Supporting Information

A Facile and Versatile Electro-Reductive System for Hydrodefunctionalization under Ambient Conditions

Binbin Huang ${ }^{\dagger}$, Lin $\mathrm{Guo}^{\dagger}{ }^{\dagger, *}$ and Wujiong Xia ${ }^{\dagger}$,*
${ }^{\dagger}$ State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China

Table Contents:

1. General and experimental details S1
1.1 General information S1
1.2 Substrates preparation S1
1.3 General procedure for the electrochemical reduction (0.4 mmol scale) S2
1.4 Procedure for the gram-scale reactions (8.0 mmol scale) S4
1.5 Some inert, partially converted or decomposed substrates S5
2. Characterization data S6
2.1 Characterization data for the unreported substrates S6
2.2 Characterization data for the products S11
3. Observations, mechanistic studies and other experiments S40
3.1 Results and observations using a graphite rod as the cathode S40
3.2 Comparison of this protocol (Method A) with Pan and Chi's protocol S41
3.3 Deuterium labelling experiments S42
3.4 Cyclic voltammetry studies S44
3.5 Competitive reductions using Method A and B S47
3.6 Detection and characterization of some by-products S50
3.7 Calculation of the current efficiencies (CEs) S53
4. References S54
5. NMR Spectra S57

1. General and experimental details

1.1 General information:

All commercially available reagents were directly used as received without further purification. All organic solvents applied in the reactions were pre-dried by distillation over appropriate drying reagents unless otherwise noted. The electrochemical reactions were performed on a DJS-292B potentiostat (made in China) in constant current mode. All yields of products refer to the isolated yields after chromatography.
${ }^{1} \mathrm{H}$ NMR (400, 500 or 600 MHz$),{ }^{13} \mathrm{C}$ NMR (101, 126 or 151 MHz) and ${ }^{19} \mathrm{~F}$ NMR (376 MHz) spectra were recorded on a Bruker AV-400 spectrometer in CDCl_{3} or $\mathrm{DMSO}-d_{6}$. For ${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$, DMSO- $d_{6}(\delta=2.50 \mathrm{ppm})$ or tetramethylsilane (TMS, $\left.\delta=0 \mathrm{ppm}\right)$ serves as the internal standard; for ${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}(\delta=77.16 \mathrm{ppm})$ or $\operatorname{DMSO}-d_{6}(\delta=39.52 \mathrm{ppm})$ serves as the internal standard. Data are reported as follows: chemical shift (in ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ quintet, hept $=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constant (in Hz), and integration.

GC analysis was performed on a 7890B/Agilent, while GC-MS analysis was performed on a 7890A-5975C/Agilent. HR-MS spectra were recorded on a Bruker Esquire LC mass spectrometer using electrospray ionization.

1.2 Substrates preparation

1.2.1 Substrates directly obtained from commercial sources:

Substrate	CAS No.	Substrate	CAS No.	Substrate	CAS No.
$\mathbf{1 - B r}$	$573-17-1$	$\mathbf{1 7 - B r}$	$86499-96-9$	$\mathbf{6 - C l}$	$54453-93-9$
$\mathbf{2 - B r}$	$1714-29-0$	$\mathbf{1 8 - B r}$	$4876-10-2$	$\mathbf{3 7 - C l}$	$90-99-3$
$\mathbf{3 - B r}$	$92-66-0$	$\mathbf{2 0 - B r}$	$2675-79-8$	$\mathbf{3 9 - C l}$	$202409-33-4$
$\mathbf{4 - B r}$	$1607-57-4$	$\mathbf{2 1 - B r}$	$86-76-0$	$\mathbf{4 6 - B o c}$	$75400-67-8$
$\mathbf{5 - B r}$	$29488-24-2$	$\mathbf{2 2 - B r}$	$1564-64-3$	$\mathbf{4 6 - M e}$	$603-76-9$
$\mathbf{6 - B r}$	$89978-52-9$	$\mathbf{3 - I}$	$1591-31-7$	$\mathbf{6 0 - C N}$	$40817-08-1$
$\mathbf{7 - B r}$	$83664-33-9$	$\mathbf{2 5 - I}$	$132034-89-0$	$\mathbf{6 1 - C N}$	$3029-30-9$
$\mathbf{8 - B r}$	$63996-36-1$	$\mathbf{2 6 - I}$	$502161-03-7$	$\mathbf{6 4 - A z o}$	$112809-51-5$
$\mathbf{1 5 - B r}$	$1940-57-4$	$\mathbf{2 7 - I}$	$211029-67-3$	$\mathbf{6 5 - A z o}$	$120511-73-1$
$\mathbf{1 6 - B r}$	$35081-45-9$	$\mathbf{3 - C l}$	$2051-62-9$	$\mathbf{6 6 - A z o}$	$23593-75-1$
				3-Br-I	$105946-82-5$

1.2.2 Substrates acquired after brief synthesis (generally in 5.0 mmol scale):

Substrate(s)/Data ref.	Method description
$9-\mathrm{Br}^{[1]}$	as described in ref. [1]
10-Br, ${ }^{[2]}$ 24-I, ${ }^{[3]} 35-\mathrm{Cl}, 38-\mathrm{Cl}, 42-\mathrm{F}^{[4]}$	acyl chloride (1.0 eq.)/amine (1.05 eq.)/TEA (1.2 eq.)/EtOAc $/ 0^{\circ} \mathrm{C}-$ r. t. $/ 1-4 \mathrm{~h}$
11-Br, ${ }^{[5]} 11-\mathrm{I},{ }^{[5]} 11-\mathrm{Cl},{ }^{[5]} \mathbf{4 0 - F},{ }^{[5]} 59-\mathrm{CN}^{[6]}$	sulfonyl or acyl chloride (1.0 eq.)/dimethyl amine (aq., 5 eq.) $/ \mathrm{THF} / 0^{\circ} \mathrm{C}-$ r. t. $/ 1 \mathrm{~h}$
12-Br, $13-\mathrm{Br}, 14-\mathrm{Br}, 28-\mathrm{I},{ }^{[7]} 55-\mathrm{Bz}^{[8]}$	acid (1.0 eq.)/alcohol (1.0 eq.)/DCC (1.0 eq.)/ DMAP (0.1 eq.)/DCM/r. t./overnight
19-Br, ${ }^{[9]} 19-\mathrm{I},{ }^{[10]} \mathbf{1 9 - C l},{ }^{[11]} \mathbf{3 6 - C l}$	phenol (1.0 eq.)/bromide (1.2 eq.) $/ \mathrm{K}_{2} \mathrm{CO}_{3}(2.0$ eq.) $/ \mathrm{MeCN} /$ r. t. or $60^{\circ} \mathrm{C} / 4 \mathrm{~h}$
$23-\mathrm{Br}^{[12]}$	as described in ref. [12]
29-I	as described in ref. [13]
30-[${ }^{[14]}$	as described in ref. [14]
31-[${ }^{155}$	as described in ref. [15]
32-[${ }^{[16]}$	as described in ref. [16]
$33-{ }^{[17]}$	as described in ref. [17]
34-[${ }^{[18]}$	as described in ref. [18] (hetero) aryl bromide (1.0 eq.)/boronic acid (1.5
41-F, ${ }^{[19]} \mathbf{4 3 - F},{ }^{[20]} \mathbf{8 - C N}{ }^{[21]}$	eq.) $/ \mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{eq}.) / \mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%) /$ $/ \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}=3: 1 / 80^{\circ} \mathrm{C} /$ overnight
44-Ts, ${ }^{[22]} \mathbf{4 5 - T s},{ }^{[23]} 48-\mathrm{Ts},{ }^{[23]}$ 49-Ts	$\begin{aligned} & \text { amine }(1.0 \text { eq. }) / \mathrm{TsCl}(1.1 \text { eq. }) / \mathrm{TEA}(1.5 \text { eq. }) / \mathrm{DCM} / \\ & 0^{\circ} \mathrm{C}-\text { r. t. } / 1-4 \mathrm{~h} \end{aligned}$
$\begin{aligned} & \text { 46-Ts, }{ }^{[23]} \mathbf{4 6 - N s},{ }^{[23]} \mathbf{4 6 - B z},{ }^{[24]} \mathbf{4 6 - B n},{ }^{[24]} \mathbf{4 7 -} \\ & \text { Ts }^{[25]} \end{aligned}$	indole (1.0 eq.)/sulfonyl, acyl chloride or benzylic bromide (1.2 eq.)/KOH (3.0 eq.) $/ \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(10$ mol\%)/DCM/ $0{ }^{\circ} \mathrm{C}-$ r. t. $/ 10 \min -3 \mathrm{~h}$
$\mathbf{5 0 - T s}{ }^{[26]}$	as described in ref. [26]
51-Ts	$\operatorname{amine}(1.0 \mathrm{eq}.) / \mathrm{TsCl}(2.2 \mathrm{eq}.) / \mathrm{TEA}(3.0 \mathrm{eq}$. DMAP (0.1 eq.) $/ D C M / 0^{\circ} \mathrm{C}-$ r. t. $/ 24 \mathrm{~h}$
$\begin{aligned} & \mathbf{5 2 - T s},{ }^{[27]} \quad \mathbf{5 3 - T s},{ }^{[27]} \mathbf{5 4 - T s}, \quad \mathbf{5 5 - T s},{ }^{[28]} \quad \mathbf{5 6 -} \\ & \mathbf{T s},{ }^{[29]} \mathbf{5 7 - T s}{ }^{[30]} \end{aligned}$	phenol or alcohol (1.0 eq.)/TsCl (1.1 eq.)/TEA (1.5 eq.)/DMAP (0.1 eq.)/DCM/r. t./overnight
53-Tf ${ }^{[31]}$	as described in ref. [31]
58-Ts-Bz ${ }^{[32]}$	as described in ref. [32]
62-CN, ${ }^{[33]}$ 63-CN ${ }^{[34]}$	as described in ref. [35]

