Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

> Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018

> > **Electronic Supplementary Information**

Organic-solvent-free electromembrane extraction based on semi-interpenetrating polymer

networks

Hang Mei^{1a}, Huajing Liu^{1a}, Qianqian Shang^a, Ying Dong^b, Stig Pedersen-Bjergaard^c, Chuixiu Huang^{b*}, Xiantao Shen^{a*}

^a·Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

^b.Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan, China

^c Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway

[†] These authors contributed equally.

* Corresponding Authors. E-mail: chuixiuh@hust.edu.cn E-mail: xtshenlab@hust.edu.cn

SLM M		- Mw	Water	Boiling) Toxicity ^a	Reusability	Degradation	¹ Safety ^a
Туре	Organic solvent		(g/L) ^a	a a	, Toxicity	Reasonity	half-life ^a	Surcey
Nitroaromatis	2-NPOE ^[1]	251	0.006 ^b	351 ^b	Ecotoxicity, carcinogenicity, mutagenicity. ^[3-5]	n.r.	n.r.	n.r.
derivatives	Toluene [2]	92	0.526	111	Acute toxicity: Morone saxatilis, LCSU, 7.3 mg/L; Acute toxicity: Mouse, LD50, 59 mg/kg (ip);	n.r.	2 d	Flammable; Irritant.
			1.67		Ecotoxicity: Alburnus alburnus, LC50, 45 mg/L;			
	1-Heptanol	116		175	Acute toxicity: Rat, LD50, 500 mg/kg (oral);	n.r.	28 h	Irritant;
					Ecotoxicity: Pimephales promelas, LC50, 13.5 mg/L; BCF: 44;			
Aliphatic	1-Octanol ^[6]	130	0.54	196	Acute toxicity: Mouse, LD50, 69 mg/kg (iv);	n.r.	27 h	Irritant;
alcohols					Severe eye irritation;			
	1-Nonanol ^[6]	144	0.14	213	life with long lasting effects: BCF:160:			
					Acute toxicity: Rabbit, LC50, 15 mg/kg (iv);	n.r.	28 h	Irritant;
					Skin and eye irritation;			
	2-Octanone ^[7]	128	0.899	173	Ecotoxicity: Pimephales promelas, LCSU, 36 mg/L; Acute toxicity: Rat, LDSD, 800 mg/kg (ip):	n.r.	1.6 d	Flammable;
					Severe eye irritation; Possible CNS depression to human.			
	2-nonanone ^[8]	142	0.371	195	Acute toxicity: Rat, LD50: 3200 mg/kg (oral);	n.r.	n.r.	Highly flammable;
Ketones					Skin and eye irritation.			Irritant.
	2-Undecanone ^[9]	170	0.24	232	Very toxic to aquatic life.	n.r.	1.2 d	n.r.
			0.05	228	Toxic to aquatic life with long lasting effects;			Flammable
	6-Undecanone ^[8]	170			Acute toxicity: Mouse, LD50:117 mg/kg (iv);	n.r.	n.r.	Irritant.
			0.006 ^b	309 ^b			5.9 h	Corrosive;
	DEHPi [10]	305			Acute toxicity: Rabbit, LD50, 100 mg/kg (iv);	n.r.		Irritant. Heating
					Skin, eye and respiratory tract irritation.			produces toxic fumes
		322	2.1 ^b	393 ^b	Ecotoxicity: water flea, LC50, 27.2 mg/L;		5.9 h	Corrosive; Irritant.
	DEHP ^[10]				Acute toxicity: Rat, LD50, 50 mg/kg (ip);	n.r.		Heating produces
Alkylated		399	1.1	414 ^b	Froiniged contact to human may cause severe burns;		3 h; 93-95 d (hydrolysis, pH 5-9)	toxic fumes.
phosphates /phosphites					Acute toxicity: Mouse, LD50, 180 mg/kg (iv);			Irritant; Heating
	IBUEF				Neurotoxicity; Developmental or reproductive toxicity;			produces toxic fumes.
