# **Electronic supplementary information**

An integrated techno-sustainability assessment (TSA) framework for emerging technologies Sophie Van Schoubroeck<sup>\*</sup>, Gwenny Thomassen, Steven Van Passel, Robert Malina, Johan Springael, Sebastien Lizin, Richard A. Venditti, Yuan Yao, and Miet Van Dael.



S.1 Rank correlation coefficient between initial and new rankings.

| S.2 | Kendall | 's τ and | corres | ponding | z-values. |
|-----|---------|----------|--------|---------|-----------|
|-----|---------|----------|--------|---------|-----------|

|             | Environmental |       |        | conomic |       | Social |  |  |
|-------------|---------------|-------|--------|---------|-------|--------|--|--|
| #respondent | τ             | Z     | τ      | Z       | τ     | Z      |  |  |
| 1           | 0.884         | 5.451 | 0.692  | 3.294   | 0.981 | 5.097  |  |  |
| 2           | 0.958         | 5.905 | 0.667  | 3.172   | 0.886 | 4.602  |  |  |
| 3           | 0.958         | 5.905 | 0.615  | 2.928   | 0.829 | 4.305  |  |  |
| 4           | 0.821         | 5.061 | 0.615  | 2.928   | 0.448 | 2.326  |  |  |
| 5           | 0.411         | 2.531 | 0.154  | 0.732   | 0.810 | 4.206  |  |  |
| 6           | 0.684         | 4.218 | 0.667  | 3.172   | 0.714 | 3.712  |  |  |
| 7           | 0.526         | 3.244 | 0.744  | 3.539   | 0.676 | 3.514  |  |  |
| 8           | 0.611         | 3.764 | -0.051 | -0.244  | 0.771 | 4.008  |  |  |
| 9           | 0.558         | 3.439 | 0.564  | 2.684   | 0.467 | 2.425  |  |  |
| 10          | 0.884         | 5.451 | 0.872  | 4.149   | 0.771 | 4.008  |  |  |
| 11          | 0.979         | 6.035 | 0.692  | 4.759   | 1.000 | 5.196  |  |  |
| 12          | 0.800         | 4.932 | 0.359  | 4.759   | 1.000 | 5.196  |  |  |
| 13          | 0.621         | 3.828 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 14          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 15          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 16          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 17          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 18          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 19          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 20          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 21          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 22          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 23          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 24          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 25          | 1.000         | 6.164 | 1.000  | 4.759   | 1.000 | 5.196  |  |  |
| 26          | 1.000         | 6.164 |        |         | 1.000 | 5.196  |  |  |

S.3 A frequency analysis of the indicators included (incl.) and excluded (excl.) for a sustainability analysis of algae-based chemicals, based on expert opinion. Note: the indicators above the dashed line are included in the assessment.

| Environmental (n = 26)                  |       | Economic (n = 25) |                      |       | Social (n = 26) |                                   |       |       |
|-----------------------------------------|-------|-------------------|----------------------|-------|-----------------|-----------------------------------|-------|-------|
| Indicator                               | Excl. | Incl.             | Indicator            | Excl. | Incl.           | Indicator                         | Excl. | Incl. |
| GHG emissions                           | 1     | 25                | Market potential     | 0     | 25              | Acceptance of biobased materials  | 0     | 26    |
| Raw material efficiency                 | 1     | 25                | Raw materials cost   | 1     | 24              | Product transparency              | 0     | 26    |
| End of life options                     | 2     | 24                | Product innovation   | 3     | 22              | Job creation                      | 1     | 25    |
| Ecotoxicity                             | 3     | 23                | Process innovation   | 4     | 21              | Human toxicity                    | 1     | 25    |
| Waste generation                        | 1     | 25                | Technical risks      | 5     | 20              | Income levels                     | 5     | 21    |
| Energy efficiency                       | 1     | 25                | Capital productivity | 6     | 19              | Workplace accidents and illnesses | 9     | 17    |
| Natural land transformation             | 5     | 21                | Energy cost          | 6     | 19              | Education and training            | 7     | 19    |
| Abiotic fossil depletion                | 4     | 22                | Land productivity    | 9     | 16              | Community support and involvement | 13    | 13    |
| Eutrophication                          | 3     | 23                | Product efficiency   | 10    | 15              | Fatal work injuries               | 19    | 7     |
| Agricultural land occupation            | 4     | 22                | Labor productivity   | 15    | 10              | Security measures                 | 20    | 6     |
| Water consumption                       | 3     | 23                | Subsidies            | 18    | 7               | Social security                   | 21    | 5     |
| Organic carbon depletion                | 13    | 13                | Waste disposal cost  | 16    | 9               | Child labor                       | 18    | 8     |
| Management practices in crop production | 17    | 9                 | Transportation cost  | 20    | 5               | Working hours                     | 23    | 3     |
| Soil erosion                            | 18    | 8                 |                      |       |                 | Discrimination                    | 22    | 4     |
| Acidification                           | 22    | 4                 |                      |       |                 | Cultural heritage                 | 22    | 4     |
| Particular matter formation             | 23    | 3                 |                      |       |                 |                                   |       |       |
| Abiotic mineral depletion               | 22    | 4                 |                      |       |                 |                                   |       |       |
| Stratospheric ozone depletion           | 25    | 1                 |                      |       |                 |                                   |       |       |
| Photo-oxidant formation                 | 26    | 0                 |                      |       |                 |                                   |       |       |
| Ionizing radiation                      | 26    | 0                 |                      |       |                 |                                   |       |       |

S.4 Technological configuration of different cultivation systems – open pond (left) versus photobioreactor (right). DSP – downstream processing.



# S.5 Data inventory.

Note: input numbers can deviate from sources because of unit conversions and additional calculations.

# S.5.1 Technological input data TSA.

| Cultivation           |                                                  |                                      |       |       |                             |
|-----------------------|--------------------------------------------------|--------------------------------------|-------|-------|-----------------------------|
| <u>Algae specific</u> |                                                  |                                      |       |       |                             |
|                       | Porphyridium                                     | Unit                                 | PBR   | ОР    | Source(s)                   |
| Mass                  | HNO <sub>3</sub> consumption                     | g.g biomass <sup>-1</sup>            | 0.090 | 0.090 | Supplier information (2019) |
|                       | MgSO <sub>4</sub> consumption                    | g.g biomass <sup>-1</sup>            | 0.862 | 1.989 | Supplier information (2019) |
|                       | Fe DTPA consumption                              | g.g biomass <sup>-1</sup>            | 0.003 | 0.006 | Supplier information (2019) |
|                       | H <sub>3</sub> PO <sub>4</sub> consumption       | g.g biomass <sup>-1</sup>            | 0.012 | 0.012 | Supplier information (2019) |
|                       | KOH consumption                                  | g.g biomass <sup>-1</sup>            | 0.248 | 0.248 | Supplier information (2019) |
|                       | CO <sub>2</sub> fixation efficiency              | % CO <sub>2</sub>                    | 75    | 41.23 | 1–3                         |
|                       | CO <sub>2</sub> fixation                         | g.g biomass <sup>-1</sup>            | 1.8   | 1.8   | 4                           |
|                       | Salt use                                         | g.L⁻¹                                | 15    | 15    | Supplier information (2019) |
|                       | Phycoerythrin                                    | %                                    | 2.18  | 2.18  | 5–8                         |
| Process               | Cultivation time                                 | days                                 | 10    | 13    | 6,9                         |
|                       | Growth rate                                      | g.L <sup>-1</sup> .day <sup>-1</sup> | 0.246 | 0.082 | Averages <sup>10,11</sup>   |
|                       | Growth photobioreactor (PBR)/ open pond (OP)     |                                      | 3     | 3     | 12                          |
|                       | Cultivation temperature                          | °C                                   | 20    | 20    | 5,13                        |
|                       | Water recycling                                  | %                                    | 90    | 90    | Assumption                  |
|                       | Salt recycling                                   | %                                    | 90    | 90    | Assumption                  |
|                       |                                                  |                                      |       |       |                             |
|                       | Dunaliella salina                                | Unit                                 | PBR   | ОР    | Source(s)                   |
| Mass                  | MgSO <sub>4</sub> consumption                    | g.g biomass <sup>-1</sup>            | 0.140 | 0.775 | 14                          |
|                       | KNO <sub>3</sub> consumption                     | g.g biomass <sup>-1</sup>            | 0.286 | 1.628 | 14                          |
|                       | NaHCO <sub>3</sub> consumption                   | g.g biomass <sup>-1</sup>            | 0.095 | 0.541 | 15                          |
|                       | KH <sub>2</sub> PO <sub>4</sub> consumption      | g.g biomass <sup>-1</sup>            | 0.008 | 0.044 | 14                          |
|                       | FeCl <sub>3</sub> .6H <sub>2</sub> O consumption | g.g biomass <sup>-1</sup>            | 0.002 | 0.009 | 14                          |
|                       | CO <sub>2</sub> fixation efficiency              | % CO2                                | 75    | 41.23 | 1–3                         |
|                       | CO <sub>2</sub> fixation                         | g.g biomass <sup>-1</sup>            | 1.8   | 1.8   | 4                           |
|                       | Salt use                                         | g.L <sup>-1</sup>                    | 117   | 117   | 14                          |
|                       | β-carotene                                       | %                                    | 5.40  | 5.40  | 15,16                       |