1.3 General procedure for the electrochemical reduction (0.4 mmol scale)

$$
\begin{aligned}
& \mathrm{R}=\mathrm{X} \xrightarrow{\mathrm{Et}_{3} \mathrm{~N}\left(4-12 \text { equiv), } \mathrm{Et}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})\right.} \mathrm{R}=\mathrm{H} \\
& \text { n-X, } 0.4 \mathrm{mmol} \\
& \text { Method A: DMSO/EtOH (} 2.0 \mathrm{~mL} / 2.0 \mathrm{~mL} \text {) } \quad \mathbf{n}-\mathbf{H} \\
& \text { Method B: DMSO (} 4.0 \mathrm{~mL} \text {) } \\
& \text { Pt | Pt, time/current, air, r. t. }
\end{aligned}
$$

To a 25 mL three-necked flask was added the substrate $\mathbf{n}-\mathbf{X}(0.4 \mathrm{mmol})$ and electrolyte $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ $(91.9 \mathrm{mg}, 0.4 \mathrm{mmol})$, followed by 4.0 mL solvent (Method A: $\mathrm{DMSO}: \mathrm{EtOH}=1: 1 /$ Method B: DMSO $)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.22-0.67 \mathrm{~mL}, 1.6-4.8 \mathrm{mmol}$, depending on the specific current and reaction time, see Table S1 for their relationship). Subsequently, the flask was equipped with two platinum plate electrodes $(10 \times 10 \times 0.2 \mathrm{~mm})$, the distance between which was approximately 2 cm . To minimize the evaporation of the alcohol co-solvent and $\mathrm{Et}_{3} \mathrm{~N}$, the system was closed with a septum with a needle through it (see Fig. S1, it is worth noting that reactions conducted in open flask also provided identical results). The constant current (8,16 or 24 mA) electrolysis was then performed at room temperature under air atmosphere with vigorous stirring for the indicated time as monitored by TLC or GC-MS analysis (for the 16 mA electrolysis, the voltage was generally around 10 V). Upon completion, the reaction mixture was poured into brine and extracted with EtOAc for three times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was then removed under reduced pressure. The resulting mixture was purified by column chromatography on silica gel (eluted with $\mathrm{EtOAc} / \mathrm{PE}$) to afford the desired product $\mathbf{n}-\mathbf{H}$.

Table S1. Relationship among the applied current, reaction time and amount of $\mathrm{Et}_{3} \mathrm{~N}$.

Entry	Constant current	Reaction time	Amount of $\mathrm{Et}_{3} \mathrm{~N}$
1	16 mA	$\mathrm{t} \leq 12 \mathrm{~h}$	4 equiv, 0.22 mL
2		$12 \mathrm{~h}<\mathrm{t} \leq 24 \mathrm{~h}$	8 equiv, 0.44 mL
3	8 mA	$\mathrm{t} \leq 24 \mathrm{~h}$	4 equiv, 0.22 mL
4		$\mathrm{t} \leq 8 \mathrm{~h}$	4 equiv, 0.22 mL
5	24 mA	$8 \mathrm{~h}<\mathrm{t} \leq 16 \mathrm{~h}$	8 equiv, 0.44 mL
6		$16 \mathrm{~h}<\mathrm{t} \leq 24 \mathrm{~h}$	12 equiv, 0.67 mL

Fig. S1 Setup for the 0.4 mmol scale reactions

1.4 Procedure for the gram-scale reactions ($\mathbf{8 . 0} \mathbf{~ m m o l}$ scale)

To a 50 mL three-necked flask was added substrate $\mathbf{n}-\mathbf{X}(8.0 \mathrm{mmol})$ and electrolyte $\mathrm{Et}_{4} \mathrm{NClO}_{4}$ $(0.919 \mathrm{~g}, 4.0 \mathrm{mmol})$, followed by the reaction solvent $(40 \mathrm{~mL}, 0.2 \mathrm{M}$ for the substrate; DMSO:EtOH $=1: 1$ or DMSO $)$ and $\mathrm{Et}_{3} \mathrm{~N}(4.44 \mathrm{~mL}, 32 \mathrm{mmol})$. Subsequently, the flask was equipped with two platinum plate electrodes $(10 \times 10 \times 0.2 \mathrm{~mm})$, the distance between which was approximately 3 cm . To minimize the evaporation of the alcohol co-solvent and $\mathrm{Et}_{3} \mathrm{~N}$, the system was closed with a needle-through-septum (see Fig. S2). The constant current (16 or 32 mA) electrolysis was then performed at room temperature under air atmosphere with vigorous stirring for the indicated time (monitored by TLC or GC-MS analysis). Upon completion, the reaction mixture was poured into brine and extracted with EtOAc for three times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was then removed under reduced pressure. The resulting mixture was purified by column chromatography on silica gel (eluted with $\mathrm{EtOAc} / \mathrm{PE}$) to afford the desired product $\mathbf{n - H}$.

Fig. S2 Setup for 8.0 mmol scale reaction

1.5 Some inert, partially converted or decomposed substrates

decomposition

decomposition

inert

inert

inert

2. Characterization data

2.1 Characterization data for the unreported substrate

4-phenylbutyl 4-bromobenzoate (12-Br)
Colorless oil, obtained from the condensation of 4-bromobenzoic acid (CAS: 586-76-5) and 4-phenylbutan-1-ol (CAS: 3360-41-6).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.06,142.08,131.82,131.23,129.42,128.54,128.52,128.10$, 126.03, 65.26, 35.59, 28.39, 27.92.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3026, 2948, 2855, 1725, 1580, 1395, 1270, 1124, 1013, 850, 758, 699.
GC-MS (EI): 334.1, 332.0, 185.0, 183.0, 132.1, 104.1, 91.1.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNaO}_{2}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}: 355.0304$, found 355.0301.

2-methylallyl 2-bromobenzoate (13-Br)
Colorless oil, obtained from the condensation of 2-bromobenzoic acid (CAS: 88-65-3) and methallyl alcohol (CAS: 513-42-8).
${ }^{1} \mathrm{H}$ NMR $\left.\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.31 \mathrm{~m}, 2 \mathrm{H}\right), 5.11$ $(\mathrm{s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 166.02,139.69,134.55,132.75,132.28,131.53,127.32,121.88$, 113.91, 69.08, 19.89

IR (KBr, cm ${ }^{-1}$): 2981, 2898, 1732, 1650, 1455, 1299, 1251, 1048, 879, 745.
GC-MS (EI): 256.0, 254.0, 185.0, 183.0, 157.0, 155.0, 104.0, 76.1, 50.1.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrO}_{2}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 255.0015$, found 255.0017 .

2-methoxyethyl 2-bromo-4-fluorobenzoate (14-Br)
Colorless oil, obtained from the condensation of 2-bromo-4-fluorobenzoic acid (CAS: 1006-41-3) and 2-methoxyethanol (CAS: 109-86-4).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{ddd}, J=8.7,6.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.2,2.6,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{tdd}, J=8.7,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.43(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.19,164.00(\mathrm{~d}, J=257.3 \mathrm{~Hz}), 133.67(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 127.99(\mathrm{~d}$, $J=3.4 \mathrm{~Hz}), 123.37(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 122.01(\mathrm{~d}, J=24.7 \mathrm{~Hz}), 114.65(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 70.41,64.71$, 59.18.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.71$.
IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2982,2930,2895,2820,1735,1595,1490,1288,1253,1117,1041,869,770,608$.
GC-MS (EI): 220.0, 218.0, 203.0, 201.0, 175.0, 173.0, 122.1, 94.1, 58.1 .
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrFO}_{3}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 276.9870$, found 276.9866.

N,N-diallyl-4-fluoro-2-iodoaniline (29-I)
Light yellow oil, obtained from the reaction between 4-fluoro-2-iodoaniline (CAS: 61272-76-2) and allyl bromide (CAS: 106-95-6).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{ddd}, J=7.9,2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.72$ $(\mathrm{m}, 2 \mathrm{H}), 5.20-5.05(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{dd}, J=6.3,1.5 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.91(\mathrm{~d}, J=247.8 \mathrm{~Hz}), 148.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 134.76,126.42(\mathrm{~d}$, $J=24.1 \mathrm{~Hz}), 124.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 118.07,115.33(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 100.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 56.74$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.57$.

IR (KBr, cm^{-1}): 3076, 3012, 2977, 2925, 2815, 1592, 1575, 1480, 1267, 1191, 990, 865, 813, 748.
GC-MS (EI): 317.0, 290.0, 248.0, 221.0, 190.2, 176.1, 148.1.

HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FIN}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 318.0149$, found 318.0149.

