Supplementary Information for

Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure

Hochan Chang^{a‡}, Ishan Bajaj^{a‡}, Ali H. Motagamwala^a, Arun S. Somasundaram^a, George W. Huber^a, Christos T. Maravelias^{b,c}, James A. Dumesic^{a,b*}

a. Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA.

b. DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.

c. Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.

‡Both authors contributed equally, *Corresponding author E-mail: jdumesic@wisc.edu

Tables and Figures

Table S1. Material balance information for selected streams based on the flowsheet in Figure 6.

Component	Units	1	3	4	5	6	8	9
Mass flow	kg∙h⁻¹	2,000	1,355	52 <i>,</i> 270	52 <i>,</i> 290	51 <i>,</i> 939	48,256	57,346
Temperature	٥C	25	25	65	120	120	30.1	30.1
Pressure	bar	1	1	3	10	10	1	1
Glucose	kg∙h⁻¹	2,000	0	1,130	961	951	0	951
Fructose	kg∙h⁻¹	0	0	1,967	216	214	31	183
HMF	kg∙h⁻¹	0	0	35	1,042	1042	1010	37
Acetone	kg∙h⁻¹	0	22	34,475	34,475	34,475	36,966	40,986
H ₂ O	kg∙h⁻¹	0	1,333	10,960	11,431	11,431	10,249	11,363
Humins	kg∙h⁻¹	0	0	0	281	0	0	0
BP	kg∙h⁻¹	0	0	3,703	3,864	3,826	0	3,826

Component	Units	10	11	12	15	17	19
Mass flow	kg∙h⁻¹	47,208	1048.5	45,413	9,175	8,245	744
Temperature	°C	45	53.7	58	30.1	30	90
Pressure	bar	1.5	1.5	1	1	1	1
Glucose	kg∙h ⁻¹	0	0	0	152	0	122
Fructose	kg∙h ⁻¹	0	31.5	0	29	0	23
HMF	kg∙h ⁻¹	4	1005.7	4	6	0	4
Acetone	kg∙h ⁻¹	36,966	0.5	36,947	6,558	6,528	25
H ₂ O	kg∙h ⁻¹	10,238	10.8	8,462	1,818	1,718	80
Humins	kg∙h ⁻¹	0	0	0	0	0	0
BP	kg∙h ⁻¹	0	0	0	612	0	490

5,000 11 5,000 11 3,000 55,92 5,000 63	113.6 113.6 927.0 634.2	m ³ m ³ kg·h ⁻¹ kg·h ⁻¹	basis Feed Feed Feed Main	year 2009 2009 2017 1998	0.7 0.7 0.6 0.6	NREL ¹ NREL ¹ Aspen Plus NREL ²
5,000 11 5,000 11 3,000 55,92 5,000 63	113.6 113.6 927.0 634.2	m ³ m ³ kg∙h ⁻¹ kg∙h ⁻¹	Feed Feed Feed Main	2009 2009 2017 1998	0.7 0.7 0.6 0.6	NREL ¹ NREL ¹ Aspen Plus NREL ²
5,000 11 3,000 55,92 5,000 63	113.6 927.0 634.2	m³ kg∙h⁻¹ kg∙h⁻¹	Feed Feed Main	2009 2017 1998	0.7 0.6 0.6	NREL ¹ Aspen Plus NREL ²
8,000 55,92 5,000 63	927.0 634.2	kg∙h ⁻¹ kg∙h ⁻¹	Feed Main	2017 1998	0.6 0.6	Aspen Plus NREL ²
5,000 63	634.2	kg∙h⁻¹	Main	1998	0.6	NREL ²
			product			
1,627 48,25	256.1	kg∙h⁻¹	Feed	2017	-	Aspen Plus
9,000 1,79	795.4	kg∙h⁻¹	Adsorbed	2017	0.6	Aspen Plus
			water			
	175 4	kg∙h⁻¹	Feed	2017	-	Aspen Plus
	500 I,	5,500 9,175.4	5,500 9,175.4 kg·h ⁻¹	5,500 9,175.4 kg·h ⁻¹ Feed	5,500 9,175.4 kg·h ⁻¹ Feed 2017	5,500 9,175.4 kg·h ⁻¹ Feed 2017 -

 Table S2. Installed costs and other relevant parameters for the main equipment.