					Skin, eye and respiratory tract irritation. Ecotoxicity: Goldfish. LC50: 8.8 mg/L: BCF:30-35:			
	TBP ^[10]				Acute toxicity: Rat, LD50, 100 mg/kg (iv);		4.4 h;	Corrosive;
		266	0.28	289	Endocrine disrupting effect; Neurotoxicity; Skin, eve and respiratory irritation:	n.r.	9.9-11.5 y (pH 9-5)	Heating produces
					Probable oral lethal dose to human: 0.5-5 g/kg.			toxic fumes.
	Dodecanenitrile	181	0.071 ^b	277	Very toxic to aquatic life with long lasting effects;	n.r.	n.r.	Irritant;
Aliphatic	2,3,4,5,6-				Skin irritation;			Flammable
nitriles	Pentafluorobenzo nitrile ^[11]	193	0.005 ^b	162	Skin and eye irritation.	n.r.	n.r.	Irritant.
	o-Tolunitrile [11]	117	0.64 ^b	0.64 ^b 205	Harmful to aquatic life with long lasting effects;	n.r.	n.r.	Flammable;
					Acute toxicity: Mouse, LD50, 700mg/kg (ip); Ecotoxicity: Green algae, EC50, 5 3mg/L (48h); BCE:61;			minalli.
	Diallyl phthalate [11]		0.182	290	Acute toxicity: Rat, LD50: 656 mg/kg (oral);		6.9 h;	Irritant;
		246			Hamster ovary cytogenetic mutation, 200 mg/L;	n.r.	(hydrolysis,	
					developmental toxicity, under restriction in EU and China.		рн 7)	
	Diisobutyl phthalate [11]		0.031 ^b	296	Ecotoxicity: Pimephales promelas, LC50, 0.9mg/L; BCF:240;		1.2 d; 5 y (hydrolysis, nH 7)	Combustible; Fire produce toxic fumes.
Phthalates		278			Endocrine disrupting and genotoxic effect to human cells (DNA damage, 216 µmol/L):	n.r.		
		222	1.08 ^b	295	Ecotoxicity: Opossum shrimp, LC50,10.3mg/L;		4.6 d; 106 d (hydrolysis, pH 8)	Irritant; Heating emits acrid smoke.
	Diethyl				BCF: 117 (bluegill sunfish);	n.r.		
	Philiade				Acute toxicity: Rat, LC50 >4.64 mg/L(inhalation); Germ cell			
		278		340	Ecotoxicity: Zebrafish, LC50, 2.2 mg/L; BCF:176 (Cyprinus carpio);		42 h-	Heating emits acrid fumes.
	Dibutyl phthalate		0.01		Very toxic to aquatic life;	n.r.	3.4 y	
	[11]				Acute toxicity: Mouse, LD50: 720 mg/kg(iv);		(nyaroiysis, pH 7)	
	Benzyl butyl	312 (Ecotoxicity: Pimephales promelas, LC50, 2.1 mg/L (48h); Very toxic		35 h; 1.4 y (bydrolysis	Heating emits irritating
			0.003	370	to aquatic life with long lasting effects; Endocrine disruptor,	n.r.		
	pricialate				carcinogenicity, reproductive toxicity and neurotoxicity; A		pH 7)	fumes.
	1-Hexyl-3-							
Ionic liquid	m-	312	7.5	n.r.	Skin, respiratory, eye irritation or damage.	n.r.	n.r.	n.r.
	ate [12]	1						
		DCM			Ecotoxicity: Daggerblade Grass Shrimp, LC50, 108.5 mg/L(48h);		160 d;	Release toxic
PIM	2-INPUE, IONIC liquid, DCM [13]	85	13	40	Acute toxicity: iviouse, LDSU,43/mg/kg (IP); Animal: liver, lung, gland tumors (inhalation); Skin, eyes irritation,	n.r.	1.5 y (hydrolysis,	chloride fumes.
					chemical burns; A probably carcinogenic to human.		25°C)	
semi-IPN	Free	>4000	<0.015	>300 p	Acute toxicity: Rat, LD50 >40 g/kg (oral);	8 times	n r	Non- flammable
					Very low toxicity or non-toxicity, easy access.			and non- irritating