N -allyl-4-chloro-N-methylbenzamide (35-Cl)
Colorless oil, obtained from the condensation of 4-chlorobenzoyl chloride (CAS: 122-01-0) and Nallylmethylamine (CAS: 627-37-2).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.31(\mathrm{~m}, 4 \mathrm{H}), 5.95-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.20$ - $3.72(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.79(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.15,170.30,135.77,134.65,132.86,132.53,128.72,128.26$, 118.01, 117.67, 53.99, 50.17, 37.01, 33.29.

IR (KBr, cm^{-1}): 3081, 2978, 2925, 1631, 1400, 1262, 1090, 1022, 840, 758.
GC-MS (EI): 211.1, 209.1, 196.0, 194.0, 141.0, 139.0, 111.0, 75.0.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClNO}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 210.0680$, found 210.0682 .

1-chloro-4-(cyclopropylmethoxy)naphthalene (36-Cl)
Colorless oil, obtained from the reaction between 4-chloro-1-naphthol (CAS: 604-44-4) and cyclopropylmethyl bromide (CAS: 7051-34-5).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{ddd}, J=$ $8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.75-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.50-0.42(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.11,131.44,127.54,126.94,125.93,125.90,124.27,123.10$, $122.78,104.96,73.12,10.34,3.30$.

IR (KBr, cm^{-1}): 3080, 3008, 2919, 2870, 1507, 1458, 1380, 1262, 1240, 1079, 805, 762, 660.
GC-MS (EI): 234.1, 232.1, 180.0, 178.0, 151.0, 149.0, 115.0, 55.1.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClO}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 233.0728$, found 233.0735.

(S)-2-chloro-1-(3,4-dihydroquinolin-1(2H)-yl)propan-1-one (38-Cl)

Colorless oil, obtained from the condensation of 1,2,3,4-tetrahydroquinoline (CAS: 635-46-1) and 2-chloropropionyl chloride (CAS: 7623-09-8).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.04(\mathrm{~m}, 4 \mathrm{H}), 4.89(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=13.2,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{dt}, J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.16-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=6.5$ Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 169.58,138.57,134.55,128.84,126.72,126.33,123.82,50.64$, 43.41, 26.62, 23.99, 21.80.

IR (KBr, cm^{-1}): 2951, 2879, 2850, 1670, 1489, 1395, 1201, 1069, 767, 655.
GC-MS (EI): 225.2, 223.2, 188.2, 160.2, 132.2, 117.1, 77.1.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClNO}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 224.0837$, found 224.0835.

4-methyl-N-octyl-N-(pyridin-4-yl)benzenesulfonamide (49-Ts)
Light yellow oil, obtained from the condensation of N-octylpyridin-4-amine (CAS: 64690-19-3) and p-toluenesulfonyl chloride (CAS: 98-59-9).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55-8.46(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.10$ $-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.14(\mathrm{~m}, 10 \mathrm{H})$, $0.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.77,147.28,144.09,134.98,129.75,127.50,121.09,49.02$, 31.77, 29.17, 29.05, 28.06, 26.47, 22.68, 21.63, 14.15.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3025,2955,2928,2857,1581,1496,1356,1170,1089,995,902,726,658,575$, 549.

GC-MS (EI): 360.2, 296.1, 261.1, 205.2, 155.0, 107.1, 91.1, 78.0, 65.0.
HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 361.1944$, found 361.1949.

N-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-4-methyl-N-tosylbenzenesulfonamide (51-Ts)
Light yellow solid, obtained from the condensation of 3,4-methylenedioxyphenethylamine (CAS: 1484-85-1) and p-toluenesulfonyl chloride (CAS: 98-59-9).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.76-6.59(\mathrm{~m}, 3 \mathrm{H}), 5.93$ $(\mathrm{s}, 2 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.01,146.65,145.19,137.25,131.53,129.95,128.45,122.14$, $109.52,108.68,101.19,50.76,36.59,21.92$.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2970,2922,2875,2841,1542,1509,1375,1249,1165,1086,856,810,741,667$, 551.

GC-MS (EI): 473.1, 338.0, 155.0, 148.1, 135.0, 91.1, 77.0, 65.0.
HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNaO}_{6} \mathrm{~S}_{2}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}: 496.0859$, found 496.0866.

7-methoxynaphthalen-2-yl 4-methylbenzenesulfonate (54-Ts)
Colorless crystal, obtained from the condensation of 7-methoxy-2-naphthol (CAS: 5060-82-2) and p-toluenesulfonyl chloride (CAS: 98-59-9).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.51,148.00,145.43,135.05,132.66,129.88,129.50,129.34$, $128.67,127.48,119.45,119.05,118.69,105.90,55.49,21.84$.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2962, 1630, 1518, 1470, 1372, 1252, 1176, 1129, 1095, 886, 851, 738.
GC-MS (EI): 328.0, 281.0, 236.1, 207.0, 173.0, 145.1, 102.0, 91.1.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 329.0842$, found 329.0843 .

2.2 Characterization data for the products

phenanthrene (1-H) ${ }^{[36]}$
White solid.
$68.4 \mathrm{mg}, 96 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$1.397 \mathrm{~g}, 98 \%$ yield (from $8.0 \mathrm{mmol} \mathbf{1 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 72 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.75$ $-7.61(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 132.16,130.42,128.70,127.05,126.69,122.79$.

pyrene (2-H) ${ }^{[36]}$
Light yellow solid.
$74.4 \mathrm{mg}, 92 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.09(\mathrm{~s}, 4 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 131.30,127.53,125.99,125.08,124.83$.

1,1'-biphenyl (3-H) ${ }^{[37]}$
White solid.
$50.6 \mathrm{mg}, 82 \%$ yield (from $0.4 \mathrm{mmol} 3-\mathrm{Br}, 24 \mathrm{~mA} / \mathrm{cm}^{2}, 24 \mathrm{~h}, 12.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$53.7 \mathrm{mg}, 87 \%$ yield (from $0.4 \mathrm{mmol} 3-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$56.7 \mathrm{mg}, 92 \%$ yield (from $0.4 \mathrm{mmol} 3-\mathrm{I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$54.9 \mathrm{mg}, 89 \%$ yield (from $0.4 \mathrm{mmol} 3-\mathrm{I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$56.1 \mathrm{mg}, 91 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{3 - C l}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.40,128.89,127.39,127.31$.

ethene-1,1,2-triyltribenzene (4-H) ${ }^{[38]}$
White solid.
$100.4 \mathrm{mg}, 98 \%$ yield (from $0.4 \mathrm{mmol} 4-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.05$

- $6.99(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.59,142.76,140.53,137.54,130.54,129.70,128.77,128.35$, $128.32,128.11,127.76,127.65,127.55,126.89$.

2-phenylthiophene (5-H) ${ }^{[37]}$
White solid.
$57.7 \mathrm{mg}, 90 \%$ yield (from $0.4 \mathrm{mmol} 5-\mathrm{Br}, 24 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 12.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (dd, $J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.56,134.53,129.02,128.14,127.60,126.09,124.94,123.21$.

ethyl isonicotinate (6-H) ${ }^{[39]}$
Light yellow oil.
$43.5 \mathrm{mg}, 72 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$21.2 \mathrm{mg}, 35 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$35.7 \mathrm{mg}, 59 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 - C l}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.19,150.65,137.69,122.92,61.90,14.28$.

2-(benzyloxy)pyridine (7-H) ${ }^{[40]}$
Colorless oil.
$68.1 \mathrm{mg}, 92 \%$ yield (from $0.4 \mathrm{mmol} 7-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 20 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{ddd}, J=5.0,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.4,7.1,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{ddd}, J=7.1,5.1,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{dt}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.76,146.97,138.76,137.49,128.60,128.09,127.95,117.05$, 111.47, 67.65.

2-phenylpyridine (8-H) ${ }^{\text {[37] }}$
Colorless oil.
$57.7 \mathrm{mg}, 93 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{8 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$55.3 \mathrm{mg}, 89 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{8 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$56.5 \mathrm{mg}, 91 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{8 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 3 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.69(\mathrm{~m}$, $2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.58,149.80,139.52,136.85,129.06,128.86,127.02,122.21$, 120.68.

(E)-1-phenylethan-1-one O-methyl oxime (9-H) ${ }^{[1]}$

Colorless oil.
$48.4 \mathrm{mg}, 81 \%$ yield (from $0.4 \mathrm{mmol} 9-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 20 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.80,136.76,129.15,128.53,126.16,62.04,12.79$.

morpholino(phenyl)methanone (10-H) ${ }^{[41]}$
Colorless oil.
$65.0 \mathrm{mg}, 85 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 0 - B r}, 24 \mathrm{~mA} / \mathrm{cm}^{2}, 24 \mathrm{~h}, 12.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$61.2 \mathrm{mg}, 80 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 0 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.89-3.57(\mathrm{~m}, 6 \mathrm{H}), 3.55-3.32(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 170.46,135.34,129.92,128.60,127.12,66.92,48.25,42.58$.