| Process               | Cultivation time                                  | days                                 | 10     | 23       | 17                          |
|-----------------------|---------------------------------------------------|--------------------------------------|--------|----------|-----------------------------|
|                       | Growth rate                                       | g.L <sup>-1</sup> .day <sup>-1</sup> | 0.197  | 0.0135   | 16,17                       |
|                       | Cultivation temperature                           | °C                                   | 25     | 25       | 15                          |
|                       | Water recycling                                   | %                                    | 90     | 90       | Assumption                  |
|                       | Salt recycling                                    | %                                    | 90     | 90       | Assumption                  |
| Equipment specific    | Parameter                                         | Unit                                 | PBR    | ОР       | Source(s)                   |
| Process and equipment | Electricity use air blower                        | kW                                   | 1.1    |          | Supplier information (2019) |
|                       | Electricity use pumping (liquid)                  | kW                                   | 0.8    |          | Supplier information (2019) |
|                       | Electricity use mixing (blower + paddle wheel)    | kW.m⁻³                               |        | 0.00372  | 18                          |
|                       | Electricity use CO <sub>2</sub> supply unit (CSU) | kWh.t CO2 <sup>-1</sup>              | 0      | 22.2     | 19                          |
|                       | Electricity use medium preparation system (MPS)   | kW.m⁻³.h                             | 0.275  | 0.275    | 1                           |
|                       | Electricity use artificial light                  | kW                                   | 0.056  |          | Supplier information (2019) |
|                       | > Artificial light use                            | h.day⁻¹                              | 3      |          | Supplier information (2019) |
|                       | > Lamps/ volume PBR                               | %                                    | 0.024  |          | Supplier information (2019) |
|                       | Heat loss                                         | %.day⁻¹                              | 30     | 100      | Assumption                  |
|                       | Additional heating due to solar irradiation       | °C                                   | 5      |          | 17                          |
|                       | COP heat exchanger                                | -                                    | 3.25   | 3.25     | AquaCal                     |
|                       | MPS hours                                         | h                                    | 6      | 6        | 1                           |
|                       | Mixing hours                                      | h                                    | 24     | 24       | Assumption                  |
|                       | Number of reactors                                | #                                    | 20     |          | Supplier information (2019) |
|                       | Inoculum system/ reactor volume                   | L.L <sup>-1</sup>                    | 0.01   | 0.01     | Supplier information (2019) |
|                       | Volume ground area                                | L.m⁻²                                | 36     |          | Supplier information (2019) |
|                       | Height pond                                       | m                                    |        | 0.2      | 20                          |
| Emissions             | N <sub>2</sub> O emissions                        | kg N₂O.kg N⁻¹                        | 0.0039 | 0.000024 | 21                          |
|                       | NH <sub>3</sub> emissions                         | kg NH₃.kg N <sup>-1</sup>            | 0.05   | 0.05     | 22                          |
|                       | O <sub>2</sub> emissions                          | g.g biomass <sup>-1</sup>            | 1.07   | 1.07     | 23                          |
|                       | Fugitive emissions open ended line                | kg.h <sup>-1</sup>                   | 0.002  | 0.002    | 24                          |
|                       | Fugitive emissions tank                           | kg.h⁻¹                               | 0.082  | 0.082    | 24                          |
|                       | Fugitive emissions pumping (liquid)               | kg.h <sup>-1</sup>                   | 0.0199 | 0.0199   | 24                          |
| Harvesting            | Parameter                                         | Unit                                 |        |          | Source(s)                   |
| Process and equipment | Biomass loss                                      | %                                    |        | 3        | 17                          |
|                       | Maximum concentration                             | %DW                                  |        | 12       | 25                          |
|                       | Electricity use centrifuge                        | kWh.m⁻³                              |        | 1.4      | 26                          |

|           | Operating hours                            | h      | 24     | Assumption              |
|-----------|--------------------------------------------|--------|--------|-------------------------|
| Emissions | Fugitive emissions centrifuge light liquid | kg.h⁻¹ | 0.0199 | 24                      |
|           |                                            |        |        | •                       |
| Others    | Parameter                                  | Unit   |        | Source(s)               |
|           | Average temperature Belgium                | °C     | 11.50  | KMI (2020)              |
|           | Average temperature France                 | °C     | 12.77  | Tradingeconomics (2020) |
|           | Operation rate                             | %      | 90     | Assumption              |

S.5.2 Economic input data TSA.

|         | Parameter                    | Unit                 |                                                                     | Source(s)                                     |
|---------|------------------------------|----------------------|---------------------------------------------------------------------|-----------------------------------------------|
| General | Evaluation period            | yr                   | 10.00                                                               | Assumption                                    |
|         | Nominal discount rate        | %                    | 15.00                                                               | 27                                            |
|         | Equity - Debt ratio          | %                    | 20-80                                                               | Assumption                                    |
|         | Interest rate                | %                    | 4.50                                                                | Assumption                                    |
|         | Inflation rate               | %                    | 2.00                                                                | Eurostat (2019)                               |
|         | Tax rate Belgium   France    | %                    | 29 33.30                                                            | OECD (2019)                                   |
|         | CEPCI October 2019           | Index                | 599.30                                                              | 28                                            |
|         | Site preparation             | %I <sub>0</sub>      | 10                                                                  | 29                                            |
| CAPEX   | Cost PBR                     | €.m <sup>-3</sup>    | 15,571 capacity [m³] <sup>-0.103</sup>                              | <sup>1</sup> and supplier information (2019)  |
|         | Lifetime PBR                 | yr                   | 10.00                                                               | 1                                             |
|         | Cost liner                   | €.ha <sup>-1</sup>   | 90,438                                                              | 30–32                                         |
|         | Lifetime liner               | yr                   | 20                                                                  | 33                                            |
|         | Cost paddle wheel            | €.ha <sup>-1</sup>   | 11,776                                                              | 30,31,34                                      |
|         | Lifetime paddle wheel        | yr                   | 20                                                                  | 34                                            |
|         | Cost inoculum                | €.ha <sup>-1</sup>   | 144,999                                                             | <sup>35</sup> and supplier information (2019) |
|         | Lifetime inoculum            | yr                   | 20                                                                  | 32                                            |
|         | Cost MPS                     | €.m⁻³.h              | 7,144 capacity [m <sup>3</sup> .h <sup>-1</sup> ] <sup>-0.484</sup> | 1,35                                          |
|         | Lifetime MPS                 | yr                   | 10                                                                  | 35                                            |
|         | Cost artificial lighting     | €.unit <sup>-1</sup> | 9                                                                   | Gamma (2019)                                  |
|         | Lifetime artificial lighting | Yr                   | 10                                                                  | Gamma (2019)                                  |
|         | Cost heat exchanger          | €.m <sup>-3</sup>    | 702 capacity [m <sup>3</sup> ] <sup>-0.013</sup>                    | Supplier information (2019)                   |
|         | Lifetime heat exchanger      | yr                   | 15                                                                  | 17                                            |
|         | Cost centrifuge              | €.L <sup>-1</sup> .h | 6,130 capacity [L.h <sup>-1</sup> ] <sup>-0.425</sup>               | Supplier information (2019)                   |
|         | Lifetime centrifuge          | yr                   | 10                                                                  | 35                                            |
|         |                              |                      |                                                                     | •                                             |

| ΟΡΕΧ     | Price salt                                          | €.t <sup>-1</sup>   | 71          | USGS - National Minerals Information |
|----------|-----------------------------------------------------|---------------------|-------------|--------------------------------------|
| OF EX    | Purchase price $CO_2$                               | €.t <sup>-1</sup>   | 80          | 36                                   |
|          | Purchase price HNO <sub>3</sub>                     | €.t <sup>-1</sup>   | 707         | Alibaba (2019)                       |
|          | Purchase price MgSO <sub>4</sub>                    | €.t <sup>-1</sup>   | 297         | Alibaba (2019)                       |
|          | Purchase price FeDTPA                               | €.t <sup>-1</sup>   | 13,559      | Mbferts (2019)                       |
|          | Purchase price H₃PO₄                                | €.t <sup>-1</sup>   | 9,323       | Alibaba (2019)                       |
|          | Purchase price KOH                                  | €.t <sup>-1</sup>   | 1,843       | Alibaba (2019)                       |
|          | Purchase price KNO <sub>3</sub>                     | €.t <sup>-1</sup>   | 1,594       | Mbferts (2019)                       |
|          | Purchase price NaHCO <sub>3</sub>                   | €.t <sup>-1</sup>   | 870         | Intra Laboratories (2019)            |
|          | Purchase price KH <sub>2</sub> PO <sub>4</sub>      | €.t <sup>-1</sup>   | 1,993       | Mbferts (2019)                       |
|          | Purchase price FeCl <sub>3</sub> .6H <sub>2</sub> O | €.t <sup>-1</sup>   | 488         | Alibaba (2019)                       |
|          | Labor cost                                          | €.h <sup>-1</sup>   | 39.70       | Eurostat (2019)                      |
|          | Working hours/day Belgium   France                  | h.day⁻¹             | 7.6 7       | ILO (2019)                           |
|          | Working days                                        | days                | 260         | ILO (2019)                           |
|          | Wage rate personnel Belgium   France                | €.h <sup>-1</sup>   | 40.5 36.6   | Eurostat (2019)                      |
|          | Personnel on-site                                   | Persons             | 3           | 31                                   |
|          | Hectare for one additional person                   | ha.PBR⁻¹            | 10          | 17                                   |
|          | Hectare for one additional person                   | ha.OP <sup>-1</sup> | 30          | 17                                   |
|          | Electricity cost Belgium   France                   | €.MWh <sup>-1</sup> | 138.8 113.6 | Eurostat (2019)                      |
|          | Natural gas cost                                    | €.MWh <sup>-1</sup> | 23.3        | Eurostat (2019)                      |
|          | Insurance cost                                      | %lo                 | 1           | 37                                   |
|          | Repair cost                                         | %lo                 | 1           | Assumption                           |
|          | Water purchase cost                                 | €.m <sup>-3</sup>   | 3.76        | VMM (2020)                           |
|          | Water disposal cost                                 | €.m <sup>-3</sup>   | 2           | VMM (2020)                           |
| Revenues | Selling price phycoerythrin                         | €.kg <sup>-1</sup>  | 36,000      | 38                                   |
|          | Selling price β-carotene                            | €.kg <sup>-1</sup>  | 1,183       | 39                                   |
|          | Total market size food colorants                    | t.yr <sup>-1</sup>  | 450,000     | 40                                   |

# S.5.3 Environmental input data TSA.

Characterization factors are retrieved from the Ecoinvent 3.5 database. The additional information needed is found in the tables below.

| PBR (/unit)               | Unit |        | Source                      | Paddlewheel (/unit)     | Unit  |        | Source                      |
|---------------------------|------|--------|-----------------------------|-------------------------|-------|--------|-----------------------------|
| Scale: length             | m    | 5,800  | Supplier information (2019) | Scale: surface          | ha    | 0.81   | 34                          |
| Scale: volume             | m³   | 18     | Supplier information (2019) | Scale: sizing factor    |       | 1      | Economic regression         |
| Scale: sizing factor      |      | 0.897  | Economic regression         | Input: paddle width     | m     | 12.2   | 34                          |
| Input: borosilicate glass | kg   | 5,800  | Supplier information (2019) | Input: paddle thickness | m     | 0.01   | 17                          |
| Input: steel              | kg   | 2,000  | Supplier information (2019) | Input: paddle radials   |       | 8      | 30                          |
| Input: PET                | kg   | 49     | Supplier information (2019) | Input: paddle material  |       | HDPE   | 41                          |
| Input: EPDM               | kg   | 98     | Supplier information (2019) | Input: engine material  |       | steel  | 41                          |
| Input: PP                 | kg   | 70     | Supplier information (2019) | Input: engine steel     | kg    | 83     | Rotary power (2019)         |
| Input: PE                 | kg   | 100    | Supplier information (2019) | Input: paddle depth     | m     | 0.15   | 14                          |
| Input: RVS (steel)        | kg   | 70     | Supplier information (2019) | Input: HDPE             | kg    | 141.31 | Calculated                  |
| Liner (/unit)             |      |        |                             | Centrifuge (/unit)      |       |        |                             |
| Scale: surface            | ha   | 0.81   | 34                          | Scale: input flow       | L.h⁻¹ | 4,000  | Supplier information (2019) |
| Scale: sizing factor      |      | 1      | Economic regression         | Scale: sizing factor    |       | 0.575  | Economic regression         |
| Mass: material            |      | HDPE   | 32                          | Input: steel            | kg    | 2,905  | Supplier information (2019) |
| Mass: liner thickness     | mil  | 40     | 32                          |                         |       |        |                             |
| Mass: liner width         | m    | 12.2   | 34                          |                         |       |        |                             |
| Mass: additional height   | m    | 0.05   | 17                          |                         |       |        |                             |
| Mass: liner depth         | m    | 0.2    | 14                          |                         |       |        |                             |
| Mass: HDPE                | kg   | 81,444 | Calculated                  |                         |       |        |                             |