2-NPOE: 2-nitrophenyl octyl Ether; DEHPi: bis(2-ethylhexyl) hydrogen phosphite; DEHP: di(2-ethylhexyl) phosphate; TBoEP: tris(2-butoxyethyl) phosphate; TBP: tributyl phosphate; Mw: Molecular weight; DCM: dichloromethane; Degradation half-life: It refers to the estimated half-life of the gas-phase organic solvent in the atmosphere

through reaction with photochemically-produced hydroxyl radicals; BCF: bioconcentration factor; CNS: Central Nervous System; EC50: concentration for 50% of maximal effect; ip: intraperitoneal; iv: intravenous; n.r. means not reported. ^a <u>https://pubchem.ncbi.nlm.nih.gov/</u>(January 7, 2021); ^b <u>https://scifinder.cas.org</u> (January 7, 2021).

 Table S2 The corresponding amount of PPG4000 and TDI for semi-IPN and IPN membrane with different cross-linking degrees.

TDI (µL) PPG (g)	semi-IPN (0%)	IPN (25%)	IPN (50%)	IPN (100%)
PPG2000 (2.0 g)	0	*	*	142.2
PPG3000 (2.0 g)	0	*	*	94.8
PPG4000 (2.0 g)	0	17.7	35.5	71.1

* means not synthesized.

Table S3 Thermal profiles of the semi-IPN membranes before and after EME.

Samples		PPG molecular weights	molecular weights 20% Weight loss in Temperature (°C)		Char yield at 500 °C (%)	
	Before EME	2000	260	69	0.80	
semi-iPN ₂	After EME	2000	328	80	0.73	
	Before EME	3000	230	20	-0.85	
semi-IPN ₃	After EME	3000	260	30	-0.02	
semi-IPN ₄	Before EME	4000	243	_	0.00	
	After EME	4000	238	-5	0.00	

Table S4 EME recoveries and the percentage decrease in recovery rate (PDIRR) compared to 0 day for model basic drugs (1.0 mg L^{-1}) as a function of ambient storage time of the semi-IPN₄ membrane.

	0 day	day 0.5 day		1 day		2 days		4 days		8 days	
	Recovery (%)	Recovery (%)	PDIRR (%)								
HAL	70.45	77.01	-9.30	64.18	8.90	63.17	10.33	64.15	8.94	62.58	11.18
FLU	83.14	81.33	2.17	78.15	5.99	72.66	12.61	75.38	9.33	79.66	4.19
SER	94.01	96.91	-3.08	89.70	4.59	86.33	8.17	87.96	6.43	86.14	8.37

Scheme S1 Chemical structures, log P and pKa values of the model basic analytes.

Scheme S2 Chemical structures, log P and pKa values of the model acidic analytes.

Fig. S1 Performance of membranes with different degrees of crosslinking. a) EME efficiency of IPN membrane synthesized by PPG4000 with different crosslinking degree (0%, 25%, 50%, 100%) for three basic drugs with concentration of 1.0 mg L⁻¹. b) Extraction current at each crosslinking degree during EME. EME was conducted for 20 min with 10 mM TFA as acidic solvents of donor and acceptor solution. The extraction voltage was 100 V. c) The contact angle of water droplet on the neat PP network/support. d) The contact angle of water droplet on the smooth polypropylene membrane.

Fig. S2 Linear results for detection of PPG2000. The absorbance set at 570 nm. (The absorbance at 570 nm of the reaction solution was 0.147, according to the standard curves, the mass of the leaked PPG2000 from semi-IPN₂ was 1.52 mg. The PPG2000 on the membrane before EME was 3.26 mg by subtracting the mass of the neat pp support (0.67 mg) from the mass of semi-IPN₂ (3.93 mg). PPG2000 leakage in solution was calculated to be 47 %.)

Fig. S3 Linear results for detection of PPG3000. The absorbance set at 570 nm. (The absorbance at 570 nm of the reaction solution was 0.079, according to the standard curves, the mass of the leaked PPG3000 from semi-IPN₃ was 0.816 mg. The PPG3000 on the membrane before EME was 3.68 mg by subtracting the mass of the neat pp support (0.57 mg) from the mass of semi-IPN₃ (4.25 mg). PPG3000 leakage in solution was calculated to be 22 %.)

