Supplementary Information

Sustainable Solvent Selection for the Manufacture of Methylammonium Lead Triiodide (MAPbI₃) Perovskite Solar Cells

Alexander James Doolin^a, Rhys Gareth Charles^a, Catherine S. P. De Castro^b, Rodrigo Garcia Rodriguez^a, Emmanuel Vincent Péan^a, Rahul Patidar^a, Tom Dunlop^a, Cecile Charbonneau^a, Trystan Watson^a and Matthew Lloyd Davies^{a,c}.

^{a.} SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University, Swansea, UK.

^{b.} KAUST Solar Centre, Physical Sciences and Engineering Division (PSE), Materials Science and Engineering Program (MSE), King Abdullah University

of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia

^{c.} School of Chemistry and Physics, University of KwaZulu-Natal, Durban, RSA

Solvent	Health and Safety Information	В.Р (°С)	F.P (°C)	Cost* (GPB/L)	Global and harmonized system of classification and labelling of chemicals (GHS) Hazard statements	Operational Exposure Limits (OEL)		Commercial Consideration		
						STEL	TWA	Advantages	Disadvantages	
Dimethylformamide (DMF)	 Candidate for immediate substitution from Sanofi, GSK, and Pfizer ¹⁻⁴ GHS02, GHS07, GHS08 Known Reprotoxic Effects REACH registration as SVHC 	153	58	£81.90	H226-H312 + H332-H319-H360D P201-P210-P261-P280-P308 + P313- P370 + P378 ⁵	30 mg/m ³ or 10 ppm ⁵	15 mg/m ³ or 5 ppm ⁵	 Has been used to proc the highest efficiency devices in labs. High donicity & dielect constant, moderate va pressure and relatively B.P. 	 Synthesised by a distillation which is highly energy inefficient. Toxic substance which requires expensive equipment and processing. 	
Dimethyl sulfoxide (DMSO)	 Known to permeate the skin enhancing the absorption of chemical species⁶ 	189	89	£108.00	H227 P210, P280 ⁷	N/A	N/A	 One of the least concerning of the curr used organic solvents⁸ rated as problematic b the IMI-CHEM21 study GSK, and Sanofi^{1,3,9}. 	 Percutaneous absorption, especially in a lead based solution y could render use of this , chemical more hazardous. 	
γ – butyrolactone (GBL)	 GHS05, GHS07 REACH Registration 	204	98	£50.00	H302-H318-H336 P261-P280-P305+P351+P338 ¹⁰	N/A	N/A	 Reduced toxicological impact. Found application in carbon based printable PSCs due to low coordinating ability an strong scaffold infiltration 	GBL is a precursor to regulated drug GHB. Legality issues are a major barrier to any potential d commercialisation. ion.	
Acetonitrile (ACN) with methylamine (MA)	 Methylamine – Highly flammable substance Acetonitrile – REACH Registration; GHS02, GHS07 	82	5.5	£105.00	H225-H302+H312+H332-H319 P210-P280-P305+P351+P338 ¹¹ H220-H280-H315-H318-H332-H335 P210-P280-P305+P351+P338+P310- P377-P410+P403 ¹¹	ACN – 102 mg/m ³ or 60 ppm ¹¹ MA – N/A	ACN - 70 mg/m ³ Or 40 ppm ¹¹ MA - N/A	 Good potential metho pilot scale manufactur ACN is an economicall viable solvent. 	 d for ng. Safety issues associated with the storage of flammable MA. Requirement of additional step bubbling MA through solution. 	
Dimethylacetamide (DMAC)	 Reproductive Toxicity GHS07, GHS08 REACH Registration as SVHC 	165	69	£31.90	H312-H332-H319-H360D P201-P261-P280-P305+P351+P338- P308+P313 ¹²	72 mg/m ³ or 20 ppm ¹²	36 mg/m ³ Or 10 ppm ¹²	 Has been used in conjunction with NMP formulate highly effici perovskite films witho annealing requiremen 	 Toxicity, and health and safety concerns. Recommended for substitution by several solvent selection guides with a focus on green solvent use^{1-4,13}. 	
N-methyl-2- pyrrolidone (NMP)	 Reproductive Toxicity REACH Registration 1907/2006 (SVHC) 	202	91	£107.00	H315, H319, H335, H360D P201, P280, P305+P351+P338 ¹⁴	80 mg/m ³ or 20 ppm ¹⁴	40 mg/m ³ or 10 ppm ¹⁴	 Superior coordination ability and fluid prope allow highly efficient f at room temperature. 	REACH registration as SVHC. Some uses of NMP are restricted under Annex XVII of REACH ¹⁵ .	

Table S1 - Previously used solvents for successful MAPbI₃ deposition. B.P – boiling point, F.P – flash point, STEL – short terms exposure limit, TWA – time weighted average (8 hour exposure).