# S.5.4 Additional social input data TSA – a proxy for transparency.

The transparency proxy was calculated for all countries within the EU for which data is available on the OECD website (2017). No data was found for Bulgaria, Croatia, Greece, Ireland, Romania, Slovakia, Malta, and Cyprus. The lowest transparency is present in Slovenia and the highest in Luxembourg and Finland. These numbers are specifically calculated for transparency in the food and chemical sector. The higher the proxy number, the better.

| Country        | # companies in manufacturing | # companies in manufacturing | # sustainability reports in | Transparency proxy |
|----------------|------------------------------|------------------------------|-----------------------------|--------------------|
|                | of chemical products         | of food products             | food and chemicals          |                    |
| Slovenia       | 218                          | 2,263                        | 0                           | 0                  |
| Portugal       | 843                          | 9,327                        | 1                           | 0.0098             |
| Italy          | 4,250                        | 52,542                       | 9                           | 0.0158             |
| Poland         | 2,487                        | 14,436                       | 4                           | 0.0236             |
| France         | 3,042                        | 51,288                       | 13                          | 0.0239             |
| Spain          | 3,542                        | 23,151                       | 10                          | 0.0375             |
| Czech Republic | 1,793                        | 8,087                        | 4                           | 0.0405             |
| Lithuania      | 143                          | 1,541                        | 1                           | 0.0594             |
| Latvia         | 228                          | 1,055                        | 1                           | 0.0779             |
| Belgium        | 614                          | 6,720                        | 6                           | 0.0818             |
| Germany        | 3,019                        | 21,498                       | 23                          | 0.0938             |
| Hungary        | 672                          | 4,558                        | 6                           | 0.1147             |
| Austria        | 370                          | 3,535                        | 5                           | 0.1280             |
| Estonia        | 126                          | 640                          | 1                           | 0.1305             |
| Sweden         | 833                          | 3,868                        | 9                           | 0.1914             |
| United Kingdom | 2,897                        | 8,036                        | 22                          | 0.2012             |
| Netherlands    | 912                          | 5,924                        | 14                          | 0.2048             |
| Denmark        | 277                          | 1,466                        | 4                           | 0.2295             |
| Finland        | 290                          | 1,610                        | 12                          | 0.6316             |
| Luxembourg     | 16                           | 125                          | 1                           | 0.7092             |

## S.6 Indicator quantification.

# Environmental

Most environmental indicators selected by the experts in the present study are calculated using the ReCiPe characterization factors and the Ecoinvent 3.5 database (allocation at point of substitution - unit). It is important to note that other LCIA methods, such as the one recommended by the International Reference Life Cycle Data System (ILCD), can be selected by the decision-maker. The ReCiPe characterization factors of global warming potential (GWP) are used to quantify the indicator *GHG emissions* in kg CO<sub>2</sub> equivalents. For the *ecotoxicity* indicator, terrestrial, freshwater, and marine ecotoxicity are calculated expressed in kg 1.4 dichlorobenzene (1.4-DB) equivalents to industrial soil, freshwater, and marine water. The ReCiPe method defines *land use* impact as the category that reflects "the process of land transformation, land occupation, and land relaxation".<sup>42</sup> The ReCiPe method calculates land occupation, transformation, and organic carbon depletion in one land use indicator, expressed in kg oil equivalents. *Fossil resource scarcity* is quantified to measure the *abiotic fossil depletion*, expressed in kg oil equivalents. *Eutrophication* is measured as freshwater and marine eutrophication from the ReCiPe indicator set, expressed in kg phosphor (P) and kg nitrogen (N) equivalents. Finally, *water consumption* is calculated using the water depletion characterization factors which correspond to the total amount of water used in m<sup>3</sup>.

To avoid double-counting, the indicators *raw material efficiency* and *waste generation* are united and quantified by the calculation of the E-factor. The E-factor was developed in the 1980s by Roger A. Sheldon<sup>43</sup>. It divides kg waste by kg product as shown in Equation (1).

$$E - factor (EF) = \frac{m \text{ input } [kg] - m \text{ output } [kg]}{m \text{ output } [kg]}$$
(1)

A higher E-factor means more waste and points to a greater negative environmental impact and extra costs for disposing the waste. Different E-factors were calculated in Table S.6.1 differentiating between inputs with or without water (that is, mass of water is included or not), and outputs referring to total biomass production or product content (that is, phycoerythrin or  $\beta$ -carotene). Independent of the calculation method, Scenario 1 always scores best and Scenario 4 worst. Scenarios 2 and 3 change places depending on the calculation with or without water: the OP scenarios score worse when water is encountered as an input. As water consumption is already calculated by a ReCiPe indicator, mass of water could be excluded from the E-factor calculations for the microalgae case study.

|                                          | SC1   | SC2   | SC3   | SC4    |
|------------------------------------------|-------|-------|-------|--------|
| E-factor (biomass output, with water)    | 81    | 187   | 146   | 662    |
| E-factor (biomass output, without water) | 3     | 7     | 11    | 46     |
| E-factor (product output, without water) | 205   | 385   | 223   | 904    |
| E-factor (product output, with water)    | 3,888 | 8,866 | 2,808 | 12,660 |

Table S.6.1 Yearly average E-factors.

*End-of-life options* is described as 'the possibility for recycling, composting, biodegrading, burning, ... the end product'.<sup>44</sup> In the present case study, the end product is processed as a food colorant, and the packaging materials used for the concerning food dye carry environmental concerns. The up and downstream impacts of paper, steel, and plastic packaging are reflected in the other environmental indicators and 'end-of-life options' was therefore not staged as a separate indicator in the TSA model. This way, double counting can be avoided. For the microalgae case, the end of life impacts per kg pigment is considered the same for all scenarios. As a consequence, these are not included in a comparative analysis.

The last environmental indicator to quantify is *energy efficiency*. Juodeikiene et al. (2015) quantify energy efficiency by dividing the total energy input by the caloric value (higher heating value) of the end product.<sup>45</sup> However, a determination of the caloric value is especially useful when the end product involves an energy-related output like algae-based biofuels. Within the case, the end products are biobased chemicals, and focus will be placed on the energy consumption per kg of product output, instead of caloric values (Equation (2)).

Specific energy consumption (SEC) 
$$\left[\frac{MWh}{kg}\right] = \frac{Energy_{input}[MWh]}{Product_{output}[kg]}$$
 (2)

Energy consumption provides a first estimation but when moving to a higher TRL towards a full-scale company, the energy efficiencies should be estimated or an exergy analysis could be applied to expose the inefficient processes.<sup>46</sup> For the microalgae case, the energy consumption of Scenario 4 scores three to nine times higher compared to the other scenarios. This could be explained by the low  $\beta$ -carotene output and the need for additional heat, using a heat exchanger to grow the algae.

# Economic

At low TRL, the *market potential* can be calculated based on the market size and price of the end product. Scenarios 1 and 2 include the price for phycoerythrin. Scenarios 3 and 4 the price for  $\beta$ -carotene. World usage of food colors was estimated at 40,000 to 50,000 tonnes in 2013.<sup>40</sup> No data is publicly available about the share of different colors within the market. It is assumed that their market share within the natural food color market will be the same. As a consequence, only prices were compared to evaluate the market potential for this case study. Legal factors were disregarded, and an assumption was made that both pigments would be allowed in the European food market in the future. Next to its application as a food colorant, phycoerythrin can be sold as a highly valuable biomolecule in niche markets at 254 €.mg<sup>-1.8</sup> However, the present study aims for a larger product market (i.e. food colorants) and takes into account the price of phycobiliproteins which varies from 2.5 €.mg<sup>-1</sup> to 21.2 €.mg<sup>-1.38</sup> The price of  $\beta$ -carotene varies from 215 €.kg<sup>-1</sup> to 2,150 €.kg<sup>-1.39</sup> Both prices for phycoerythrin because prices at the upper range consider applications in health research such as fluorescent probes.<sup>39</sup> For the price of  $\beta$ -carotene, an average of 1,183 €.kg<sup>-1</sup> was considered in the present study.

Technical risks are defined as risks associated directly with the supply chain activities, e.g. feedstock supply risk, infrastructure risk, etc.<sup>44</sup> Patel et al. (2012) have proposed the Risk Aspects (RA) indicator which can be used to measure the technical risks.<sup>47</sup> They defined sub-indicators that are needed to assess risk: (i) Feedstock supply risk, (ii) regional feedstock availability, (iii) market risk, (iv) infrastructure risk, and (v) application-technical aspects (i.e. inherent functional and pathway aspects). Weights are determined by the CatchBio project based on expert opinion.<sup>47</sup> Table S.6.2 gives an overview of the scores calculated for the four algae scenarios on the different risk aspects. The higher the scores, the higher the risks. These scores are based on literature and market information. Although the end-product is made from algae, it is water, salt, additional nutrients, and  $CO_2$  that are used as feedstock to cultivate the algae. These feedstocks are largely and regionally available, which means a score of 0 is given to all scenarios. Market risk is small as food dyes are existing commodity chemicals. According to the scoreboard described in Patel et al. (2012), this yields a score of 0.33 for every scenario. The infrastructure risk is the criterion that creates a difference between the scenarios. The target product phycoerythrin as a food colorant would need new processing and supply chains while  $\beta$ -carotene is already commercially produced as a food dye. In addition, the cultivation technology changes the infrastructure risk as the technologies used for open ponds are more mature than the technologies for horizontal photobioreactors. For PBR technologies, new processing plants would be required. The application-technical risk aspects are the same for both pigments.

|                                                    | Weights | SC1  | SC2  | SC3  | SC4  |
|----------------------------------------------------|---------|------|------|------|------|
| Feedstock supply risk                              | 0.25    | 0    | 0    | 0    | 0    |
| Regional feedstock availability                    | 0.15    | 0    | 0    | 0    | 0    |
| Market risk                                        | 0.25    | 0.33 | 0.33 | 0.33 | 0.33 |
| Infrastructure (availability) risk                 | 0.20    | 0.66 | 0.66 | 0.33 | 0    |
| Application-technical aspects                      | 0.15    |      |      |      |      |
| Chemicals: functional groups                       | 0.50    | 0.50 | 0.50 | 0.50 | 0.50 |
| Chemicals: retention of raw material functionality | 0.50    | 0    | 0    | 0    | 0    |
| Final score                                        |         | 0.25 | 0.25 | 0.19 | 0.12 |

Table S.6.2 Risk Aspects (RA). Higher score = higher risk.