N, N-dimethylbenzenesulfonamide (11-H) ${ }^{[5]}$
White solid.
$63.7 \mathrm{mg}, 86 \%$ yield (from $0.4 \mathrm{mmol} 11-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 24 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$14.1 \mathrm{mg}, 19 \%$ yield (from $0.4 \mathrm{mmol} 11-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$65.9 \mathrm{mg}, 89 \%$ yield (from $0.4 \mathrm{mmol} 11-\mathrm{I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$25.9 \mathrm{mg}, 35 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 1 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$62.2 \mathrm{mg}, 84 \%$ yield (from $0.4 \mathrm{mmol} 11 \mathbf{- C l}, 24 \mathrm{~mA} / \mathrm{cm}^{2}, 20 \mathrm{~h}, 12.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 2.69$
($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.47,132.82,129.12,127.81,38.04$.

4-phenylbutyl benzoate (12-H) ${ }^{[42]}$
Colorless oil.
$80.4 \mathrm{mg}, 79 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 2 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-$ 1.75 (m, 4H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.79,142.16,132.98,130.54,129.67,128.55,128.50,128.47$, 125.99, 64.97, 35.62, 28.46, 27.96.

2-methylallyl benzoate (13-H) ${ }^{[43]}$
Colorless oil.
$49.3 \mathrm{mg}, 70 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 3 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.08(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.41,140.14,133.14,130.32,129.77,128.53,113.09,68.28$, 19.74.

2-methoxyethyl 4-fluorobenzoate (14-H)
Colorless oil.
$57.9 \mathrm{mg}, 73 \%$ yield (from $0.4 \mathrm{mmol} 14-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.42(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.93(\mathrm{~d}, J=253.7 \mathrm{~Hz}), 165.77,132.40(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 126.42(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}), 115.62(\mathrm{~d}, J=21.9 \mathrm{~Hz}) .70 .66,64.28,59.20$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.67$.
IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2980, 2931, 2895, 2825, 1734, 1598, 1482, 1265, 1117, 1040, 845, 771, 650.
GC-MS (EI): 168.1, 140.0, 123.1, 95.1, 75.1, 58.1.
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FO}_{3}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 199.0765$, found: 199.0761.

9H-fluorene (15-H) ${ }^{[44]}$
White solid.
$63.2 \mathrm{mg}, 95 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 5 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dt}, J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.35,141.85,126.85,126.83,125.15,120.00,37.04$.

1-(4-(benzyloxy)phenyl)propan-1-one (16-H) ${ }^{[45]}$
White solid.
$83.6 \mathrm{mg}, 87 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 6 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$69.2 \mathrm{mg}, 72 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 6 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 3 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.13$ $(\mathrm{s}, 2 \mathrm{H}), 2.95(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 199.58,162.59,136.39,130.39,130.36,128.82,128.35,127.59$, $114.67,70.25,31.54,8.56$.

1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (17-H) ${ }^{\text {[46] }}$
White solid.
$62.5 \mathrm{mg}, 97 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 7 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.52,137.99,134.43,129.97,127.59,125.79,121.95,32.88$, 30.45, 28.64.

4-methylquinolin-2(1H)-one (18-H) ${ }^{\text {[47] }}$
White solid.
$60.5 \mathrm{mg}, 95 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 8 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.65(\mathrm{br}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21$ (m, 1H), $6.60(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.62,149.38,138.44,130.59,124.48,122.58,120.66,120.61$, 116.80, 19.28.

(benzyloxy)benzene (19-H) ${ }^{\text {[9] }}$
White solid.
$63.4 \mathrm{mg}, 86 \%$ yield (from $0.4 \mathrm{mmol} 19-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$65.6 \mathrm{mg}, 89 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 9 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$62.6 \mathrm{mg}, 85 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 9 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$59.7 \mathrm{mg}, 81 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{1 9 - C l}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.07$

- $6.96(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.90,137.18,129.61,128.71,128.06,127.61,121.05,114.95$, 70.00 .

1,2,3-trimethoxybenzene (20-H) ${ }^{[36]}$
Colorless solid.
$60.6 \mathrm{mg}, 90 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 0 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.85$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.64,138.23,123.75,105.32,60.92,56.16$.

dibenzo[b,d]furan (21-H) ${ }^{[44]}$
White solid.
$63.2 \mathrm{mg}, 94 \%$ yield (from $0.4 \mathrm{mmol} 21-\mathrm{Br}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{dt}, J=8.2,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (ddd, $J=8.3,7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 156.30,127.25,124.34,122.80,120.77,111.79$.

anthracene (22-H) ${ }^{[36]}$
Light yellow solid.
$41.3 \mathrm{mg}, 58 \%$ yield (from $0.4 \mathrm{mmol} 22-\mathrm{Br}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 2 \mathrm{H}), 8.06-7.99(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.82,128.30,126.35,125.47$.

9,10-dihydroanthracene (22-H') ${ }^{[44]}$
White solid.
$14.4 \mathrm{mg}, 20 \%$ yield (from $0.4 \mathrm{mmol} 22-\mathrm{Br}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$46.9 \mathrm{mg}, 65 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 2 - B r}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.76,127.46,126.16,36.24$.

1-((2R,4S,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert-
butyldimethylsilyl)oxy)methyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (23-H)
Light yellow solid.
$102.3 \mathrm{mg}, 56 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 3 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 24 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$63.9 \mathrm{mg}, 35 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 3 - B r}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.38(\mathrm{br}, 1 \mathrm{H}), 7.89(\mathrm{dt}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J$ $=12.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dt}, J=12.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}$, $6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.41,150.32,140.35,102.28,87.89,85.32,71.29,62.53,41.98$, 26.00, 25.85, 18.48, 18.11, -4.49, -4.74, -5.38, -5.45.

IR (KBr, cm^{-1}): 2958, 2928, 2857, 1701, 1470, 1389, 1254, 1120, 839, 775.
GC-MS (EI): 399.1, 369.2, 355.1, 287.1, 267.1, 155.1, 89.0, 73.0, 59.0.
HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}_{2}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}: 479.2368$, found 479.2366.

N-phenylbenzamide (24-H, 58-Bz) ${ }^{[44]}$
White solid.
$71.0 \mathrm{mg}, 90 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 4 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$61.5 \mathrm{mg}, 78 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 4 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 5 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$63.1 \mathrm{mg}, 80 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 8 - T s}-\mathrm{Bz}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}$, DMSO)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51$
$-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.92,138.09,135.17,131.97,129.23,128.92,127.17,124.72$, 120.39 .

dibenzo [b,d]thiophene (25-H) ${ }^{[48]}$
White solid.
$70.7 \mathrm{mg}, 96 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 5 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 139.53,135.65,126.82,124.47,122.93,121.70$.

9-phenyl-9H-carbazole (26-H) ${ }^{[49]}$
Light yellow solid.
$75.9 \mathrm{mg}, 78 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 6 - I}, 24 \mathrm{~mA} / \mathrm{cm}^{2}, 20 \mathrm{~h}, 12.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H})$,
$7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 141.00,137.82,129.99,127.57,127.26,126.04,123.45,120.43$, 120.02, 109.89.

tert-butyl pyridin-4-ylcarbamate (27-H) ${ }^{[50]}$
White solid.
$66.8 \mathrm{mg}, 86 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 7 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47-8.35(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{br}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.46,150.20,146.50,112.57,81.45,28.31$.

benzyl benzoate (28-H) ${ }^{[9]}$
Colorless oil.
$64.5 \mathrm{mg}, 76 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 8}-\mathrm{I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$28.9 \mathrm{mg}, 34 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 8 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 7 \mathrm{H}), 5.38$ (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.56,136.22,133.15,130.30,129.84,128.73,128.50,128.37$, 128.29, 66.80.

N, N-diallyl-4-fluoroaniline (29-H) ${ }^{[51]}$
Colorless oil.
$47.4 \mathrm{mg}, 62 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{2 9 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.94-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.26$ $-5.08(\mathrm{~m}, 4 \mathrm{H}), 3.97-3.80(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.48,134.12,116.29,115.58,115.43,113.65,53.52$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-129.54$.

2-(benzyloxy)tetrahydro-2H-pyran (30-H) ${ }^{[52]}$

Colorless oil.
$65.4 \mathrm{mg}, 85 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{3 0 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 20 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$) ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=12.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 1 \mathrm{H})$, $1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.41,128.49,127.94,127.63,97.84,68.93,62.24,30.69,25.61$, 19.48.

4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (31-H) ${ }^{\text {[53] }}$
Colorless oil
$64.5 \mathrm{mg}, 79 \%$ yield (from $0.4 \mathrm{mmol} 31-\mathrm{I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 1.36$ (s, 12H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 134.88,131.39,127.84,83.91,25.01$.