Fig. S4 Linear results for detection of PPG4000. The absorbance set at 570 nm. (The absorbance at 570 nm of the reaction solution was 0.051, according to the standard curves, the mass of the leaked PPG4000 from semi-IPN₄ was 0.42 mg. The PPG4000 on the membrane before EME was 4.13 mg by subtracting the mass of the neat pp support (0.65 mg) from the mass of semi-IPN₄ (4.78 mg). PPG4000 leakage in solution was calculated to be 10 %.)

Fig. S5 The EME current of each acid (10 mM H_3PO_4 , HCl, HOAc, FA, TFA) as donor and acceptor solution for basic drugs. EME was conducted for 20 min and the extraction voltage was 100 V.

Fig. S6 The EME current of the basic drugs spiked urine samples with different dilution (1:1, 1:2, 1:3). EME was conducted for 20 min with 10 mM TFA as acceptor solution and the extraction voltage was 100 V.

Fig. S7 The EME current of the four acidic analytes with concentration of 1.0 mg L⁻¹ at different pH value of the donor solution (pH at 5.5, 6.0, 7.0, 8.0, 10.0, 12.0). Donor solutions of different pH values were adjusted by HCl (pH at 1.0) or NaOH (pH at 13.0) solution. EME was conducted for 20 min with NaOH (pH at 12.0) as basic solvent of acceptor solution. The extraction voltage was 100 V.

Fig. S8 Extraction time on the average recoveries of the acid analytes with a concentration of 1.0 mg L^{-1} .

Fig.S9 The EME current of each cycle. EME was conducted for 20 min with 10 mM TFA as acidic solvent of the donor and acceptor solution and the extraction voltage was 100 V in each cycle.

References:

1. F. A. Hansen, H. Jensen and S. Pedersen-Bjergaard, Anal. Chem., 2020, 92, 7, 5595–5603.

2. K. Alhooshani, C. Basheer, J. Kaur, A. Gjelstad, K. E. Rasmussen, S. Pedersen-Bjergaard and H. K. Lee, Talanta, 2011, **86**, 109-113.

3. V. Purohit and A. K. Basu, Chem. Res. Toxicol., 2000, 13, 673-692.

4. J. V. Dilley, C. A. Tyson, R. J. Spanggord, D. P. Sasmore, B. W. Nexwell and J. C. Dacre, *J. Toxicol. Environ. Health*, 1982, **9**, 587-610.

5. R. O. Beauchamp, R. D. Irons, D. E. Rickert, D. B. Couch, T. E. Hamm and J. P. Lyon, *Crit. Rev. Toxicol.*, 1983, **11**, 33-84.

6. L. Wan, B. Lin, R. Zhu, C. Huang, S. Pedersen-Bjergaard and X. Shen, Anal. Chem., 2019, 91, 8267-8273.

7. S. Pedersen-Bjergaard and K. E. Rasmussen, J. Chromatogr. A, 2006, 1109, 183-190.

8. K. F. Seip, M. Faizi, C. Vergel, A. Gjelstad and S. Pedersen-Bjergaard, Anal. Bioanal. Chem., 2014, 406, 2151-2161.

9. C. Huang, L. E. E. Eibak, A. Gjelstad, X. Shen, R. Trones, H. Jensen and S. Pedersen-Bjergaard, J. Chromatogr. A, 2014, **1326**, 7-12.

10. C. Huang, A. Gjelstad and S. Pedersen-Bjergaard, J. Membr. Sci., 2017, 526, 18-24.

11. C. Huang, X. Shen, A. Gjelstad and S. Pedersen-Bjergaard, J. Membr. Sci., 2018, 548, 176-183.

12. J. N. Sun, J. Chen and Y. P. Shi, J. Chromatogr. A, 2014, 1352, 1-7.

13. P. Nanthasurasak, H. H. See, M. Zhang, R. M. Guijt and M. C. Breadmore, *Angew. Chem., Int. Edit.*, 2019, 58, 3790-3794.