The RA indicator offers a proxy for the technical risks, but it does not take into account every risk aspect. For example, OP technology generally has a higher risk of contamination compared to closed systems and thus, at a large scale, the risk of losing large batches of algae feedstock.<sup>9</sup> Closed photobioreactors have the advantage of better control on culture conditions such as  $CO_2$  supply and temperature control.<sup>48</sup>

*Product- and process innovation* are two other economic indicators to measure sustainability.<sup>44</sup> Patent analysis has been used to assess product and process innovation.<sup>49–51</sup> Patents can be considered as the outputs from the innovation process.<sup>52</sup> A point of critique is that it rather reflects inventiveness than innovation. Also, some technological advances might not be patentable and companies and research institutes can have other methods of protecting their technological advantage.<sup>52</sup> However, patents have proven to present a close link to economic relevant inventions.<sup>50</sup> At low TRL, the number of patents approved is considered an interesting proxy for product and process innovation within the present study. The more patents published, the higher the degree of innovation. A patent count was performed on Espacenet, a database provided by the European Patent Office. The results of this analysis are presented in Table S.6.3. It is not the aim of the present study to perform a detailed patent analysis, but including additional information such as the average number of scientific citations, geographical origin, and time-scales could improve such analysis in the future.<sup>50</sup> Considering process innovation in the past 10 years, the scenarios including pond cultivation technologies score better compared to photobioreactors. For product innovation, most patents were counted for β-carotene but differences with phycoerythrin are small.

|           | Search     | n queries [in title, abstr | act, or claim | s]        | #     | Publication | #10   |
|-----------|------------|----------------------------|---------------|-----------|-------|-------------|-------|
|           |            | AND                        | AND           | AND       |       | range       |       |
|           |            | "hotocorotopo"             | "21020"       |           | 32    | 1984-2019   | 22    |
| quct      | "dye" OR   | belacarolene               | algae         | "food"    | 9     | 2007-2018   | 8     |
| Proc      | "colorant" | "phycoorythrip"            | "21020"       |           | 25    | 1994-2019   | 16    |
|           |            | phycoerythinn              | algae         | "food"    | 2     | 2014, 2017  | 2     |
| cess      | "algae"    | "cultivation" OR           | "pond"        |           | 1,634 | 1973-2020   | 1,440 |
| o "algae" |            | "cultivating"              | "photobi      | oreactor" | 495   | 1995-2020   | 431   |

Table S.6.3 Patent count [search July 2020]. # = number of patents; and  $\#_{10}$  = number of patents published in 2010-2020.

*Capital productivity* divides yearly sales by the average capital cost per year. For the PBR scenarios (that is, Scenarios 1 and 3), the CAPEX of the medium preparation system, bioreactor, heat pump, and artificial lights were taken into account. For the open pond scenarios (that is, Scenario 2 and 4), the medium preparation system, heat pump, liner, and paddle wheel were included. The calculations of capital productivity are shown in Table S.6.4. Higher numbers represent higher productivities. Even though the capital costs of the PBR cultivation were significantly higher compared to the OP, the high price of phycoerythrin resulted in higher sales, which increased the capital productivity for Scenarios 1 and 2.

|                           | SC1        | SC2        | SC3       | SC4     |
|---------------------------|------------|------------|-----------|---------|
| Average capital cost (€)ª | 376,932    | 192,854    | 380,609   | 168,249 |
| Sales (€)                 | 22,161,598 | 41,039,996 | 1,037,190 | 549,747 |
| Capital productivity      | 58.79      | 212.80     | 3.79      | 3.27    |

Table S.6.4 Yearly average capital productivity. <sup>a</sup>Depending on lifetime per equipment.

The final indicators that were quantified within the economic dimension were the *cost of raw materials* and the *energy cost*. The total costs of raw materials and energy per year were divided by the total product output. The cost of raw materials calculation included the cost of salt, water, fertilizers, and CO<sub>2</sub>. Both cost indicators should be minimized to achieve more sustainability. Scenario 4 scores the worst on both cost indicators, while Scenario 3 has relatively low costs of raw materials and energy.

#### Social

Acceptance of biobased materials was selected as the most important social indicator by the microalgae experts in Step 2 of the TSA. Although the perception and associated market uptake of biobased products are recognized to be important, a framework for assessment is lacking.<sup>53</sup> Social acceptance is usually assessed qualitatively using focus groups or questionnaires. In contrast, choice-based experiments to investigate consumers' willingness to pay (WTP) have been used in the past to assess consumer acceptance of food in a quantitative way.<sup>54–56</sup> Within the present study, two different algae-strains were compared for the same output i.e. food dyes. The acceptance of the algae-based food colorants was considered the same in all scenarios as it is assumed that customers will not deviate between algae strains. Customers will not resist using a product based on information of that it is being produced from a specific algae strain. Assessing the acceptance would be more relevant if a synthetic benchmark would be included. Previous research from Bearth et al. (2014) and Gebhardt et al. (2020) assessed consumers' expectance and concluded artificial food dyes are disliked more by the public compared to natural alternatives.<sup>57,58</sup> A synthetic alternative was not assessed and as a consequence, customer acceptance is considered the same for all scenarios assessed in the present study.

*Product transparency* is usually measured in a qualitative or semi-quantitative way. According to the Social-LCA methodological sheets developed by UNEP and SETAC in 2013, transparency should enable the consumer to make an informed choice without intent to mislead or conceal.<sup>59</sup> They propose two ways of measuring transparency: a specific and generic analysis. When analyzing a technology at low TRL, a specific analysis as proposed by UNEP and SETAC is rather difficult. The specific analysis focuses on indicators such as 'consumer complaints regarding transparency', 'publication of a sustainability report', or 'company rating in sustainability indices', where data should be found on a company's website, by interviews with their customers or management, or from the Dow Jones Sustainability index. The generic analysis proposed by UNEP and SETAC offers two indicators which can be used for technology assessment at a lower TRL: 'presence of a law or norm regarding transparency (by country and/or sector)' and 'sector transparency rating: number of organizations by sector which published a sustainability report'. These two generic indicators rely on country and sector data, which can already

be evaluated at low TRL. Data was collected for Belgium and France within the Global Reporting Initiative (GRI) database in the chemistry- and food sector (2017). Other reporting databases might be selected if deemed relevant for the assessed sector. The country-specific GRI data is compared relative to the number of enterprises present. As the indicator considers the effective implementation of sustainability reporting, this proxy for transparency can be chosen as an input for the TSA (Table S.6.5). A higher proxy number leads to a higher level of transparency. It was assumed that the entire value chain is located in Belgium for Scenarios 1 and 2 and in France for Scenarios 3 and 4. When more data become available, more specific assumptions can be made about the location of the different processes along the value chain. To provide a benchmark, the transparency proxy was calculated for all countries within the EU for which data is available on the OECD website (ESI S.5.4). Belgium scores better on the transparency proxy compared to France. However, this difference is rather small compared to other EU countries.

|                                                             | Belgium | France |
|-------------------------------------------------------------|---------|--------|
| Manufacture of chemicals and chemical products <sup>a</sup> | 614     | 3,042  |
| Manufacture of food products <sup>a</sup>                   | 6,720   | 51,288 |
| Total # of enterprises                                      | 7,334   | 51,387 |
| # sustainability reports <sup>b</sup>                       | 6       | 13     |
| % sustainability reports per enterprise                     | 0.082   | 0.024  |

#### Table S.6.5 Transparency proxy. <sup>a</sup>OECD, 2017; <sup>b</sup>GRI database, 2017.

When technology matures and a full-scale company is assessed, another method to measure organizational transparency is proposed by Zakaria et al. (2018). They developed an indicator of transparency in sustainability reporting which measures the relative entropy between the probability distributions of words in the sustainability dictionary and those in a corporate report.<sup>60</sup>

At low TRL, direct *job creation* is calculated by counting the jobs needed within the cultivation and harvesting step. An integration with technical parameters is possible by making the number of employees dependent on the scale of the plant. As only one hectare of production area is assessed, the direct job creation will be the same for all scenarios (i.e. three employees). Supervision and clerical labor can be estimated as 10 to 20 percent of the operating labor.<sup>37</sup> To include indirect job impacts, input-output multipliers can be determined, which represent an additional or direct change to the economy resulting from each change in a selected industry.<sup>61</sup> This is done for an algal biofuel manufacturing site by Madugu in 2015. However, input-output multipliers are very case dependent and thus cannot be transferred for use in the present study.

*Human toxicity* is calculated by using the ReCiPe characterization factors and the Ecoinvent 3.5 database. The carcinogenic as well as non-carcinogenic human toxicity potential (HTP) are both taken into account. Scenario 4 scores the worst on both HTP indicators while Scenarios 2 and 3 score best.

*Income levels* and the fairness of these incomes can be assessed by calculating the fair wage potential (FWP).<sup>62,63</sup> Neugebauer et al. (2017) developed the FWP taking into account working time, equal remuneration, and living wage (Equation (3)). The Gini-coefficient can be used as an approximation for the income inequalities factor (IEF). Table S.6.6 presents the calculations for the different microalgae scenarios. It was again assumed that the entire value chain is present in one country, i.e., Belgium or France. Under the assumptions made, the scenarios present in Belgium scored better with a higher fair wage potential compared to the French algae production systems.

$$FWP_{n} = \frac{RW_{n}}{RWT_{n}} * CF_{FW,n}$$

$$CF_{FW,n} = \frac{1}{MLW_{n}} * CWT_{n} * (1 - IEF_{n}^{2})$$
(3)

(with n – process, RW– real (average) wage, RWT – real working time, CF – fair wage characterization factor, MLW – minimum living wage, CWT – contracted working time, and IEF – inequality factor)

Table S.6.6 Fair wage potential: Belgium versus France. <sup>a</sup>Real (average) wage – OECD 2018; <sup>b</sup>Real working time (RWT) – Eurostat 2018; <sup>c</sup>Min. living wage (MLW) – Eurostat 2018; <sup>d</sup>Contracted working time (CWT) – ILO 2009; <sup>e</sup>Inequality factor (IEF) – Gini 2015.

|         | RW <sup>a</sup> | RWT <sup>b</sup> | MLW <sup>c</sup> | CWT <sup>d</sup> | IEF <sup>e</sup> | FWP   |
|---------|-----------------|------------------|------------------|------------------|------------------|-------|
|         | €/month         | hours/week       | €/month          | hours/week       | %                |       |
| Belgium | 3,677.97        | 41.0             | 1,330            | 38               | 0.277            | 1.340 |
| France  | 3,143.36        | 40.4             | 1,510            | 35               | 0.327            | 0.817 |

Finally, a quantification method needs to be found to assess the *workplace accidents and illnesses*. Kidam and Hurme (2013) analyzed 364 equipment's related accident cases within the chemical industry. Process accidents within an equipment category were calculated relative to the other equipment categories.<sup>64</sup> The biggest difference in equipment within the microalgae case study is the use of an OP versus a PBR which can be categorized as a 'storage tank' and 'reactor' holding the same accident rate. Both 'storage tanks' and 'reactors' are each responsible for 14 percent of the accidents.<sup>64</sup> However, the number of accidents per equipment type is not only dependent on the risks per equipment but also a function of the required labor.<sup>65</sup> In the microalgae case assessed within the present study, required labor was in all cases considered the same. Consequently, workplace accidents will not deviate between the scenarios.