((pentyloxy)methyl)benzene (32-H) ${ }^{[54]}$
Colorless oil.
$40.7 \mathrm{mg}, 57 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{3 2 - I}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 24 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.44$ $(\mathrm{m}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 138.85,128.48,127.76,127.60,72.99,70.67,29.61,28.51,22.69$, 14.20.

ethane-1,1-diyldibenzene (33-H) ${ }^{[55]}+$ ethene-1,1-diyldibenzene (33-H') ${ }^{[55]}$
Colorless oil, inseparable mixture.
51.4 mg in total ($0.45: 1$ by ${ }^{1} \mathrm{H} \mathrm{NMR}$), 23% and 48% respective yield (from $0.4 \mathrm{mmol} \mathbf{3 3 - I}, 16$ $\mathrm{mA} / \mathrm{cm}^{2}, 16 \mathrm{~h}, 8.0$ equiv $\left.\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}\right)$
45.7 mg in total (3.92: 1 by ${ }^{1} \mathrm{H} \mathrm{NMR}$), 50% and 13% respective yield (from $0.4 \mathrm{mmol} 33-\mathrm{I}, 16$ $\mathrm{mA} / \mathrm{cm}^{2}, 3 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.03(\mathrm{~m}, 14.5 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 0.45 \mathrm{H}), 1.67-$ $1.62(\mathrm{~m}, 1.35 \mathrm{H})($ Method A).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.12(\mathrm{~m}, 49.2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.3 \mathrm{~Hz}, 3.92 \mathrm{H})$, $1.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 11.76 \mathrm{H})($ Method B).

tert-butyl pent-4-en-1-ylcarbamate (34-H) ${ }^{[56]}$
Colorless oil.
$40.0 \mathrm{mg}, 54 \%$ yield (from $0.4 \mathrm{mmol} 34-\mathrm{I}, 24 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 12.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dt}, J=17.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.2$
$\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.07,137.98,115.21,79.18,40.19,31.11,29.33,28.54$.

N -allyl-N-methylbenzamide (35-H) ${ }^{[41]}$
Colorless oil.
$36.5 \mathrm{mg}, 52 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{3 5 - C l}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.01-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.25$ $-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.79(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.29,136.40,133.18,132.83,129.71,128.48,127.13,126.74$, 117.62, 54.09, 50.09, 37.07, 33.14.

1-(cyclopropylmethoxy)naphthalene (36-H)
Colorless oil.
$11.9 \mathrm{mg}, 15 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{3 6 - C l}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$) $67.4 \mathrm{mg}, 85 \%$ yield (from $0.4 \mathrm{mmol} 36-\mathrm{Cl}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42-8.32(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.46$ $-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{dddd}, J=$ 13.1, 8.0, 6.7, 2.6 Hz, 1H), $0.75-0.67(\mathrm{~m}, 2 \mathrm{H}), 0.50-0.42(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 155.00, 134.66, 127.54, 126.47, 126.01, 125.97, 125.20, 122.36, 120.22, 104.99, 72.89, 10.47, 3.28.

IR (KBr, cm^{-1}): 3075, 3000, 2921, 2869, 1510, 1457, 1396, 1269, 1235, 1096, 795, 770.
GC-MS (EI): 198.1, 181.0, 144.0, 127.1, 115.1, 89.0, 55.1.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 199.1117$, found 199.1119.

diphenylmethane (37-H) ${ }^{[57]}$
Colorless oil.
$59.9 \mathrm{mg}, 89 \%$ yield (from $0.4 \mathrm{mmol} 37-\mathrm{Cl}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$61.9 \mathrm{mg}, 92 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{3 7 - C l}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 3 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.25,129.07,128.59,126.20,42.07$.

1-(3,4-dihydroquinolin-1(2H)-yl)propan-1-one (38-H)
Colorless oil.
$74.2 \mathrm{mg}, 98 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{3 8 - C l}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-6.95(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.51(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 173.83,139.31,128.55,126.12,125.22,124.72,43.10,27.99,26.94$, 24.23, 10.22.

IR (KBr, cm ${ }^{-1}$): 2978, 2933, 2875, 2845, 1656, 1490, 1384, 1292, 1200, 1062, 769.
GC-MS (EI): 189.2, 160.2, 133.1, 117.1, 77.1, 57.1.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 190.1226$, found 190.1227.

6'-methyl-3-phenyl-2,3'-bipyridine (39-H)
Yellow oil.
$41.4 \mathrm{mg}, 42 \%$ yield (from $0.4 \mathrm{mmol} 39-\mathrm{Cl}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 7 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=7.7$,
$1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20$
$-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.59,154.29,150.15,148.75,139.42,138.73,137.52,136.54$, $133.05,129.59,128.72,127.71,122.56,122.45,24.28$.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2954,2856,1599,1499,1424,1375,1015,782,701$.
GC-MS (EI): 246.1, 229.1, 203.9, 176.0, 122.8, 101.8, 74.9.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 247.1230$, found 247.1232.

$\mathrm{N}, \mathrm{N}, 4$-trimethylbenzenesulfonamide (40-H) ${ }^{[5]}$
White solid.
$43.8 \mathrm{mg}, 55 \%$ yield (from $0.4 \mathrm{mmol} 40-\mathrm{F}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.59,132.41,129.72,127.87,38.05,21.61$.

4-(fluoromethyl)-N,N-dimethylbenzenesulfonamide (40-H') +
4-(difluoromethyl)-N,N-dimethylbenzenesulfonamide (40-H')
White solid, inseparable mixture.
30.9 mg in total (4:1 by ${ }^{1} \mathrm{H} \mathrm{NMR}$), 28% and 7% respective yield (from $0.4 \mathrm{mmol} \mathbf{4 0 - F}, 16 \mathrm{~mA} / \mathrm{cm}^{2}$, 12 h, 4.0 equiv $\mathrm{Et}_{3} \mathrm{~N}$, DMSO/EtOH)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=55.9 \mathrm{~Hz}, 0.25 \mathrm{H}), 5.47(\mathrm{~d}, J=47.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}$, $1.5 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.32(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 138.32(\mathrm{~d}, J=62.5 \mathrm{~Hz}), 135.68(\mathrm{~d}, J=2.6$ $\mathrm{Hz}), 128.24,128.16,127.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 126.53(\mathrm{t}, J=6.0 \mathrm{~Hz}), 113.66(\mathrm{t}, J=240.4 \mathrm{~Hz}), 83.40$ (d, $J=169.5 \mathrm{~Hz}$), 38.03.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.55,-213.91$.
GC-MS (EI): 217.1, 199.0, 173.0, 153.0, 142.1, 109.1, 91.0, 83.0, 63.0 ($\mathbf{4 0 - H}$ '); 235.1, 191.0, 170.1, 152.0, 127.1, 107.0, 101.0, 77.1 (40-H'').

HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{FNNaO}_{2} \mathrm{~S}^{+}$and $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NNaO}_{2} \mathrm{~S}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0465$ and 258.0371, found 240.0463 and 258.0368 .

4-methyl-1, 1'-biphenyl (41-H) ${ }^{[37]}$
White solid.
$6.7 \mathrm{mg}, 10 \%$ yield (from $0.4 \mathrm{mmol} 41-\mathrm{F}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$59.9 \mathrm{mg}, 89 \%$ yield (from $0.4 \mathrm{mmol} 41-\mathrm{F}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38$
$-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.33,138.52,137.15,129.62,128.85,127.14,127.12,21.22$.

4-methyl-N-phenylbenzamide (42-H) ${ }^{\text {[4] }}$
White solid.
$62.5 \mathrm{mg}, 74 \%$ yield (from $0.4 \mathrm{mmol} 42-\mathrm{F}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$56.6 \mathrm{mg}, 67 \%$ yield (from $0.4 \mathrm{mmol} 42-\mathrm{F}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 5 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.83,142.53,138.16,132.23,129.58,129.22,127.16,124.58$, 120.30, 21.63.

5-methyl-2-phenylpyridine (43-H) ${ }^{[20]}$
Colorless oil.
$48.1 \mathrm{mg}, 71 \%$ yield (from $0.4 \mathrm{mmol} 43-\mathrm{F}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 18 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.01-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 154.94,150.21,139.55,137.44,131.73,128.83,128.71,126.82$, 120.19, 18.30 .

N-benzylaniline (44-H) ${ }^{[9]}$
White solid.
$61.6 \mathrm{mg}, 84 \%$ yield (from $0.4 \mathrm{mmol} 44-\mathrm{Ts}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.71$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 148.30,139.57,129.40,128.77,127.65,127.36,117.71,112.99$, 48.47.

Diphenylamine (45-H) ${ }^{[23]}$
White solid.
$50.8 \mathrm{mg}, 75 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{4 5 - T s}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 2 \mathrm{H}), 5.72$ ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.24,129.46,121.11,117.93$.

1H-indole (46-H) ${ }^{[36]}$
Light yellow solid.
$43.6 \mathrm{mg}, 93 \%$ yield (from $0.4 \mathrm{mmol} 46-\mathrm{Ts}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 9 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$28.1 \mathrm{mg}, 60 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{4 6 - N s}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$45.0 \mathrm{mg}, 96 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{4 6 - B z}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 7 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$17.8 \mathrm{mg}, 38 \%$ yield (from 0.4 mmol 46-Boc, $16 \mathrm{~mA} / \mathrm{cm}^{2}, 11 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.51(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 135.89,127.96,124.26,122.10,120.85,119.93,111.15,102.71,$.

N-(2-(5-methoxy-1H-indol-3-yl)ethyl)acetamide (47-H) ${ }^{[58]}$
Light yellow solid.
$85.5 \mathrm{mg}, 92 \%$ yield (from $0.4 \mathrm{mmol} 47-\mathrm{Ts}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$1.654 \mathrm{~g}, 89 \%$ yield (from $8.0 \mathrm{mmol} 47-\mathrm{Ts}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 52 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.82$ $(\mathrm{m}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.35,154.15,131.71,127.85,122.98,112.68,112.50,112.17$, 100.59, 56.07, 39.90, 25.38, 23.48.