Table S2 - Reference data for the Hansen solubility parameter (HD) used to identify candidates as DMF alternative aprotic polar solvents for perovskite ($CH_3NH_4PbI_3$) film deposition.

Perovskite Precursor Solute	δD (MPa ^{1/2})	δΡ (MPa ^{1/2})	δΗ (MPa ^{1/2})				
Lead iodide (PbI ₂) ¹⁶	17.76	21.41	14.46				
Solvent				HD ¹⁷	HD (this work)	Gutmann Donor Number ¹⁸ (kcal/mol)	Dielectric Constant
dimethylformamide (DMF) ¹⁷	17.4	13.7	11.3	1.8	8.4	26.6	38.25
dimethylsulfoxide (DMSO) 17	18.4	16.4	10.2	1.8	6.7	29.8	47.00
diethylformamide (DEF) 17	16.4	11.4	9.2	5.0	11.6	30.9	29.02
2-methylpyrazine (2-MP) ¹⁷	18.3	12.3	10.5	2.9	10.0	Unknown	Unknown
γ-butyrolactone (GBL) ¹⁷	18.0	16.6	7.4	3.7	8.6	18	41.70
acetonitrile (ACN) ¹⁷	15.3	18.0	6.1	7.6	10.3	14.1	36.64
dimethyl carbonate (DMC) 17	15.5	8.6	9.7	8.1	14.4	17.2	3.17
dimethylacetamide (DMAc) ¹⁹	16.8	11.5	10.2	4.2*	11.0	27.8	38.85
dihydrolevoglucosenone - Cyrene 20,21	18.8	10.6	6.9	6.2*	13.4	Unknown	37.30
dimethylpropyleneurea (DMPU) ¹⁹	17.8	9.5	9.3	5.7*	13.0	33.0	36.12
2-methyltetrahydrofuran (2-MeTHF) ²²	16.9	5.0	4.3	12.1*	19.4	18.0	7.53

*calculated using the same assumed parameters and method as Wang et al. (2017) 17

Table S3 - Profilometry results for evaluated solvent systems. 3 readings were taken per film with the average thickness calculated as the mean value.

Solvent System	Recorded Thicknesses / nm	Average Film Thickness / nm
	368	
Control (DMF/DMSO)	363	366 ± 3 nm
	366	
	475	
Candidate A	505	487 ± 18 nm
40% DMSO, 30% DMPU, 20% 2-MeTHF, 10% EtOH	482	
	484	
Candidate B	496	492 ± 8 nm
40% DMSO, 30% DMPU, 15% 2-MeTHF, 15% EtOH	497	
	370	
Candidate C	357	365 ± 8 nm
40% DMSO, 40% DMPU, 10% 2-MeTHF, 10% EtOH	368	

Table S4 - Full width at half maximum for each film based on XRD peak analysis along with 110/310 peak intensity ratio

	110 FWHM	220 FWHM	310 FWHM	110/310 Intensity Ratio
Control	0.09796	0.13680	0.14950	4.02
Candidate A	0.09834	0.11705	0.13913	6.16
Candidate B	0.09663	0.13319	0.15377	6.16
Candidate C	0.11234	0.14174	0.16608	5.93

Figure S2 – Control SEM images at A) 5,000× B) 10,000× C) 15,000× D) 30,000×

Figure S3 – Candidate B SEM images at A) 5,000× B) 10,000× C) 15,000× D) 30,000×

Figure S4 – Candidate C SEM images at A) 5,000× B) 10,000× C) 15,000× D) 30,000×

Figure S5 - Crystal size distribution histograms taken from the Zen Blue Intellesis analysis of the maximum Feret diameter for each sample. Normal distribution curves have been superimposed onto candidates A, B, and C, with a lognormal distribution applied over the control graph.

Figure S6 – Steady state photoluminescence (SSPL) for the candidate A average curve and standard deviation spread displayed in figure 5. The PL of all samples increased during measurement (attributed to the phenomenon of photobrightening). The sample was exposed to 450 nm excitation light during the 2.5 minute break between scans before commencement of the subsequent scan. This trend evolution can be seen in the data with the intensity increasing per measurement over time until a plateau is reached as evidenced by multiple overlapping curves, this was the final scan deemed 'stable'. A – A total of 9 scans before the 'stable' scan (highlighted red) B - A total of 9 scans before the 'stable' scan (highlighted red).

Figure S7 – Absorptance spectra of films deposited from each candidate solution and the control. Interference fringes in the absorptance below 600 nm attributed to the PMMA capping layer. SSPL excitation wavelength of 450 superimposed to highlight absorptance differences.

Table S5 – Crystal grain parameters for each candidate solution taken from image analysis on the Zen Blue Intellesis module software.

	Average Area / nm ²	Average Perimeter / nm	Average Roundness	Average Diameter / nm	Average Max Feret Diameter / nm
Control	73949	1111	63%	272	346
Candidate A	39429	882	61%	208	267
Candidate B	50758	1054	62%	238	304
Candidate C	38269	880	59%	203	264

Figure S8 - Champion J-V curves attained for each evaluated solvent system (A, B, C, Control)

Figure S9 – Profilometry data for a candidate A film showing a film thickness ~500nm. Three measurements were taken corresponding to left side, centre, and right side.

Figure S10 – Device performance box plots for power conversion efficiency (PCE), open circuit voltage (Voc), short circuit current (Jsc), and fill factor (FF).

Figure S11 – Normalised fluorescence emission spectra (λ_{ex} = 450 nm) normalised relative to the control film with a superimposed line at 768 nm highlighting the close peak position of the curves deposited from each of the experimental solutions.

References

- 1 D. Prat, O. Pardigon, H. W. Flemming, S. Letestu, V. Ducandas, P. Isnard, E. Guntrum, T. Senac, S. Ruisseau, P. Cruciani and P. Hosek, *Org. Process Res. Dev.*, 2013, **17**, 1517–1525.
- 2 N. G. Anderson, Pract. Process Res. Dev., 2010, 81–111.
- 3 C. M. Alder, J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E. Shuster and H. F. Sneddon, *Green Chem.*, 2016, 18, 3879–3890.
- 4 K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig, S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight, M. A. Nagy, D. A. Perry and M. Stefaniak, *Green Chem.*, 2008, **10**, 31–36.
- 5 MSDS DMF Sigma, https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=227056&brand=SIAL&Pa geToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F227056%3Flang%3Den, (accessed 18 May 2020).
- 6 W. Fritsch and R. B. Stoughton, Arch Dermatol., 90, 512–7.
- 7 MSDS DMSO sigma,

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=276855&brand=SIAL&Pa geToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F276855%3Flang%3Den, (accessed 18 May 2020).

- 8 R. Vidal, J.-A. Alberola-Borràs, G.-M. Joaquín-Luis, S. N. Habisreutinger, D. T. Moore, T. H. Schloemer, I. Mora-Seró, J. J. Berry and J. M. Luther, *Nat. Sustain.*, DOI:10.1038/s41893-020-00645-8.
- 9 D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-Shehada and P. J. Dunn, *Green Chem.*, 2015, 18, 288–296.
- 10 MSDS GBL sigma,

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=H7629&brand=SIGMA&P ageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fh7629%3Flang%3Den, (accessed 18 May 2020).

11 MSDS - Acetonitrile sigma,

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=271004&brand=SIAL&Pa geToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F271004%3Flang%3Den, (accessed 18 May 2020).

12 MSDS - DMAc sigma,

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=17308&brand=ALDRICH &PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F17308%3Flang%3Den, (accessed 18 May 2020).

- 13 L. J. Diorazio, D. R. J. Hose and N. K. Adlington, Org. Process Res. Dev., 2016, 20, 760–773.
- 14 MSDS NMP sigma, https://www.sigmaaldrich.co

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=328634&brand=SIAL&Pa geToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F328634%3Flang%3Den, (accessed 18 May 2020).

- 15 (NMP) 1-methyl-2-pyrrolidone Substance Information ECHA, https://echa.europa.eu/cs/substance-information/-/substanceinfo/100.011.662, (accessed 28 May 2020).
- 16 A. Babaei, L. Albero-Blanquer, A. M. Igual-Muñoz, D. Pérez-Del-Rey, M. Sessolo, H. J. Bolink and R. Tadmouri, *Polyhedron*, 2018, 147, 9–14.
- 17 J. Wang, F. Di Giacomo, J. Brüls, H. Gorter, I. Katsouras, P. Groen, R. A. J. Janssen, R. Andriessen and Y. Galagan, Sol. RRL, 2017, 1, 1700091.
- 18 F. Cataldo, *Eur. Chem. Bull.*, 2015, **4**, 92–97.
- 19 S. D. Bergin, Z. Sun, D. Rickard, P. V. Streich, J. P. Hamilton and J. N. Coleman, ACS Nano, 2009, 3, 2340–2350.
- 20 J. Zhang, G. B. White, M. D. Ryan, A. J. Hunt and M. J. Katz, ACS Sustain. Chem. Eng., 2016, 4, 7186–7192.
- 21 C. J. Clarke, W. C. Tu, O. Levers, A. Bröhl and J. P. Hallett, Chem. Rev., 2018, 118, 747–800.
- 22 C. Wohlfarth, 2008, **65**, 298–298.