# S.7 Sensitivity analysis.

The sensitivity analysis is performed using Oracle Crystal Ball software, 10,000 trials, varying all input data by -10% to +10% following a triangular distribution. The following tables show all Spearman's rho (i.e., a rank correlation coefficient) values, which are ≥ 0.2.

#### Environmental

| Parameter                      | Unit                                 | GHG   | TETP  | METP  | FETP  | LUP   | AFD   | FEP   | MEP   | WCP   | EF    | SEC   |
|--------------------------------|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SCENARIO 1                     |                                      |       |       |       |       |       |       |       |       |       |       |       |
| Recycled water                 | %                                    |       |       |       |       |       |       |       |       | -0.8  |       |       |
| Recycled salt                  | %                                    |       | -0.23 | -0.21 | -0.2  |       |       |       | -0.24 |       | -0.69 |       |
| Growth rate                    | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.46 | -0.39 | -0.47 | -0.46 | -0.5  | -0.49 | -0.47 | -0.45 | -0.32 | -0.2  | -0.55 |
| CO <sub>2</sub> fixation       | g.g biomass <sup>-1</sup>            |       | 0.24  |       |       |       |       |       |       |       | -0.29 |       |
| Pigment content                | %                                    | -0.66 | -0.72 | -0.63 | -0.63 | -0.55 | -0.6  | -0.65 | -0.62 | -0.36 | -0.55 | -0.57 |
| CO <sub>2</sub> eq.            | impact.kg <sup>-1</sup>              |       | 0.24  |       |       |       |       |       |       |       |       |       |
| Artificial light ratio         | %                                    | 0.2   |       | 0.21  | 0.2   | 0.26  | 0.22  | 0.2   | 0.21  |       |       | 0.31  |
| Artificial light               | h.day⁻¹                              |       |       |       | 0.22  | 0.26  | 0.24  |       | 0.21  |       |       | 0.3   |
| Artificial light power         | kW                                   | 0.22  |       |       | 0.21  | 0.26  | 0.23  | 0.21  | 0.21  |       |       | 0.3   |
| Electricity eq.                | impact.kWh <sup>-1</sup>             | 0.36  |       | 0.33  | 0.34  | 0.43  | 0.39  | 0.34  | 0.34  |       |       |       |
| SCENARIO 2                     |                                      |       |       |       |       |       |       |       |       |       |       |       |
| Recycled water                 | %                                    |       |       |       |       |       |       |       |       | -0.45 |       |       |
| Pigment content                | %                                    | -0.97 | -0.97 | -0.97 | -0.97 | -0.97 | -0.95 | -0.97 | -0.97 | -0.84 | -0.96 | -0.93 |
| SCENARIO 3                     |                                      |       |       |       |       |       |       |       |       |       |       |       |
| Cultivation time               | #days                                |       |       |       |       |       |       |       |       |       | -0.2  |       |
| Recycled salt                  | %                                    |       |       | -0.2  |       |       |       | -0.25 | -0.21 |       | -0.48 |       |
| Growth rate                    | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.64 | -0.64 | -0.67 | -0.67 | -0.67 | -0.66 | -0.64 | -0.66 | -0.7  | -0.56 | -0.72 |
| Pigment content                | %                                    | -0.71 | -0.7  | -0.65 | -0.67 | -0.67 | 0.69  | -0.67 | -0.66 | -0.64 | -0.62 | -0.64 |
| SCENARIO 4                     |                                      |       |       |       |       |       |       |       |       |       |       |       |
| Recycled water                 | %                                    |       |       |       |       |       |       |       |       | -0.41 |       |       |
| Recycled salt                  | %                                    |       | -0.48 | -0.48 | -0.5  | -0.46 |       | -0.5  | -0.54 |       | -0.58 |       |
| Growth rate                    | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.43 | -0.34 | -0.41 | -0.38 | -0.39 | -0.44 | -0.37 | -0.36 | -0.41 | -0.34 | -0.46 |
| Pigment content                | %                                    | -0.8  | -0.75 | -0.74 | -0.72 | -0.74 | -0.77 | -0.73 | -0.71 | -0.74 | -0.67 | -0.76 |
| Dunaliella optimal temperature | °C                                   | 0.26  |       |       |       |       | 0.31  |       |       |       |       | 0.34  |

#### Economic

| Parameter                      | Unit                                 | RMC   | EC    | СР    |
|--------------------------------|--------------------------------------|-------|-------|-------|
| SCENARIO 1                     |                                      |       |       |       |
| Recycled water                 | %                                    | -0.59 |       |       |
| Cultivation time               | #days                                | -0.21 |       |       |
| Growth rate                    | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.23 | -0.49 | 0.49  |
| Pigment content                | %                                    | -0.59 | -0.5  | 0.48  |
| Electricity price              | €.MWh <sup>-1</sup>                  |       | 0.48  |       |
| Pigment price                  | €.kg <sup>-1</sup>                   |       |       | 0.48  |
| Artificial light ratio         | %                                    |       | 0.28  |       |
| Artificial light               | h.day⁻¹                              |       | 0.29  |       |
| Artificial light power         | kW                                   |       | 0.28  |       |
| PBR cost constant              | €.m⁻³                                |       |       | -0.41 |
| PBR cost power                 | €.m⁻³                                |       |       | -0.25 |
| KOH consumption                | g.g biomass <sup>-1</sup>            | 0.21  |       |       |
| SCENARIO 2                     |                                      |       |       |       |
| Pigment content                | %                                    | -0.96 | -0.93 | 0.91  |
| CEN cost power                 | €.L <sup>-1</sup> .h <sup>-1</sup>   |       |       | -0.21 |
| SCENARIO 3                     |                                      |       |       |       |
| Cultivation time               | #days                                | -0.25 |       |       |
| Recycled salt                  | %                                    | -0.24 |       |       |
| Growth rate                    | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.65 | -0.72 | 0.71  |
| Pigment content                | %                                    | -0.63 | -0.62 | 0.62  |
| SCENARIO 4                     |                                      |       |       |       |
| Recycled salt                  | %                                    | -0.3  |       |       |
| Growth rate                    | g.L <sup>-1</sup> .day               | -0.44 | -0.45 | 0.48  |
| Pigment content                | %                                    | -0.79 | -0.76 | 0.79  |
| Dunaliella optimal temperature | °C                                   |       | 0.32  |       |

#### Social

| Parameter       | Unit                                 | HTPc  | HTPnc |
|-----------------|--------------------------------------|-------|-------|
| SCENARIO 1      |                                      |       |       |
| Recycled salt   | %                                    |       | -0.31 |
| Growth rate     | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.55 | -0.44 |
| Pigment content | %                                    | -0.67 | -0.66 |
| Electricity eq. | impact.kWh <sup>-1</sup>             | 0.23  | 0.29  |
| Steel eq.       | impact.kg <sup>-1</sup>              | 0.22  |       |
| SCENARIO 2      |                                      |       |       |
| Pigment content | %                                    | -0.97 | -0.97 |
| SCENARIO 3      |                                      |       |       |
| Recycled salt   | %                                    |       | -0.28 |
| Growth rate     | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.7  | -0.65 |
| Pigment content | %                                    | -0.66 | -0.65 |
| SCENARIO 4      |                                      |       |       |
| Recycled salt   | %                                    | -0.44 | -0.49 |
| Growth rate     | g.L <sup>-1</sup> .day <sup>-1</sup> | -0.41 | -0.39 |
| Pigment content | %                                    | -0.75 | -0.73 |

List of abbreviations: GHG – greenhouse gas emissions, TETP/METP/FETP – terrestrial/marine/freshwater ecotoxicity potential, LUP – land use potential, AFD – abiotic fossil depletion, FEP/MEP – freshwater/marine eutrophication potential, WCP – water consumption potential, EF – E-factor, SEC – specific energy consumption, RMC – raw materials cost, EC – energy cost, CP – capital productivity, MP – market potential, and HTP c/nc – human toxicity potential cancer/non-cancer.





#### S.9 Indicator values for 43,300 trials – A Monte Carlo simulation.

Note: all the below values are converted to a non-beneficial (minimizing) shape to be compliant with the SMAA models.