1H-benzo[d]imidazole (48-H) ${ }^{[23]}$
Light yellow solid.
$42.5 \mathrm{mg}, 90 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{4 8}-\mathbf{T s}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.49(\mathrm{br}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 141.86, 138.13, 121.68, 115.32.

N-octylpyridin-4-amine (49-H) ${ }^{\text {[59] }}$
Light yellow solid.
$65.2 \mathrm{mg}, 79 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{4 9 - T s}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 9 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19-8.09(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.35(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{td}, J=$ $7.2,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.19(\mathrm{~m}, 10 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.61,149.98,107.51,42.73,31.87,29.39,29.30,29.21,27.11$, 22.72, 14.17.

4-methyl-N-phenylbenzenesulfonamide ($\mathbf{5 0 - H}, \mathbf{5 8 - T s})^{[60]}$
Light yellow solid.
$84.1 \mathrm{mg}, 85 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 0 - T s}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 16 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$7.9 \mathrm{mg}, 8 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 8 - T s}-\mathrm{Bz}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.05$ $(\mathrm{m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.00,136.71,136.10,129.77,129.39,127.39,125.31,121.53$, 21.64.

N -(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-4-methylbenzenesulfonamide (51-H) ${ }^{[61]}$
White solid.
$115.0 \mathrm{mg}, 90 \%$ yield (from 0.4 mmol 51-Ts, $16 \mathrm{~mA} / \mathrm{cm}^{2}, 9 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.55$
$-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2H), $2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.00,146.53,143.57,136.98,131.44,129.82,127.21,121.86$, $109.09,108.55,101.09,44.46,35.59,21.64$.

[1,1'-biphenyl]-4-ol (52-H) ${ }^{[62]}$
White solid.
$59.9 \mathrm{mg}, 85 \%$ yield (from 0.4 mmol 52-Ts, $16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 155.16,140.83,134.07,128.78,128.45,126.78,126.76,115.71$.

6-hydroxy-2-naphthonitrile (53-H) ${ }^{[63]}$
Light grey solid.
$63.6 \mathrm{mg}, 94 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 3 - T s}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$61.6 \mathrm{mg}, 91 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 3 - T f}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 9 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 156.24,136.50,134.19,130.77,127.82,127.67,127.26,119.83$, 119.67, 109.96, 106.90 .

7-methoxynaphthalen-2-ol (54-H) ${ }^{\text {[64] }}$
Light yellow solid.
$30.0 \mathrm{mg}, 43 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 4}-\mathbf{T s}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}$, DMSO)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 3 \mathrm{H}), 5.34$ (s, 1H), $3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.39,154.16,136.11,129.71,129.42,124.50,116.39,115.35$, 108.95, 104.83, 55.41.

dodecan-1-ol (55-H) ${ }^{[65]}$
Colorless oil.
$71.5 \mathrm{mg}, 96 \%$ yield (from $0.4 \mathrm{mmol} 55-\mathrm{Ts}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$61.9 \mathrm{mg}, 83 \%$ yield (from $0.4 \mathrm{mmol} 55-\mathrm{Bz}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{br}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-$ $1.19(\mathrm{~m}, 18 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 63.24,32.95,32.06,29.80,29.78,29.75,29.58,29.49,25.88,22.83$, 14.25.

3,7-dimethyloct-6-en-1-ol (56-H) ${ }^{[66]}$
Colorless oil.
$54.4 \mathrm{mg}, 87 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 6} \mathbf{- T s}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 10 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.15-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 131.40,124.83,61.31,40.02,37.34,29.29,25.84,25.58,19.64$, 17.77.

2,2-diphenylethan-1-ol (57-H) ${ }^{[65]}$
Colorless oil.
$9.5 \mathrm{mg}, 12 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 7 - T s}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.17(\mathrm{~m}, 10 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.52,128.82,128.43,126.92,66.23,53.75$.

ethane-1,1-diyldibenzene (57-H') ${ }^{\text {[55] }}$
Colorless oil.
$48.8 \mathrm{mg}, 67 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 7 - T s}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 4 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.15(\mathrm{~m}, 10 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 146.51,128.49,127.77,126.15,44.92,22.00$.

N,N-dimethylbenzamide (59-H) ${ }^{[66]}$
Colorless oil.
$41.8 \mathrm{mg}, 70 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{5 9 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.71,136.35,129.55,128.38,127.06,39.61,35.37$.

4-pentyl-1,1'-biphenyl (60-H) ${ }^{[67]}$
Colorless oil.
$55.6 \mathrm{mg}, 62 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 0 - C N}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
$0.934 \mathrm{~g}, 52 \%$ yield (from $8.0 \mathrm{mmol} \mathbf{6 0 - C N}, 32 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35$
$-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 4 \mathrm{H})$, $0.94-0.87(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.26,141.35,138.69,128.96,128.91,128.83,127.13,127.08$, $35.73,31.72,31.33,22.71,14.18$.

1-naphthonitrile (61-H) ${ }^{[68]}$
White solid.
$33.1 \mathrm{mg}, 54 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 1 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26-8.19(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.72$ $-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 133.37, 133.00, 132.71, 132.42, 128.75, 128.68, 127.63, 125.21, 125.01, 117.91, 110.25.

2-benzyl-3-phenylpropanenitrile (62-H) ${ }^{[34]}$
White solid.
$17.7 \mathrm{mg}, 20 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 2 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 5 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 6 \mathrm{H}), 3.07-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.93$ (s, 2H), 2.91 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.91,129.17,128.93,127.46,121.42,38.11,36.04$.

2-benzyl-2-cyano-N-ethyl-3-phenylpropanamide (62-H’)
Colorless oil.
$84.2 \mathrm{mg}, 72 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 2 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 11 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.09(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 164.81,134.51,130.00,128.68,127.95,119.44,63.00,55.90,42.85$, 14.32.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3070,3031,2980,2929,1740,1496,1457,1228,1085,750,702$.
GC-MS (EI): 292.0, 263.1, 246.2, 201.1, 173.1, 91.1, 77.0, 65.0.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}:$293.1648, found 293.1649.

2-benzyl-2-cyano-3-phenylpropanamide (62-H'$)^{[69]}$
White solid.
$10.6 \mathrm{mg}, 10 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 2 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
$82.5 \mathrm{mg}, 78 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 2 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 5 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}, 10 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.63,134.43,130.25,128.71,127.94,120.26,53.45,42.94$.
IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3478,3352,3081,3028,2923,1695,1601,1497,1455,1372,1250,769,702,599$.
GC-MS (EI): 264.1, 218.1, 191.0, 173.1, 156.0, 115.1, 91.1, 65.1.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1155$, found 287.1154.

2-cyano-N-ethyl-2-phenethyl-4-phenylbutanamide (63-H'-Et)
Light yellow oil.
$108.9 \mathrm{mg}, 85 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 3 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{EtOH}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{br}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 6 \mathrm{H}), 4.24(\mathrm{q}, J=$
$7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{td}, J=12.8,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{td}, J=12.8,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{td}, J=12.9,5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.08(\mathrm{td}, J=12.9,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.01,140.02,128.75,128.48,126.61,119.95,63.17,52.11,38.94$, 31.91, 14.24.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3331, 3062, 2978, 2930, 2815, 1652, 1500, 1460, 1305, 1102, 856, 751, 699.
GC-MS (EI): 283.0, 274.1, 246.0, 169.1, 158.1, 120.1, 91.1, 77.0 .
HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 321.1961$, found 321.1957.

2-cyano-N-methyl-2-phenethyl-4-phenylbutanamide (63-H'-Me)
Light yellow oil.
$116.4 \mathrm{mg}, 95 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 3 - C N}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 12 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO} / \mathrm{MeOH}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{br}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $2.84(\mathrm{td}, J=12.8,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{td}, J=12.8,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{td}, J=12.9,12.3,5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.12-2.00(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.53,139.84,128.63,128.39,126.51,119.83,54.45,51.84,38.84$, 31.79.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3330,3062,3027,2942,2861,1653,1497,1455,1300,1101,1081,754,698$.
GC-MS (EI): 274.1, 246.0, 202.1, 169.1, 158.1, 111.1, 91.1, 77.1, 65.1.
HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}: 329.1624$, found 329.1621.

2-cyano-2-phenethyl-4-phenylbutanamide (63-H'')
White solid.
$107.6 \mathrm{mg}, 92 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 3 - C N}, 8 \mathrm{~mA} / \mathrm{cm}^{2}, 5 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H})$, $2.86(\mathrm{td}, J=12.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{td}, J=12.8,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{ddd}, J=13.6,12.4,5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.03$ (ddd, $J=13.5,12.4,4.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 169.66,139.86,128.74,128.59,128.52,126.63,120.92,49.50$, 39.20, 31.88.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3390,3180,3069,3025,2927,2862,1751,1695,1544,1455,1246,1044,759,696$.
GC-MS (EI): 293.1, 188.1, 156.1, 128.0, 117.1, 104.1, 91.1, 77.0.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}: 315.1468$, found 315.1469 .

4,4'-methylenedibenzonitrile ($\mathbf{6 4 - H})^{[70]}$
White solid.
$48.0 \mathrm{mg}, 55 \%$ yield (from 0.4 mmol 64-Azo, $16 \mathrm{~mA} / \mathrm{cm}^{2}, 6 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.93,132.68,129.81,118.77,110.85,41.98$.

