ether).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $_{3}$): $\delta 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=6.9,8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=1.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=7.7,7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{p}, J=7.3,7.3,7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.90-0.81(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=142.80,140.76,135.81,135.33,133.81,133.20$, $130.13,128.50,127.22,125.39,122.48,121.72,77.27,77.02,76.76,31.32,29.71$, 28.79, 22.34, 21.44.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): For $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}, 313.1262$, Found: 313.1269.

2,6-di-tert-butyl-4-methylphenyl 4-methylbenzenesulfonate (11)

11
11 was obtained in $35 \%(26.2 \mathrm{mg})$ as a white solid after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta .7 .51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63$ $(\mathrm{s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta=183.70,151.21,145.30,135.71,130.61,130.26$, 128.80, 77.35, 77.03, 76.71, 65.81, 35.19, 28.97, 21.61, 18.53.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): For $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{~S}$, 397.1813, Found: 397.1814.

2,6-di-tert-butyl-4-(2-ethoxy-2-phenyl-3,3-ditosylbutyl)phenol (12)

12 was obtained in $23 \%(31.7 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.42(\mathrm{dd}, J=8.0,18.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H})$, 7.20 (dt, $J=2.7,2.7,6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H})$, $4.19(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{q}, J=7.0,7.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~s}, 18 \mathrm{H}), 1.14(\mathrm{t}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=162.77,154.20,144.33,142.99,139.28,135.99$, 134.91, 132.27, 129.79, 129.49, 129.30, 129.16, 128.90, 127.78, 127.67, 127.32, $118.94,118.76,77.37,77.05,76.73,65.11,63.26,34.13,30.05,21.54,21.50,15.20$, 12.78.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): For $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{NaO}_{6} \mathrm{~S}_{2}, 713.2947$, Found: 713.2955.
ethyl diphenylphosphinate (13)

13
13 was obtained in $80 \%(39.4 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=1 / 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.80$ (ddd, J = 1.4, $8.2,12.3 \mathrm{~Hz}, 4 \mathrm{H}$), $7.53-7.46$ (m, 2 H), 7.43 (ddd, $\mathrm{J}=3.6,6.8,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.09(\mathrm{p}, \mathrm{J}=7.1,7.1,7.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}$, $\mathrm{J}=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=132.13,131.68,131.59,131.08,128.58,128.48$, $77.36,77.10,76.85,61.18,61.14,16.54,16.49$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NaO}_{2} \mathrm{P}, 269.0707$, Found: 269.0703.

1,3-dimethyl-3-(tosylmethyl)indolin-2-one (15)

15
15 was obtained in $78 \%(77.1 \mathrm{mg})$ as a white solid after column chromatography (eluent: petroleum ether/ethyl acetate $=2 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.37$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 - 7.24 (m, 1H), 7.16 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 1.38 (s, 3H).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=177.66,144.35,143.25,136.99,129.60,129.51$, $128.59,127.86,124.16,122.48,108.39,77.31,77.05,76.80,61.89,45.65,26.54,25.51$, 21.59.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}, 352.0983$, Found: 352.0984. ethyl 4-methylbenzenesulfonate (17)

17
17 was obtained in $48 \%(19.2 \mathrm{mg})$ as a colorless oil after column chromatography (eluent: petroleum ether/ethyl acetate $=20 / 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.08$ $(\mathrm{q}, \mathrm{J}=7.1,7.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=163.69,130.03,127.75,114.40,77.30,77.04,76.79$, 66.60, 55.70, 14.70.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): For $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NaO}_{3} \mathrm{~S}, 223.0405$, Found: 223.0406.

쿵
$\xrightarrow{\text { 논 }}$

4caa

4caa

4daa

4daa

$\stackrel{\sim}{\sim} \underset{\sim}{\sim}$
号

4eaa
 \uparrow
 \downarrow
\qquad 1
\xrightarrow{T} $\stackrel{y}{\infty}$ ̈ㅡㅆ

藻 － cin － $0-0$

足志品
）

桀梁留

4eaa

4gaa

$\stackrel{\text { ज }}{\underset{\sim}{\circ}}$

4gaa

4haa

4haa

4iaa

80	170	160	150	140	130	120	110	100	90	80	70	10	10	50	40	30	20	10	0
$f 1(\mathrm{ppm})$																			

4jaa

憵总品品

4jaa

4kaa

哭笑感 嵒

4kaa

4naa

4paa

4paa

4qaa

$$
\begin{aligned}
& \text { 嵏骂羅 }
\end{aligned}
$$

4qaa

4raa

4aaa

4aca

4aca

穿咢

4ada

 $\stackrel{\infty}{\top}$ 으ㄹㅡㅗ를

4aea

4afa

 $\stackrel{\infty}{i}$

4aga

4aha

4aha

\begin{tabular}{|c|}
\hline 10 \& 180 \& 170 \& 160 \& 150 \& 140 \& 130 \& 120 \& 110 \& 100 \& 90

Pm) \& 80 \& 70 \& 60 \& 50 \& 40 \& 30 \& 20 \& 10 \& 0

\hline
\end{tabular}

4aja

品花范
$\stackrel{\text { Nin }}{1}$

4aja

4aka

品哭哭品

듞	声跎㗊品品 	品哭呂嵒	咢
1	\％	।	1

4aka

[^0]

4aab

[^1]

4aae

気品哭咢
违哭坒

4aae

$$
\begin{array}{lllllllllllllllllllllll}
210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 1100 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \\
& & & & & & & 10 & (\mathrm{ppm}) & & & & & & & & & & & & & & \\
\hline
\end{array}
$$

4aaf

4aag

4aah

4aah

4aai
Ph

4aaj

4aaj

4aak

4aak

4aal

4aam

4aam

$$
\begin{array}{llllllllllllllllllllllll}
210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 50 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\
\mathrm{fl}(\mathrm{ppm})
\end{array}
$$

5

6

							1															
						R	-										$\stackrel{H}{\text { ¢ }}$					
1.1	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0
											fil ppm)											

范

8

9

9

10

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
							fl (ppm)							

11

12

13

～～品 品 品 品

13

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	［

17

References

[1] D. R. Stuart, B. L. Mégan, K. M. N. Burgess, and K. Fagnou, J. Am. Chem. Soc., 130(49), 16474-16475; 2008
[2] Z. X. Wang, Y. Z. Wang, and L. M. Zhang, J. Am. Chem. Soc., 136(25), 8887-8890; 2014
[3] Y. S. Liu, L. J. Wang, and L. Deng, J. Am. Chem. Soc., 138, 1, 112-115; 2016.
[4] L. B. Zhang., R. S. Geng, Z. C. Wang, G. Y. Ren, L. R. Wen and M. Li, Green Chem., 2020, 22, 16-21.
[5] Z. zhang, Y. Z. Luo, H. G. Du, J. X. Xu and P. F. Li, Chem. Sci., 2019, 10, 51565161.
[6] Y. Yuan, Y. M. Cao, Y. P. Lin, Y. L. Li, Z. L. Huang and A. W. Lei, ACS Catal. 2018, 8, 10871-10875.
[7] P. Kilaru, S. P. Acharya, and P. J. Zhao, Chem. Commun., 2018, 54, 924-927.

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & (p p m)\end{array}$

[^1]:

