Electronic Supplementary Information

New bifunctional ionic liquid-based plant systemic acquired resistance (SAR) inducers with improved environmental hazard profile

Marta Markiewicz^a, Piotr Lewandowski^b, Maciej Spychalski^b, Rafal Kukawka^c, Joanna Feder-Kubis^d, Stephan Beil ^a, Marcin Smiglak^{b,c*}, Stefan Stolte^{a*}

^a Institute of Water Chemistry, Technische Universität Dresden, D 01062, Dresden, Germany

^b Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul Rubiez 46, 61-612 Poznan, Poland

^c Innosil Sp z o.o., ul Rubiez 46, 61-612 Poznan, Poland

^d Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

1. Physicochemical properties of SAR inducers

Table S1. Physicochemical properties of compounds included in the study (water solubility, $\log K_{ow}$) as well as their efficacy in inducting SAR activity

		Experimental	Predicted		SAR
No.	Compound	aqueous solubility	aqueous	Log K _{ow}	inducing
		[g/L]	solubility [g/L]		efficiency ^a
1	BTH	0.007 ref ¹	0.04 ^b	2.93 [ref ¹]; 2.38 ^b ;	95 ref ²
				2.06 ^c	
2	[BTHMe][LS]	> 10 ref ¹	0.016 ^b	2.95 [ref ¹];3.59 ^b	< 10%
3	[BTHMe] [MeSO ₄]	> 10 ref ¹	85.1 ^b	0.32 [ref ¹]	< 10%
4	[K][BTHCOO]	> 10 ref ²	154.2 ^b	-2.29 ^b ; -3.50 ^c	85 ref ²
5	[Chol][BTHCOO]	> 10 ref ^{2,3}	33.9 ^b	-1.56 ^b ; -1.08 ^c	90 ref ²
6	[N ₄₄₄₄][BTHCOO]	> 10 ref ²	0.002 ^b	4.90 ^b ; 4.81 ^c	100 ref ²
7	[N ₁₁₄₁₀][BTHCOO]	1.2 ref ²	0.005 ^b	4.58 ^b ; 4.68 ^c	95 ref ²
7a	[N ₁₁₄₁₀][Br]	-	-	7.90 ^d ; 8.16 ^e	
8	[N _{11010Benz}] [BTHCOO]	0.08 ref ²	0.1 x 10 ^{-6 c}	10.10 ^c	85 ref ²
8a	[N _{11010Benz}][CI]	-	-	12.75 ^d ; 13.05 ^e	
9	[Py C ₁₀][BTHCOO]	0.1 ref ²	0.005 ^b	3.17 ^b ; 4.29 ^c	75 ref ²
9a	[Py C ₁₀][Cl]	-	-	7.32 ^d ; 6.70 ^e	
10	[Py C ₁₂][BTHCOO]	0.08 ref ²	0.0005 ^b	4.38 ^b ; 5.23 ^c	80 ref ²
10a	[Py C ₁₂][Cl]	-	-	7.75 ^d ; 8.34 ^e	
11	[Terpene C ₉] [BTHCOO]	> 0.02 ref ⁴	2.3 x 10 ^{-6 c}	7.21 ^c	95 ref ⁴
11a	[Terpene C ₉][Cl]	-	-	10.47 ^d ; 10.28 ^e	
12	[Terpene C ₁₂] [BTHCOO]	> 0.02 ref ⁴	0.7 x 10 ^{-6 c}	8.05 ^c	93 ref ⁴
12a	[Terpene C ₁₂][Cl]	-	-	11.93 ^d ; 11.61 ^e	

^a SAR inducing efficiency measured against tobacco mosaic virus (TMV) in tobacco plants (*Nicotiana tabacum L.* var Xanthi) at concentration of 20mg/L

^b Predicted using COSMO-RS at TZVP level (in case of ionic compounds calculations are for ion pairs)

^c Predicted using COSMO-RS at SVP level (in case of ionic compounds calculations are for ion pairs)

 $^{\rm d}$ Predicted using COSMO-RS at TZVP level for the cation

^e Predicted using COSMO-RS at SVP level for the cation

2. Correlation analysis in toxicity tests

Two parameters: octanol-water partition coefficient (log K_{ow}) and biological membrane-water partition coefficient (log K_{mw}) were used as descriptors of toxicity of SAR inducers toward IPC-81, *Aliivibrio fischeri* and *Daphnia magna*. The results are shown below.

Figure S1. Correlation of effective concentration in IPC-81 test system and (a) log Kow or (b) log Kmw. Solid line shows the correlation and dashed line the +/- 0.5 log unit from the correlation line.

Figure S2. Correlation of effective concentration in *Aliivibrio fischeri* test system and (a) log Kow or (b) log Kmw. Solid line shows the correlation and dashed line the +/- 0.5 log unit from the correlation line.

Figure S3. Correlation of effective concentration in *Daphnia magna* test system and (a) log Kow or (b) log Kmw. Solid lien shows the correlation and dashed line the +/- 0.5 log unit from the correlation line.

3. Details of data analysis

In almost all test a monotonic dose-response curve was observed and EC_{50} was estimated using one of two models: logit or linlogit – Table S2 presents the details of model fitting including type of model and residual sum of squares (RSS). However in several cases EC_{50} could not be calculated:

- For BTH in IPC-81 test system and for [K][BTHCOO] in Daphnia magna test system there was no observable effect in any of the doses tested
- For [PyrC₁₂][BTHCOO] a monotonic dose-response curve was observed but EC₅₀ could not be estimated

For the former two cases we tested the significance of the difference between the treatments and controls using Mann-Whitney tests. The details are shown in Table S3.

Table S2. Details of dose-response curve fitting in toxicity assessment. Model used to calculate effective concentrations and residual sum of squares are given for each compound and test systems except cases when no test was conducted or no dose-response curve was fitted. Below the table the dose-response curves are shown.

No.	Compound	IPC-81	Aliivibrio fischeri	Daphnia magna
1	BTH	No effect	Not tested	Not tested
2	[BTHMe][LS]	linlogit,	linlogit,	logit
		RSS=0.1537	RSS=0.0134	RSS= 0.0925
3	[BTHMe][MeSO ₄]	linlogit	linlogit,	linlogit
		RSS=0.1516	RSS= 0.0473	RSS= 0.0608
4	[K][BTHCOO]	linlogit,	linlogit,	No effect
		RSS=0.0724	RSS=0.0281	
5	[Chol][BTHCOO]	linlogit	linlogit,	linlogit
		RSS=0.0854	RSS=0.0204	RSS=0.1902
6	[N ₄₄₄₄][BTHCOO]	linlogit	linlogit,	linlogit,
		RSS=0.1406	RRS= 0.0296	RSS=0.1769
7	[N ₁₁₄₁₀][BTHCOO]	linlogit,	linlogit,	linlogit,
		RSS=0.3152	RSS=0.0183	RSS=0.2517
8	[N _{11010Benz}][BTHCOO]	linlogit,	linlogit,	linlogit,
		RRS=0.1136	RSS=0.0389	RSS=0.1852
9	[PyC ₁₀][BTHCOO]	linlogit,	linlogit,	linlogit,
		RRS=0.1004	RSS=0.0384	RSS=0.1598
10	[PyC ₁₂][BTHCOO]	No fit	linlogit	linlogit,
			RSS=0.0187	RSS=0.2700
11	[TerpeneC ₉][BTHCOO]	linlogit,	linlogit,	probit,
		RSS=0.1325	RSS=0.0241	RSS=0.0947
12	[TerpeneC ₁₂] [BTHCOO]	linlogit,	linlogit,	linlogit,
		RSS=0.1495	RSS=0.0530	RSS=0.1306

BTH in IPC-81 test				
Dose [µmol/L]	p-value (α =0.05) and result of hypothesis testing			
0.074	0.3733, not significantly different from control			
0.297	0.2975, not significantly different from control			
0.149	0.0575, not significantly different from control			
0.594	0.3891, not significantly different from control			
1.189	0.3848, not significantly different from control			
2.378	0.0220, not significantly different from control			
4.755	0.0506, not significantly different from control			
9.51	0.2021, not significantly different from control			
19.2	0.1793, not significantly different from control			
[K][BTHCOO] in Daphnia magna test				
Dose [mg/L]	p-value (α =0.05) and result of hypothesis testing			
1.0	not significantly different from control			
4.0	p=0.4237, not significantly different from control			
21	not significantly different from control			
40	not significantly different from control			
100	NA			
125	p=0.4237, not significantly different from control			
200	NA			
250	not significantly different from control			
500	not significantly different from control			
1000	p=0.4237, not significantly different from control			

Table S3. Results of statistical significance testing for the compounds/test for which no dose-response curve was obtained based on Mann-Whitney test.

4. Dose-response curves

Decadic Logarithm of the dose in different units