| SC1                               | AFD                            | СР                                     | EC                            | EF                               | FEP                                        | FETP                              | FWP                                                   | GHG                                              | HTPc                                      | HTP <sub>NC</sub>                                  | LUP                             | MEP                                                | METP                                     | PCI                                                      | PDI                                           | РТ                                                     | RA                                                | RMC                                         | SEC                                  | TETP                                                   | WCP                             |
|-----------------------------------|--------------------------------|----------------------------------------|-------------------------------|----------------------------------|--------------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------------------------|---------------------------------|
| Base                              | 156                            | -31                                    | 181                           | 205                              | 0.21                                       | 17                                | -1.34                                                 | 626                                              | 27                                        | 373                                                | 36                              | 0.03                                               | 23                                       | -431                                                     | -16                                           | -0.08                                                  | 0.25                                              | 63                                          | 1.37                                 | 1,945                                                  | 8                               |
| Mean                              | 167                            | -24                                    | 194                           | 230                              | 0.22                                       | 19                                | -1.35                                                 | 672                                              | 30                                        | 407                                                | 39                              | 0.03                                               | 25                                       | -474                                                     | -17                                           | -0.1                                                   | 0.25                                              | 71                                          | 1.48                                 | 2,096                                                  | 10                              |
| Min                               | 77                             | -69                                    | 81                            | 108                              | 0.11                                       | 9                                 | -1.97                                                 | 322                                              | 14                                        | 194                                                | 13                              | 0.01                                               | 12                                       | -517                                                     | -19                                           | -0.12                                                  | 0.25                                              | 34                                          | 0.63                                 | 1,045                                                  | 3                               |
| Max                               | 491                            | -5                                     | 623                           | 657                              | 0.65                                       | 56                                | -0.91                                                 | 1,905                                            | 90                                        | 1,182                                              | 146                             | 0.09                                               | 75                                       | -431                                                     | -16                                           | -0.08                                                  | 0.25                                              | 188                                         | 4.71                                 | 5,681                                                  | 32                              |
| SC2                               | AFD                            | СР                                     | EC                            | EF                               | FEP                                        | FETP                              | FWP                                                   | GHG                                              | HTPc                                      | HTP <sub>NC</sub>                                  | LUP                             | MEP                                                | METP                                     | PCI                                                      | PDI                                           | РТ                                                     | RA                                                | RMC                                         | SEC                                  | TETP                                                   | WCP                             |
| Base                              | 223                            | -150                                   | 51                            | 385                              | 0.13                                       | 15                                | -1.34                                                 | 831                                              | 14                                        | 294                                                | 9                               | 0.02                                               | 10                                       | -1,440                                                   | -16                                           | -0.08                                                  | 0.25                                              | 101                                         | 1.96                                 | 1,711                                                  | 7                               |
| Mean                              | 240                            | -113                                   | 55                            | 407                              | 0.14                                       | 16                                | -1.35                                                 | 883                                              | 15                                        | 309                                                | 10                              | 0.02                                               | 11                                       | -1,584                                                   | -17                                           | -0.1                                                   | 0.25                                              | 107                                         | 2.13                                 | 1,787                                                  | 8                               |
| Min                               | 107                            | -310                                   | 23                            | 212                              | 0.07                                       | 8                                 | -1.97                                                 | 433                                              | 8                                         | 167                                                | 5                               | 0.01                                               | 6                                        | -1,728                                                   | -19                                           | -0.12                                                  | 0.25                                              | 53                                          | 0.88                                 | 1,012                                                  | 4                               |
| Max                               | 768                            | -25                                    | 192                           | 1,053                            | 0.35                                       | 40                                | -0.91                                                 | 2,518                                            | 40                                        | 753                                                | 25                              | 0.05                                               | 27                                       | -1,440                                                   | -16                                           | -0.08                                                  | 0.25                                              | 296                                         | 7.4                                  | 3,965                                                  | 25                              |
| SC3                               | AFD                            | СР                                     | EC                            | EF                               | FEP                                        | FETP                              | FWP                                                   | GHG                                              | HTPc                                      | HTP <sub>NC</sub>                                  | LUP                             | MEP                                                | METP                                     | PCI                                                      | PDI                                           | РТ                                                     | RA                                                | RMC                                         | SEC                                  | TETP                                                   | WCP                             |
| Base                              | 33                             | -2                                     | 76                            | 187                              | 0.07                                       | 9                                 | -0.82                                                 | 188                                              | 12                                        | 216                                                | 6                               | 0.02                                               | 12                                       | -431                                                     | -22                                           | -0.02                                                  | 0.19                                              | 29                                          | 0.73                                 | 1,113                                                  | 4                               |
| Mean                              | 35                             | -2                                     | 81                            | 257                              | 0.09                                       | 10                                | -0.82                                                 | 216                                              | 14                                        | 270                                                | 7                               | 0.02                                               | 15                                       | -474                                                     | -24                                           | -0.03                                                  | 0.19                                              | 37                                          | 0.78                                 | 1,315                                                  | 5                               |
| Min                               | 17                             | 7                                      | 26                            | F.0                              | 0.02                                       | _                                 |                                                       |                                                  |                                           |                                                    |                                 |                                                    |                                          |                                                          |                                               |                                                        |                                                   |                                             |                                      |                                                        |                                 |
|                                   | 1/                             | -/                                     | 50                            | 50                               | 0.03                                       | 4                                 | -1.2                                                  | 95                                               | 6                                         | 86                                                 | 3                               | 0.01                                               | 5                                        | -517                                                     | -26                                           | -0.04                                                  | 0.19                                              | 11                                          | 0.35                                 | 523                                                    | 2                               |
| Max                               | 88                             | 0                                      | 222                           | 50<br>1,050                      | 0.03                                       | 4<br>35                           | -1.2<br>-0.56                                         | 95<br>628                                        | 6<br>45                                   | 86<br>956                                          | 3<br>22                         | 0.01<br>0.07                                       | 5<br>49                                  | -517<br>-431                                             | -26<br>-22                                    | -0.04<br>-0.02                                         | 0.19<br>0.19                                      | 11<br>134                                   | 0.35<br>2.15                         | 523<br>4,119                                           | 2<br>18                         |
| Max                               | 88                             | 0                                      | 222                           | 50<br>1,050                      | 0.03                                       | 4<br>35                           | -1.2<br>-0.56                                         | 95<br>628                                        | 6<br>45                                   | 86<br>956                                          | 3<br>22                         | 0.01<br>0.07                                       | 5<br>49                                  | -517<br>-431                                             | -26<br>-22                                    | -0.04<br>-0.02                                         | 0.19<br>0.19                                      | 11<br>134                                   | 0.35<br>2.15                         | 523<br>4,119                                           | 2<br>18                         |
| Max<br>SC4                        | 88<br>AFD                      | 0<br>CP                                | 222<br>EC                     | 50<br>1,050<br>EF                | 0.03<br>0.3<br>FEP                         | 4<br>35<br>FETP                   | -1.2<br>-0.56<br>FWP                                  | 95<br>628<br>GHG                                 | 6<br>45<br><b>HTP</b> c                   | 86<br>956<br><b>НТР<sub>NC</sub></b>               | 3<br>22<br>LUP                  | 0.01<br>0.07<br>MEP                                | 5<br>49<br><b>METP</b>                   | -517<br>-431<br><b>PCI</b>                               | -26<br>-22<br>PDI                             | -0.04<br>-0.02<br><b>PT</b>                            | 0.19<br>0.19<br><b>RA</b>                         | 11<br>134<br>RMC                            | 0.35<br>2.15<br>SEC                  | 523<br>4,119<br><b>TETP</b>                            | 2<br>18<br><b>WCP</b>           |
| Max<br>SC4<br>Base                | 88<br>AFD<br>561               | -7<br>0<br><b>CP</b><br>-2             | 222<br>EC<br>150              | 1,050<br>EF<br>904               | 0.03<br>0.3<br>FEP<br>0.22                 | 4<br>35<br>FETP<br>23             | -1.2<br>-0.56<br><b>FWP</b><br>-0.82                  | 95<br>628<br><b>GHG</b><br>1,759                 | 6<br>45<br><b>HTPc</b><br>28              | 86<br>956<br><b>НТР<sub>№С</sub></b><br>800        | 3<br>22<br>LUP<br>14            | 0.01<br>0.07<br>MEP<br>0.04                        | 5<br>49<br><b>METP</b><br>34             | -517<br>-431<br><b>PCI</b><br>-1,440                     | -26<br>-22<br><b>PDI</b><br>-22               | -0.04<br>-0.02<br><b>PT</b><br>-0.02                   | 0.19<br>0.19<br><b>RA</b><br>0.12                 | 11<br>134<br><b>RMC</b><br>153              | 0.35<br>2.15<br>SEC<br>7             | 523<br>4,119<br><b>TETP</b><br>2,783                   | 2<br>18<br><b>WCP</b><br>12     |
| Max<br>SC4<br>Base<br>Mean        | 88<br>AFD<br>561<br>599        | -7<br>0<br><b>CP</b><br>-2<br>-2       | 222<br>EC<br>150<br>160       | 50<br>1,050<br>EF<br>904<br>961  | 0.03<br>0.3<br>FEP<br>0.22<br>0.24         | 4<br>35<br>FETP<br>23<br>24       | -1.2<br>-0.56<br><b>FWP</b><br>-0.82<br>-0.82         | 95<br>628<br><b>GHG</b><br>1,759<br>1,872        | 6<br>45<br>HTPc<br>28<br>29               | 86<br>956<br><b>HTP<sub>NC</sub></b><br>800<br>851 | 3<br>22<br>LUP<br>14<br>15      | 0.01<br>0.07<br>MEP<br>0.04<br>0.04                | 5<br>49<br><b>METP</b><br>34<br>37       | -517<br>-431<br><b>PCI</b><br>-1,440<br>-1,584           | -26<br>-22<br><b>PDI</b><br>-22<br>-24        | -0.04<br>-0.02<br><b>PT</b><br>-0.02<br>-0.03          | 0.19<br>0.19<br><b>RA</b><br>0.12<br>0.12         | 11<br>134<br><b>RMC</b><br>153<br>163       | 0.35<br>2.15<br><b>SEC</b><br>7<br>7 | 523<br>4,119<br><b>TETP</b><br>2,783<br>2,951          | 2<br>18<br>WCP<br>12<br>13      |
| Max<br>SC4<br>Base<br>Mean<br>Min | 88<br>AFD<br>561<br>599<br>283 | -7<br>0<br><b>CP</b><br>-2<br>-2<br>-7 | 222<br>EC<br>150<br>160<br>75 | 1,050<br>EF<br>904<br>961<br>470 | 0.03<br>0.3<br>FEP<br>0.22<br>0.24<br>0.12 | 4<br>35<br>FETP<br>23<br>24<br>12 | -1.2<br>-0.56<br><b>FWP</b><br>-0.82<br>-0.82<br>-1.2 | 95<br>628<br><b>GHG</b><br>1,759<br>1,872<br>905 | 6<br>45<br><b>HTP</b> c<br>28<br>29<br>14 | 86<br>956<br><b>HTP</b> №<br>800<br>851<br>414     | 3<br>22<br>LUP<br>14<br>15<br>8 | 0.01<br>0.07<br><b>MEP</b><br>0.04<br>0.04<br>0.02 | 5<br>49<br><b>METP</b><br>34<br>37<br>18 | -517<br>-431<br><b>PCI</b><br>-1,440<br>-1,584<br>-1,728 | -26<br>-22<br><b>PDI</b><br>-22<br>-24<br>-26 | -0.04<br>-0.02<br><b>PT</b><br>-0.02<br>-0.03<br>-0.04 | 0.19<br>0.19<br><b>RA</b><br>0.12<br>0.12<br>0.12 | 11<br>134<br><b>RMC</b><br>153<br>163<br>78 | 0.35<br>2.15<br>SEC<br>7<br>7<br>3   | 523<br>4,119<br><b>TETP</b><br>2,783<br>2,951<br>1,502 | 2<br>18<br>WCP<br>12<br>13<br>6 |

List of abbreviations: SC – scenario, AFD – abiotic fossil depletion, CP – capital productivity, EC – energy cost, EF – E-factor, FEP/MEP – freshwater/marine eutrophication potential, FETP/METP/TETP – freshwater/terrestrial/marine ecotoxicity potential, FWP – fair wage potential, GHG – greenhouse gas emissions, HTP c/nc – human toxicity potential cancer/non-cancer, LUP – land use potential, PCI – process innovation, PDI – product innovation, PT – product transparency, RA – risk aspects, RMC – raw materials cost, SEC – specific energy consumption, and WCP – water consumption potential.