2,2'-(5-methyl-1,3-phenylene)bis(2-methylpropanenitrile) (65-H) ${ }^{[71]}$
White solid.
$42.5 \mathrm{mg}, 47 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 5 - A z o}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 9 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.35,139.68,125.61,124.43,118.75,37.32,29.25,21.70$.

2-(3-((1H-1,2,4-triazol-1-yl)methyl)-5-isopropylphenyl)-2-methylpropanenitrile ($\mathbf{6 5}-\mathbf{H}^{\mathbf{\prime}}$)
Brown oil.
$27.9 \mathrm{mg}, 26 \%$ yield (from 0.4 mmol 65-Azo, $16 \mathrm{~mA} / \mathrm{cm}^{2}, 9 \mathrm{~h}, 4.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}$, DMSO)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $5.33(\mathrm{~s}, 2 \mathrm{H}), 2.90$ (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.26,150.93,143.22,142.48,135.51,125.56,124.37,123.83$, 122.20, 53.56, 37.22, 34.24, 29.21, 23.92.

IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3121,2965,2929,2872,1605,1506,1470,1369,1275,1207,1139,1024,878,708$, 677, 652.

GC-MS (EI): 268.1, 253.1, 241.2, 199.1, 184.1, 156.0, 128.0, 115.0, 91.0.
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{4}{ }^{+} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 269.1761$, found 269.1764.

triphenylmethane $(\mathbf{6 6 - H}){ }^{[72]}$
White crystal.
$79.2 \mathrm{mg}, 81 \%$ yield (from $0.4 \mathrm{mmol} \mathbf{6 6 - A z o}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 24 \mathrm{~h}, 8.0$ equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 6 \mathrm{H}), 5.54$ (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.07,129.62,128.45,126.45,57.03$.

3. Observations, mechanistic studies and other experiments

3.1 Results and observations using graphite rod as the cathode

During the condition optimization of $\mathbf{1 - B r}(\operatorname{Method} \mathbf{A})$, it was found that a graphite rod cathode, either in combination with a Pt or a graphite (C) anode, would degrade after the electrolysis, and the desired reduction product $\mathbf{1 - H}$ could only be afforded in trace amount, along with various overreduction products. The GC-MS analysis results of a typical reaction using $\mathrm{Pt} \mid \mathrm{Pt}$ (Fig. S3) and the reaction with C|C electrodes (Fig. S4) are presented below. The retention time of the desired product $\mathbf{1 - H}$ (molecular weight $=178$) is around 10.6 min under our GC method.

Fig. S3 Result of GC-MS analysis on a typical reaction system

Fig. S4 Result of GC-MS analysis on a reaction system with graphite electrodes

3.2 Comparison of this protocol (Method A) with Pan and Chi's protocol ${ }^{[44]}$

Scheme S1 Comparison employing certain substrates. [a] Yields as reported in the literature; [b] results produced in our laboratory.

Hydrodebromination of $\mathbf{4 - B r}$ using Pan and Chi's protocol ${ }^{[44]}$:

To a 25 mL three-necked flask was added the substrate $\mathbf{4 - B r}(100.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and electrolyte $n \mathrm{Bu}_{4} \mathrm{NBF}_{4}(98.8 \mathrm{mg}, 0.3 \mathrm{mmol})$. Then the flask was equipped with two graphite rod electrodes $(\Phi$ $=6 \mathrm{~mm})$ and flushed with nitrogen, followed by the sequential addition of $\mathrm{MeCN}(7.0 \mathrm{~mL})$ and tributylamine ($\mathrm{Bu}_{3} \mathrm{~N}, 0.14 \mathrm{~mL}, 0.6 \mathrm{mmol}, 2.0$ equiv) via syringe. After piercing the septum with a nitrogen-filled balloon to sustain nitrogen atmosphere, the electrolysis was initiated at a constant current of 15 mA at room temperature. The system was electrolyzed for 2.5 h until trace amount of 4-Br was left as monitored by TLC. Then the reaction mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (eluted with PE) to afford $\mathbf{4 - H}$ as a white solid ($28.5 \mathrm{mg}, 37 \%$) and $\mathbf{4 - H}$ ' as a colorless oil ($34.9 \mathrm{mg}, 45 \%$).

Characterization data of 4-H':

ethane-1,1,2-triyltribenzene (4-H') ${ }^{[73]}$
Colorless oil, $34.9 \mathrm{mg}, 45 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.12(\mathrm{~m}$, $4 \mathrm{H}), 7.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H).

Fig. S5 NMR spectra of 4-H' obtained using Pan and Chi's protocol

3.3 Deuterium labelling experiments

Deuterium labelling experiments were conducted with $\mathbf{1 - B r}$ and $\mathbf{1 9 - I}$ under the conditions of Method A and Method B, respectively (Scheme S2, methanol was used instead of ethanol for availability reason of the d-labelled alternatives in Method A). The d-labelled solvents were purchased from commercial sources and used without further purification: DMSO- $d_{6}(99.8 \% \mathrm{D})$,
$\mathrm{MeOD}(99.0 \% \mathrm{D}), \mathrm{MeOH}-d_{4}(99.8 \% \mathrm{D})$. And the ${ }^{1} \mathrm{H}$ NMR spectra of the obtained reduction products $\mathbf{1 - H} / \mathbf{D}$ and $\mathbf{1 9 - H} / \mathbf{D}$ are listed as follow (Fig. S5 and S6).

Entry	Electrolyte/Solvent	Yield of 19-H/D	D ratio
6	$\mathrm{Et}_{4} \mathrm{NClO}_{4}, \mathrm{DMSO}$	85%	0%
7	$\mathrm{Et}_{4} \mathrm{NClO}_{4}, \mathrm{DMSO}-d_{6}$	87%	80%
8	$\mathrm{LiClO}_{4}, \mathrm{DMSO}-d_{6}$	low conv.	N/A

Scheme S2 Results of deuterium labelling experiments with varied electrolytes/solvents.

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectra of the products in deuterium labelling experiments (on $\mathbf{1}-\mathrm{Br}$ with Method \mathbf{A})

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectra of the products in deuterium labelling experiments (on 19-I with Method B)

3.4 Cyclic voltammetry studies

The cyclic voltammogram of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{DMSO} / \mathrm{EtOH}$ was collected with a CHI 760E Potentiostat. The sample was prepared with 0.1 mmol of target molecule, dissolved in 10 mL of $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}$ in solvent (DMSO or DMSO/EtOH of 1:1 volume ratio). The measurement employed a glassy carbon working electrode, a platinum plate counter electrode and a SCE reference electrode. The scan rate applied was $0.1 \mathrm{~V} / \mathrm{s}$. Maximum current $\left(\mathrm{C}_{\mathrm{p}}\right)$ of each compound was obtained using Origin, and the potential $\left(\mathrm{E}_{\mathrm{p} / 2}\right)$ was determined at half of this value $\left(\mathrm{C}_{\mathrm{p} / 2}\right)$.
(1) The CV plots of model substrate $\mathbf{1 - B r}$:

Fig. $\mathbf{S 8} \mathbf{C V}$ plot of $\mathbf{1 - B r}$ in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4} \mathrm{DMSO}^{2}$ solution
The CV plots of model substrate 1-Br were recorded in both DMSO/EtOH and DMSO (Fig. S8), and the $\mathrm{E}_{\mathrm{p} / 2}$ values were determined as -1.94 V and -1.88 V , respectively. The value in $\mathrm{DMSO} / \mathrm{EtOH}$ $($ for Method A) is a bit higher than that in DMSO (for Method B), but does not present very significant discrepancy.
(2) CV plots of typical reduction substrates with fewer reports in organic electrosynthesis (41-F and 60-CN):

Fig. S9 CV plots of $\mathbf{4 1 - F}$ and $\mathbf{6 0 - C N}$ in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}$ DMSO solution
The $\mathrm{E}_{\mathrm{p} / 2}$ values of $\mathbf{4 1 - F}$ and $\mathbf{6 0 -} \mathbf{C N}$ were determined as -2.28 V and -2.06 V in DMSO, respectively (Fig. S9).
(3) CV plots of substrates employed in competitive reduction (3-Br and 3-I):

Fig. S10 CV plots of 3-Br and 3-I in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4} \mathrm{DMSO}$ solution
The $\mathrm{E}_{\mathrm{p} / 2}$ values of 3-Br and 3-I were determined as -2.14 V and -1.90 V in DMSO, respectively (Fig. S10).
(4) CV plot of additive $\mathrm{Et}_{3} \mathrm{~N}$:

Fig. S11 CV plot of $\mathrm{Et}_{3} \mathrm{~N}$ in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4} \mathrm{DMSO} / \mathrm{EtOH}$ solution
The CV plot in Fig. S 11 shows that $\mathrm{Et}_{3} \mathrm{~N}$ has an obvious oxidation peak at +1.17 V , and the $\mathrm{E}_{\mathrm{p} / 2}$ value is determined as +0.93 V (vs SCE), which should be the predominant sacrificial reductant in this system compared with another possible reductant DMSO (the "background" line).