^a Includes the cost of adsorbent.

^b Includes the cost of pumps, heaters, condensers, and flash columns.

 Table S3. Summary of capital costs of a plant producing 8.74 kton/yr HMF.

Cost components		Total cost
		(MM\$)
Inside-battery-limits (ISBL) equipment costs		10.13
Outside-battery-limits (OSBL) equipment costs	40.0% of ISBL	4.05
Warehouse	4.0% of ISBL	0.41
Site development	9.0% of ISBL	0.91
Additional piping	4.5% of ISBL	0.46
Total direct costs (TDC)		15.96
Prorateable expenses	10.0% of TDC	1.59
Field expenses	10.0% of TDC	1.59
Home office and construction fee	20.0% of TDC	3.19
Project contingency	40.0% of TDC	6.38
Other costs (Start-up, Permits, etc.)	10.0% of TDC	1.59
Total indirect costs		14.36
Fixed capital investment (FCI)		30.32
Land and working capital	5.0% of FCI	1.52
Total capital investment (TCI)		31.84

Raw material	Total cost (MM\$/year)				
Glucose	4.100				
Acetone	0.150				
Amberlyst-15 catalyst	0.043				
Water	0.003				
Activated carbon	0.0003				
Molecular sieve adsorbent	0.020				
Enzyme	0.043				
Steam	1.420				
Cooling water	0.100				
Refrigerant	1.050				
Electricity	0.010				
Wastewater treatment	0.010				
Disposal of ash	0.080				
Total variable operating costs	7.039				
Total fixed operating costs ^a	1.880				
Total operating costs8.919					
^a Fixed operating cost comprises of labor costs, annual					
maintenance, and property insur	maintenance, and property insurance, which are estimated				
as 4.5% of FCI, 3% of ISBL, and 0.7% of FCI.					

Table S4. Summary of operating costs for a 8.74 kton/yr HMF plant.

Table S5. Econd	omic parameters	and assumptions.
-----------------	-----------------	------------------

Glucose price (\$/ton) a	236
Acetone price (\$/ton) ^b	800
Amberlyst-15 catalyst (\$/kg) ^{a,b}	21
Activated carbon (\$/kg) ^{a,b}	1.44
Molecular sieve adsorbent (\$/kg) ^{b,c}	3.46
Enzyme (\$/kg) ^{d,e}	50
Water (\$/ton) ª	0.3
Low pressure steam (\$/kJ) a	3.26e-06
Cooling water (\$/kJ) ª	2.12e-07
-25°C Refrigerant (\$/kJ) a	7.89e-06
Electricity price (\$/kWh) a	0.0572
Wastewater treatment cost (\$/ton) a	0.57
Ash disposal (\$/ton) ª	35.39
Plant operating hours per year ^a	7884
Plant life (year) ^a	30
Internal rate of return (%) ^a	10
Plant depreciation (year) ^a	7
Loan terms ^a	10-year loan at 8% APR
Construction time (year) ^a	3
First 12 months' expenditure a	8
Next 12 months' expenditure ^a	60
Last 12 months' expenditure ^a	32
Federal tax rate (%) a	21
Financing (% of equity) ^a	40
Start-up time (month) ^a	6
Revenue during start-up (%) ^a	50
Variable operating costs during start-up (%) ^a	75
Fixed operating costs during start-up (%) ^a	100
^a Taken from Motagamwala et al. ³	

^b Refurbished after every 3 months at 20% of the initial cost.

^c Taken from Urbaniec and Grabarczyk.⁴

 $^{\rm d}$ Refurbished after every 1.5 years at the initial cost. $^{\rm 5}$

^e Price of glucose-isomerase taken from Alibaba.⁶

Table S6. Relevant parameters for the analysis of integrated HFCS/HMF process.