#### S.10 Pseudocode MCDA model.

```
SMAA()
\mathbf{begin}
     Initialize_via_user_input();
      \text{Initialize: } \textit{Result} \leftarrow \emptyset; \textit{Rank} \leftarrow \emptyset; \\ \end{cases}
     foreach Monte Carlo iteration do
          Initialize
               InputArray \leftarrow \text{Read}\_Monte\_Carlo\_iteration\_from\_file(); \\ listINDMatrixs \leftarrow \emptyset;
               listScoreMatrix \leftarrow \emptyset;
               listTScoreMatrix \leftarrow \emptyset;
          foreach indicator do
           | Perform_a_pairwise_comparison_between_each_alternative_scenario();
          end
          Calculate_weighting_scheme();
          listSumWFlows \leftarrow Calculate\_weighted\_sum\_of\_flows();

Result \leftarrow Result \overleftarrow{\cup} \{listSumWFlows\};
          Ranking_of_alternative\_scenarios \leftarrow
           Transform_listSumWFlows_into_ranking();
          Rank \leftarrow Rank \overleftarrow{\cup} \{Ranking_of_alternative\_scenarios\};
     \mathbf{end}
end
```







```
Calculate weighting scheme()
begin
            Initialize: ws \leftarrow \emptyset;
           \begin{array}{c|c} \text{Intranze: } ws \leftarrow \psi; \\ \text{if } Weighting\_scheme = equal\_weight then} \\ \text{foreach } i \in \{1, \dots, Number\_of\_indicators\} \text{ do} \\ \\ ws \leftarrow ws \ \overline{\cup} \{\frac{1}{Number\_of\_indicators}\}; \\ \end{array} 
                       end
            else if Weighting_scheme = stochastic_random_weighting then
                      \begin{array}{l} \textbf{se if Weighting\_scheme = stochastic\_random\_we} \\ \textbf{foreach} i \in \{1, \dots, Number\_of\_indicators\} \ \textbf{do} \\ \mid ws \leftarrow ws \ \bigcup \ \{random \in [0, 1]\}; \\ \textbf{end} \\ \hline Number\_of\_indicators \\ sumws \leftarrow \sum_{i=1}^{i} ws_i; \\ ws \leftarrow \frac{ws}{sumws}; \\ \textbf{sumws}; \end{array}
           \begin{aligned} ws \leftarrow \frac{ws}{sumws};\\ \textbf{else if Weighting\_scheme} &= rank\_order\_centroid\_weighting \textbf{ then} \end{aligned}
                         \begin{array}{l} \textit{Initial\_ranking} \leftarrow \emptyset; \\ \textbf{foreach} \quad i \in \{1, \dots, Number\_of\_indicators\} \ \textbf{do} \\ \mid \quad \textit{Initial\_ranking} \leftarrow \quad \textit{Initial\_ranking} \ \bigcup \{i\}; \end{array} 
                         end
                         \textit{InitRocwList} = \emptyset;
                         for
each j \in \{1, \dots, Number_of_indices\} do
                                     total = 0;
                                      \begin{array}{c} \text{foreach} i \in \{j, \dots, Number\_of\_indicators\} \text{ do} \\ \\ \left| \begin{array}{c} total \leftarrow total + \frac{1}{Initial\_ranking_i}; \end{array} \right. \end{array} 
                                     end
                                   end

w \leftarrow \frac{total}{Number\_of\_indicators};

InitRocwList \leftarrow InitRocwList \overleftarrow{\bigcup}\{w\};
                        \begin{array}{c} \textbf{foreach} \ i \in \{1, \dots, Number\_of\_indices\} \ \textbf{do} \\ \hline \textbf{foreach} \ j \in \{1, \dots, Number\_of\_indices\} \ \textbf{do} \\ \hline \textbf{foreach} \ j \in \{1, \dots, Number\_of\_indices\} \ \textbf{do} \\ \hline \textbf{if} \ Initial\_ranking_i = (j + 1) \ \textbf{then} \\ \hline \ w \ \leftarrow \ w \ \bigcup \{InitRocwList_j\}; \\ \hline \textbf{end} \\ \end{array} 
                                    end
                        end
```

```
 \begin{array}{c|c} \mbox{Calculate_weighted_sum_of_flows()} \\ \mbox{begin} \\ & \mbox{Initialize: } listSumWFlows \leftarrow \emptyset; \\ \mbox{foreach do} \\ & \mbox{iscenario} \\ \mbox{end} \\ listSumWFlows \leftarrow listSumWFlows \overleftarrow{\Box} \{0\}; \\ \mbox{foreach } h \in \{1, \dots, Number_of\_indicators\} \mbox{do} \\ & \mbox{foreach } h \in \{1, \dots, Number\_of\_scenarios\} \mbox{do} \\ & \mbox{foreach } i \in \{1, \dots, Number\_of\_scenarios\} \mbox{do} \\ & \mbox{foreach } i \in \{1, \dots, Number\_of\_scenarios\} \mbox{do} \\ & \mbox{sumTScore} \leftarrow \sum_{j=1} listTScoreMatrix_{hij}; \\ & \mbox{sumScore} \leftarrow \sum_{j=1} listScoreMatrix_{hij}; \\ & \mbox{listSumWFlows}_i \leftarrow listSumWFlows_i + (sumTScore - sumScore)*ws_h; \\ & \mbox{end} \\ & \mbox{end}
```

# S.11 A priori indicator ranking.

| En | vironmental                    | Eco | onomic                    | S  | Social               |  |  |  |
|----|--------------------------------|-----|---------------------------|----|----------------------|--|--|--|
| 1. | GHG emissions (GHG)            | 1.  | Raw materials cost (RMC)  | 1  | . Transparency (PT)  |  |  |  |
| 2. | Waste generation (EF)          | 2.  | Process innovation (PCI)  | 2. | Human toxicity (HTP) |  |  |  |
| 3. | Ecotoxicity (ETP)              | 3.  | Product innovation (PDI)  | 3. | Income levels (FWP)  |  |  |  |
| 4. | Energy efficiency (SEC)        | 4.  | Technical risks (RA)      |    |                      |  |  |  |
| 5. | Land use (LUP)                 | 5.  | Capital productivity (CP) |    |                      |  |  |  |
| 6. | Abiotic fossil depletion (AFD) | 6.  | Energy cost (EC)          |    |                      |  |  |  |
| 7. | Eutrophication (EP)            |     |                           |    |                      |  |  |  |
| 8. | Water consumption (WCP)        |     |                           |    |                      |  |  |  |

S.12 SMAA results per weighting scheme at level 1 (in %). SC – scenario, SRW – stochastic random weights, ROCW – rank-order centroid weights, and REW – rank exponent weights.

Note: these summarizing ranking results show the percentage of times a certain scenario was ranked at a specific ranking position, with rank 1 being the best alternative with the lowest environmental impact and highest economic and social scores.

|                |       | RO    | CW    |       |       | REW   | / flat |         |         | REW   | steep |       |       | SF    | W     |       |
|----------------|-------|-------|-------|-------|-------|-------|--------|---------|---------|-------|-------|-------|-------|-------|-------|-------|
|                | SC1   | SC2   | SC3   | SC4   | SC1   | SC2   | SC3    | SC4     | SC1     | SC2   | SC3   | SC4   | SC1   | SC2   | SC3   | SC4   |
|                |       |       |       |       |       |       |        | Enviror | imental |       |       |       |       |       |       |       |
| _ 1            | 3.64  | 2.27  | 94.08 | 0     | 2.88  | 4.45  | 92.66  | 0       | 3.68    | 3.33  | 92.99 | 0     | 2.64  | 6.45  | 90.91 | 0     |
| 2 ê 날          | 53.06 | 41.82 | 5.10  | 0.02  | 41.65 | 52.26 | 5.98   | 0.12    | 50.93   | 43.31 | 5.75  | 0.02  | 34.63 | 57.39 | 7.49  | 0.48  |
| Ra<br>osi      | 43.21 | 54.53 | 0.82  | 1.45  | 54.94 | 41.63 | 1.36   | 2.07    | 45.30   | 52.01 | 1.26  | 1.43  | 58.93 | 34.35 | 1.56  | 5.15  |
| <u> </u>       | 0.09  | 1.38  | 0     | 98.53 | 0.52  | 1.66  | 0.00   | 97.82   | 0.09    | 1.36  | 0     | 98.55 | 3.79  | 1.81  | 0.04  | 94.36 |
|                |       |       |       |       |       |       |        | Econ    | omic    |       |       |       |       |       |       |       |
| _ <sup>1</sup> | 0.35  | 2.05  | 97.36 | 0.24  | 0     | 9.78  | 82.31  | 7.91    | 0       | 2.13  | 94.55 | 3.31  | 0.09  | 38.11 | 41.89 | 19.92 |
| 걸 달 2          | 8.31  | 63.81 | 2.27  | 25.60 | 0     | 39.16 | 14.59  | 46.25   | 0.13    | 23.97 | 4.90  | 70.99 | 1.78  | 29.67 | 35.83 | 32.73 |
| Ra<br>osi      | 19.94 | 19.62 | 0.30  | 60.14 | 0.42  | 50.71 | 3.03   | 45.85   | 7.25    | 66.67 | 0.38  | 25.70 | 11.31 | 30.52 | 21.43 | 36.74 |
| <u>6</u> 4     | 71.39 | 14.52 | 0.07  | 14.02 | 99.58 | 0.35  | 0.07   | 0       | 92.61   | 7.22  | 0.17  | 0     | 86.83 | 1.71  | 0.85  | 10.62 |
|                |       |       |       |       |       |       |        | So      | cial    |       |       |       |       |       |       |       |
| _ <sup>1</sup> | 7.12  | 89.52 | 0     | 0.00  | 7.12  | 89.52 | 0      | 0       | 7.12    | 89.52 | 0     | 0     | 6.90  | 88.24 | 1.72  | 0.00  |
| 2 ê 날          | 92.88 | 10.48 | 0     | 0.00  | 92.73 | 10.48 | 0.15   | 0       | 92.88   | 10.48 | 0     | 0     | 80.70 | 10.70 | 11.48 | 0.04  |
| Ra<br>osi      | 0     | 0     | 99.11 | 0.65  | 0.15  | 0     | 98.96  | 0.65    | 0       | 0     | 99.11 | 0.65  | 12.14 | 1.04  | 85.93 | 0.89  |
| <u> </u>       | 0     | 0     | 0.89  | 99.35 | 0     | 0     | 0.89   | 99.35   | 0       | 0     | 0.89  | 99.35 | 0.27  | 0.02  | 0.88  | 99.07 |

S.13 Average SMAA scores per sustainability dimension for different weighting schemes. SC – scenario, ROCW – rank order centroid weights, REW – rank exponent weights, and SRW – stochastic random weights.

|               |           | SC1    | SC2    | SC3    | SC4    |
|---------------|-----------|--------|--------|--------|--------|
|               | ROCW      | 0.284  | 0.048  | 2.334  | -2.666 |
| Environmontal | REW flat  | -0.048 | 0.253  | 2.292  | -2.496 |
| Environmental | REW steep | 0.219  | 0.118  | 2.285  | -2.622 |
|               | SRW       | -0.199 | 0.331  | 2.297  | -2.428 |
|               | ROCW      | -0.652 | -0.157 | 0.952  | -0.143 |
| Economic      | REW flat  | -0.993 | 0.150  | 0.600  | 0.243  |
| Economic      | REW steep | -0.825 | -0.140 | 0.796  | 0.170  |
|               | SRW       | -1.080 | 0.417  | 0.517  | 0.146  |
|               | ROCW      | 1.152  | 1.899  | -0.892 | -2.159 |
| Social        | REW flat  | 0.961  | 1.871  | -0.644 | -2.188 |
| Social        | REW steep | 1.047  | 1.887  | -0.755 | -2.179 |
|               | SRW       | 0.976  | 1.872  | -0.667 | -2.181 |

S.14 Histograms and Kernel density plots of environmental SMAA results for different weighting schemes. SC – scenario, ROCW – rank order centroid weights, REW – rank exponent weights, and SRW – stochastic random weights.



S.15 Average integrated SMAA scores for different weighting schemes and preference structures. SC – scenario, EW – equal weights, and SRW – stochastic random weights.

|                                     |                          | SC1   | SC2    | SC3    | SC4   |
|-------------------------------------|--------------------------|-------|--------|--------|-------|
|                                     | EW, TYPE 1               | 0.627 | -1.060 | -1.465 | 1.899 |
|                                     | EW, TYPE 2, p = 1 q = 0  | 0.650 | -1.240 | -1.628 | 2.219 |
| International accession a bility of | EW, TYPE 2, p = 2 q = 1  | 0.469 | -0.695 | -1.028 | 1.254 |
| integrated sustainability           | SRW, TYPE 1              | 0.628 | -1.059 | -1.468 | 1.898 |
|                                     | SRW, TYPE 2, p = 1 q = 0 | 0.646 | -1.241 | -1.625 | 2.220 |
|                                     | SRW, TYPE 2, p = 2 q = 1 | 0.469 | -0.694 | -1.029 | 1.253 |

#### REFERENCES

- 1 F. G. Acién, J. M. Fernández, J. J. Magán and E. Molina, *Biotechnol. Adv.*, 2012, **30**, 1344–1353.
- 2 R. Ramanan, K. Kannan, A. Deshkar, R. Yadav and T. Chakrabarti, *Bioresour. Technol.*, 2010, **101**, 2616–2622.
- 3 J. Doucha, F. Straka and K. Lívanský, *J. Appl. Phycol.*, 2005, **17**, 403–412.
- 4 M. Šingliar, J. Mikulec, P. Kušnír and G. Polakovičová, *Goriva I Maz.*, 2013, **52**, 305–317.
- 5 M. M. Rebolloso Fuentes, G. G. Acién Fernández, J. A. Sánchez Pérez and J. L. Guil Guerrero, *Food Chem.*, 2000, **70**, 345–353.
- 6 F. Guihéneuf and D. B. Stengel, *Algal Res.*, 2015, **10**, 152–163.
- 7 M. D. Kavitha, S. Kathiresan, S. Bhattacharya and R. Sarada, J. Food Sci. Technol., 2016, 53, 2270–2278.
- 8 M. A. Torres-Acosta, F. Ruiz-Ruiz, J. M. Aguilar-Yáñez, J. Benavides and M. Rito-Palomares, *Biotechnol. Prog.*, 2016, **32**, 1472–1479.
- 9 E. Cohen and S. (Malis) Arad, *Biomass*, 1989, **18**, 59–67.
- 10 A. Razaghi, A. Godhe and E. Albers, *Open Life Sci.*, 2014, **9**, 156–162.
- 11 L. Rodolfi, G. Chini Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini and M. R. Tredici, *Biotechnol. Bioeng.*, 2009, **102**, 100–112.
- 12 D. Das, T. K. Bhowmick and M. Mutharaj, in *Sustainable Downstream Processing of Microalgae for Industrial Application*, CRC Press, 2019, p. 356.
- 13 R. B. Román, J. M. Alvárez-Pez, F. G. A. Fernández and E. M. Grima, J. Biotechnol., 2002, 93, 73–85.
- 14 A. H. Tafreshi and M. Shariati, *World J. Microbiol. Biotechnol.*, 2006, **22**, 1003–1006.
- 15 M. García-González, J. Moreno, J. P. Cañavate, V. Anguis, A. Prieto, C. Manzano, F. J. Florencio and M. G. Guerrero, *J. Appl. Phycol.*, 2003, **15**, 177–184.
- A. Prieto, J. Pedro Cañavate and M. García-González, *J. Biotechnol.*, 2011, **151**, 180–185.
- 17 G. Thomassen, M. Van Dael and S. Van Passel, *Bioresour. Technol.*, 2018, **267**, 271–280.
- 18 O. Jorquera, A. Kiperstok, E. A. Sales, M. Embiruçu and M. L. Ghirardi, *Bioresour. Technol.*, 2010, **101**, 1406–1413.
- 19 K. L. Kadam, Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis, 2001.
- 20 J. H. de Vree, Wageningen University, 2016.
- K. D. Fagerstone, J. C. Quinn, T. H. Bradley, S. K. De Long and A. J. Marchese, *Environ. Sci. Technol.*, 2011, 45, 9449–9456.
- 22 J. Yuan, A. Kendall and Y. Zhang, *GCB Bioenergy*, 2015, **7**, 1245–1259.
- 23 M. R. Buehner, P. M. Young, B. Willson, D. Rausen, R. Schoonover, G. Babbitt and S. Bunch, in 2009 American Control Conference, IEEE, 2009, pp. 2301–2306.
- 24 M. H. Hassim, A. L. Pérez and M. Hurme, *Process Saf. Environ. Prot.*, 2010, **88**, 173–184.
- 25 E. M. Grima, F. G. Acie, A. R. Medina and Y. Chisti, *Biotechnol. Adv.*, 2003, **20**, 491–515.
- 26 J. J. Milledge and S. Heaven, *Environ. Nat. Resour. Res.*, 2011, 1, 17–24.
- 27 R. Mercken, Garant, Antwerpen, 2004.
- 28 Chem. Eng.
- A. C. Caputo, M. Palumbo, P. M. Pelagagge and F. Scacchia, *Biomass and Bioenergy*, 2005, 28, 35–51.
- 30 T. J. Lundquist, I. C. Woertz, N. W. T. Quinn and J. R. Benemann, *A realistic technology and engineering assessment of algae biofuel production*, Berkeley, 2010.
- N. H. Norsker, M. J. Barbosa, M. H. Vermuë and R. H. Wijffels, *Biotechnol. Adv.*, 2011, **29**, 24–27.
- 32 R. E. Davis, D. B. Fishman, E. D. Frank, M. C. Johnson, S. B. Jones, C. M. Kinchin, R. L. Skaggs, E. R. Venteris and M. S. Wigmosta, *Environ. Sci. Technol.*, 2014, **48**, 6035–6042.
- 33 R. Davis, D. Fishman, E. D. Frank and M. S. Wigmosta, *Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model*, 2012.
- J. N. Rogers, J. N. Rosenberg, B. J. Guzman, V. H. Oh, L. E. Mimbela, A. Ghassemi, M. J. Betenbaugh, G. A. Oyler and M. D. Donohue, *Algal Res.*, 2014, **4**, 76–88.
- 35 M. R. Tredici, L. Rodolfi, N. Biondi, N. Bassi and G. Sampietro, *Algal Res.*, 2016, **19**, 253–263.
- J. Gorre, F. Ruoss, H. Karjunen, J. Schaffert and T. Tynjälä, *Appl. Energy*, 2020, **257**, 113967.
- 37 M. S. Peters, K. D. Timmerhaus and R. E. West, *Plant design and economics for chemical engineers*, Mcgraw-Hill Education, New York, Fifth., 2003.
- 38 I.-C. Hu, in *Biofuels from Algae*, Elsevier, 2nd edn., 2019, pp. 345–358.
- 39 S. P. Cuellar-Bermudez, I. Aguilar-Hernandez, D. L. Cardenas-Chavez, N. Ornelas-Soto, M. A. Romero-Ogawa and R. Parra-Saldivar, *Microb. Biotechnol.*, 2015, **8**, 190–209.

- 40 H. Dominguez, *Functional ingredients from algae for foods and nutraceuticals*, Elsevier, 2013.
- 41 P. Collet, L. Lardon, A. Hélias, S. Bricout, I. Lombaert-Valot, B. Perrier, O. Lépine, J.-P. Steyer and O. Bernard, *Renew. Energy*, 2014, **71**, 525–533.
- 42 M. A. J. Huijbregts, Z. J. N. Steinmann, P. M. F. Elshout, G. Stam, F. Verones, M. D. M. V. Nijmegen, A. Hollander, M. Zijp and R. Van Zelm, *ReCiPe 2016 v1.1*, Bilthoven, 2017.
- 43 R. A. Sheldon, I. Arends and U. Hanefeld, in *Green Chemistry and Catalysis*, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007, pp. 1–47.
- 44 S. Van Schoubroeck, J. Springael, M. Van Dael, R. Malina and S. Van Passel, *Resour. Conserv. Recycl.*, 2019, **144**, 198–208.
- 45 G. Juodeikiene, D. Vidmantiene, L. Basinskiene, D. Cernauskas, E. Bartkiene and D. Cizeikiene, *Catal. Today*, 2015, **239**, 11–16.
- 46 J. Dewulf, H. Van Langenhove, B. Muys, S. Bruers, B. R. Bakshi, G. F. Grubb, D. M. Paulus and E. Sciubba, *Environ. Sci. Technol.*, 2008, **42**, 2221–2232.
- 47 A. D. Patel, K. Meesters, H. den Uil, E. de Jong, K. Blok and M. K. Patel, *Energy Environ. Sci.*, 2012, **5**, 8430.
- 48 P. L. Gupta, S. M. Lee and H. J. Choi, World J. Microbiol. Biotechnol., 2015, **31**, 1409–1417.
- 49 B. P. Abraham and S. D. Moitra, *Technovation*, 2001, **21**, 245–252.
- 50 V. Albino, L. Ardito, R. M. Dangelico and A. Messeni Petruzzelli, *Appl. Energy*, 2014, **135**, 836–854.
- 51 N. Johnstone, I. Haščič and D. Popp, *Environ. Resour. Econ.*, 2010, **45**, 133–155.
- 52 R. Coombs, P. Narandren and A. Richards, *Res. Policy*, 1996, **25**, 403–413.
- 53 P. M. Falcone and E. Imbert, *Sustain.*, , DOI:10.3390/su10041031.
- 54 F. Paci, A. Danza, M. A. Del Nobile and A. Conte, J. Clean. Prod., 2018, **172**, 3128–3137.
- 55 F. Alfnes, A. G. Guttormsen, G. Steine and K. Kolstad, Am. J. Agric. Econ., 2006, 88, 1050–1061.
- J. B. Chang, W. Moon and S. K. Balasubramanian, *Food Policy*, 2012, **37**, 335–342.
- 57 A. Bearth, M.-E. Cousin and M. Siegrist, *Food Qual. Prefer.*, 2014, **38**, 14–23.
- 58 B. Gebhardt, R. Sperl, R. Carle and J. Müller-Maatsch, J. Clean. Prod., , DOI:10.1016/j.jclepro.2020.120884.
- 59 UNEP SETAC, The methodological sheets for subcategories in Social Life Cycle Assessment (S-LCA), 2013.
- 60 M. Zakaria, D. Liginlal and C. Aoun, *Bus. Manag. Rev.*, 2018, 9, 487.
- 61 F. U. Madugu, Cranfield University, 2015.
- 62 P. Rafiaani, T. Kuppens, G. Thomassen, M. Van Dael, H. Azadi, P. Lebailly and S. Van Passel, *Int. J. Life Cycle Assess.*, 2020, **25**, 363–381.
- 63 S. Neugebauer, Y. Emara, C. Hellerström and M. Finkbeiner, J. Clean. Prod., 2017, 143, 1221–1232.
- 64 K. Kidam and M. Hurme, *Process Saf. Environ. Prot.*, 2013, **91**, 61–78.
- 65 P. Rafiaani, G. Thomassen, T. Kuppens, M. Van Dael, H. Azadi, P. Lebailly and S. Van Passel, *Incorporating* social impacts into a techno-economic assessment model: an illustrative exercise on an algae case, 2020.