130 ⁷	Corn price (\$/ton)
254 ⁸	Germ price (\$/ton)
95.2 ⁷	Corn gluten feed price (\$/ton)
435.4 ⁷	Corn gluten meal price (\$/ton)
127 ⁷	Starch price (\$/ton)
700 ⁷	HFCS-42 price (\$/ton)
1500	HMF price (\$/ton)
3393.5	Germ flow rate (kg/hr)
8952.6	Corn gluten feed flow rate (kg/hr)
2673.9	Corn gluten meal flow rate (kg/hr)
13100	Starch flow rate (kg/hr)
18410	Glucose flow rate from starch hydrolysis section (kg/hr)
8	Percentage depreciation (% of TCI)
8	Percentage depreciation (% of TCI)

Table S7. TCI for a standalone HMF plant, greenfield and brownfield HFCS/HMF plants.

HMF production (kton/yr)	TCI for standalone HMF plant (MM\$)	TCI for greenfield HFCS/HMF plant (MM\$)	TCI for brownfield HFCS/HMF plant (MM\$)
3.5	18.4	208.4	16.2
9.2	32.8	222.5	28.9
17.5	48.3	237.4	42.5

Figure S1. Image of (a) 5.7 wt% glucose (bi-phase), (b) 5.4 wt% glucose (mono-phase), and (c) 9.4 wt% fructose (mono-phase) in acetone/water (80/20, v/v) solvent. (The glucose and fructose solutions were kept at 65° C for overnight and the images were taken before the temperature quenched to room temperature.

Molar composition of dehydrated solution (%)

Figure S2. Molar composition (%) of the chemicals in the dehydrated solution.

Figure S3. (a) Linear velocity $(m \cdot s^{-1})$ of the loaded sample (mixture of glucose, fructose, and HMF) during the chromatography separation of HMF and sugar monomers, (b) Linear velocity $(m \cdot s^{-1})$ of desorbent (acetone/water (80/20, v/v) solvent) during the collection of sugar monomers from the column.

Figure S4. Retention time and chemical peaks on HPLC analysis of the dehydrated solution (Figure 2).

Figure S5. Concentration profiles of the components in the (a) extract and (b) raffinate streams. A fourzone SMB containing five columns in each zone is simulated with feed, desorbent, extract, and recycle flow rates set to 1.97 l/min, 2.22 l/min, 2.27 l/min, and 0.28 l/min, respectively. The port switching interval, column height, column diameter, inter-particle voidage, intra-particle voidage, and adsorbent particle radius are set to 350 min, 138.4 cm, 39 cm, 0.3 m³ void/m³ bed, 0.21 m³ void/m³ bead, 92.5 micron, respectively. Initially, none of the components are present in the columns. The purity and recovery of the components are calculated once cyclic steady state is achieved.

Figure S6. Comparison of variable operating costs of the proposed SMB-based and extraction-based approaches.

References

- 1 D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton and D. Dudgeon, *Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, NREL/TP-5100-47764*, 2011.
- 2 R. J. Wooley, D. Rice, F. Posey-Eddy, Z. Ma and N. H.-L. Wang, *Continuous Countercurrent Chromatographic Separator for the Purification of Sugars from Biomass Hydrolysate, NREL/TP-580-23907*, 1997.
- A. H. Motagamwala, K. Huang, C. T. Maravelias and J. A. Dumesic, *Energy Environ. Sci.*, 2019, **12**, 2212–2222.
- 4 K. Urbaniec and R. Grabarczyk, J. Clean. Prod., 2014, 65, 324–329.
- 5 E. Papadakis, S. Pedersen, A. K. Tula, M. Fedorova, J. M. Woodley and R. Gani, *Comput. Chem. Eng.*, 2017, **98**, 128–142.
- Alibaba, Glucose isomerase price, https://www.alibaba.com/product-detail/Factory-Supply-Hot-Sale-Food Additives_62219234715.html?spm=a2700.galleryofferlist.0.0.4d635475Gw8xMF, (accessed 2 June 2020).

- 7 T. Capehart, O. Liefert, D. Olson and S. Proper, USDA ERS Feed Outlook /Corn Crop Grows on Yield, 2019.
- 8 Zauba, Import data of corn germ, https://www.zauba.com/import-corn+germ-hscode.html, (accessed 22 June 2020).