3.5 Competitive reductions using Method A and B

(1) Reactions of 3-Br-I

Two parallel reactions of substrate 3-Br-I were conducted under identical conditions (0.1 M $\mathrm{Et}_{4} \mathrm{NClO}_{4}, 4.0$ equiv of $\mathrm{Et}_{3} \mathrm{~N}, 16 \mathrm{~mA} / \mathrm{cm}^{2}, 8 \mathrm{~h}$), except for the different reaction solvents applied (4.0 mL 1:1 DMSO/EtOH for Method A; 4.0 mL DMSO for Method B). The deiodination-selective product 3-Br was isolated in 85% yield with $\mathbf{M e t h o d} \mathbf{A}$, while non-selective reduction product 3H was afforded in 90\% yield with Method B.

During the two reactions, the ratios of GC peak area of $\mathbf{3}-\mathbf{B r}-\mathbf{I}, \mathbf{3}-\mathbf{B r}$ and $\mathbf{3 - H}$ were monitored and documented every 2 h (Table S2 and S3). And on the basis of these data, two line graphs were drawn (Fig. S12 and S13).

Table S2 GC ratios of 3-Br-I, 3-Br and 3-H (Method A):

Entry	Reaction time	Ratio of 3-Br-I	Ratio of 3-Br	Ratio of 3-H
1	0 h	1.00	0	0
2	2 h	0.64	0.36	<0.01
3	4 h	0.35	0.65	<0.01
4	6 h	0.16	0.83	0.01
5	8 h	0.02	0.92	0.06

Table S3 GC ratios of 3-Br-I, 3-Br and 3-H (Method B):

Entry	Reaction time	Ratio of 3-Br-I	Ratio of 3-Br	Ratio of 3-H
1	0 h	1.00	0	0
2	2 h	0.74	<0.01	0.26
3	4 h	0.48	<0.01	0.52
4	6 h	0.20	<0.01	0.80
5	8 h	<0.01	<0.01	>0.99

Fig. S12 Ratio variation of 3-Br-I, 3-Br and 3-H over time under the conditions of Method A

Fig. S13 Ratio variation of 3-Br-I, 3-Br and 3-H over time under the conditions of Method B
(2) Competitive reductions of 3-Br and 3-I

Two parallel reactions of substrates 3-Br and 3-I (0.2 mmol each) were conducted under identical conditions ($0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}$, 4.0 equiv of $\mathrm{Et}_{3} \mathrm{~N}, 16 \mathrm{~mA} / \mathrm{cm}^{2}$), except for the different reaction solvents applied (4.0 mL 1:1 DMSO/EtOH for Method A; 4.0 mL DMSO for Method B). The ratios of GC peak area of 3-Br, 3-I and 3-H were monitored and documented before electrolysis and at the indicated time (Table S4 and S5).

Table S4 GC ratios of 3-Br, 3-I and 3-H (Method A):

Entry	Reaction time	Ratio of 3-Br	Ratio of 3-I	Ratio of 3-H
1	0 h	0.54	0.46	0
2	5 h	0.53	<0.01	0.47

Table S5 GC ratios of 3-Br, 3-I and 3-H (Method B):

Entry	Reaction time	Ratio of 3-Br	Ratio of 3-I	Ratio of 3-H
1	0 h	0.52	0.48	0
2	1 h	0.36	0.33	0.31
3	4 h	<0.01	<0.01	>0.99

3.6 Detection and characterization of some by-products

Possible by-products detected by GC-MS:

N, N-diethylformamide (by-product \mathbf{a} in the proposed mechanism) $\mathrm{Mw}=101$

Fig. S14 MS spectrum of possible by-product a

(methylsulfonyl)methane (by-product \mathbf{b} in the proposed mechanism) $\mathrm{Mw}=94$

Fig. S15 MS spectrum of possible by-product \mathbf{b}

GC images containing by-products \mathbf{a} and \mathbf{b} in some typical reaction systems after electrolysis:

Fig. S16 GC images containing \mathbf{a} and \mathbf{b} in some systems after electrolysis

The dehydrogenative cross-coupling product $\mathbf{T s}^{\mathbf{N}} \mathbf{N E t}_{3}$ (by-product \mathbf{c} in the proposed mechanism) could be observed in every desulfonylation reaction and isolated in $5 \% \sim 15 \%$ yield from the reactions of $\mathbf{4 4 - T s}, \mathbf{4 8}-\mathrm{Ts}$, 52-Ts and 55-Ts.

Characterization data of Ts-NEt $\mathbf{H}_{\mathbf{3}}$:

(E)-N,N-diethyl-2-tosylethen-1-amine $\left(\mathbf{T s}^{-N E t} \mathbf{N}_{3}{ }^{[74]}\right.$:

Brown oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H})$,
$4.91(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.02(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.04(\mathrm{~m}, 6 \mathrm{H})$.

Fig. $\mathbf{S 1 7}{ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{T s}-\mathrm{NEt}_{\mathbf{3}}$ (by-product \mathbf{c})

3.7 Calculation of the current efficiencies (CEs)

The current efficiencies (CEs) were calculated as follows ${ }^{[75]}$:

$$
\begin{aligned}
\mathrm{CE}(\%) & =\left(\mathrm{n}_{\text {prod }} \times \mathrm{F} \times \mathrm{n} / \mathrm{C}\right) \times 100 \% \\
& =\left(0.4 \times 10^{-3}[\mathrm{~mol}] \times \text { yield } \times 96485[\mathrm{C} / \mathrm{mol}] \times 2\right) /(\mathrm{I}[\mathrm{~A}] \times \mathrm{t}[\mathrm{~s}]) \times 100 \%
\end{aligned}
$$

4. Reference

[1] A. S. Tsai, M. Brasse, R. G. Bergman and J. A. Ellman; Org. Lett. 2011, 13, 540.
[2] S. N. Gockel and K. L. Hull; Org. Lett. 2015, 17, 3236.
[3] B. Suchand and G. Satyanarayana; J. Org. Chem. 2016, 81, 6409.
[4] R. J. Perry and B. D. Wilson; J. Org. Chem. 1996, 61, 7482.
[5] X. Bao, X. Rong, Z. Liu, Y. Gu, G. Liang and Q. Xia; Tetrahedron Lett. 2018, 59, 2853.
[6] L. R. Mills, J. M. Graham, P. Patel and S. A. L. Rousseaux; J. Am. Chem. Soc. 2019, 141, 19257.
[7] M. Jean, J. Renault, P. de Weghe and N. Asao; Tetrahedron Lett. 2010, 51, 378.
[8] D. Ye, Z. Liu, H. Chen, J. L. Sessler and C. Lei; Org. Lett. 2019, 21, 6888.
[9] H. Huang and J. Y. Kang; Org. Lett. 2017, 19, 544.
[10] M. Kapoor, D. Liu and M. C. Young; J. Am. Chem. Soc. 2018, 140, 6818.
[11] A. K. Chakraborti and S. V. Chankeshwara; J. Org. Chem. 2009, 74, 1367.
[12] S. Kavoosi, D. Dey and K. Islam; Org. Lett. 2019, 21, 6614.
[13] Z. Pan, S. M. Pound, N. R. Rondla and C. J. Douglas; Angew. Chem. Int. Ed. 2014, 53, 5170.
[14] U. Mansfeld, M. D. Hager, R. Hoogenboom, C. Ott, A. Winter and U. S. Schubert; Chem. Comтии. 2009, 3386.
[15] M. Aquino, M. D. Guerrero, I. Bruno, M. C. Terencio, M. Paya and R. Riccio; Bioorgan. Med. Chem. 2008, 16, 9056.
[16] E. Micali, K. A. H. Chehade, R. J. Isaacs, D. A. Andres and H. A. Spielmann; Biochemistry 2001, 40, 12254.
[17] R. C. Reid, M.-K. Yau, R. Singh, J. K. Hamidon, J. Lim, M. J. Stoermer and D. P. Fairlie; J. Med. Chem. 2014, 57, 8459.
[18] T. Hjelmgaard and D. Tanner; Org. Biomol. Chem. 2006, 4, 1796.
[19] Y. Cheng, X. Gu and P. Li; Org. Lett. 2013, 15, 2664.
[20] J. Wei, H. Liang, C. Ni, R. Sheng and J. Hu; Org. Lett. 2019, 21, 937.
[21] N. Holmberg-Douglas and D. A. Nicewicz; Org. Lett. 2019, 21, 7114.
[22] S. O'Sullivan, E. Doni, T. Tuttle, J. A. Murphy; Angew. Chem. Int. Ed. 2014, 53, 474.
[23] Q. Liu, Y.-X. Liu, H.-J. Song and Q.-M. Wang; Adv. Synth. Catal. 2020, 362, DOI: 10.1002/adsc. 202000578.
[24] J. Kim, H. Kim and S. Chang; Org. Lett. 2012, 14, 3924.
[25] J. Xu and R. Tong; Green Chem. 2017, 19, 2952.
[26] L. Chen, H. Lang, L. Fang, M. Zhu, J. Liu, J. Yu and L. Wang; Eur. J. Org. Chem. 2014, 4953.
[27] A. Piontek, W. Ochędzan-Siodłak, E. Bisz and M. Szostak; Adv. Synth. Catal. 2019, 361, 2329.
[28] Y. Wang, S.R. Parkin and M. D. Watson; Org. Lett. 2008, 10, 4421.
[29] H. Shenouda and E. J. Alexanian; Org. Lett. 2019, 21, 9268.
[30] R. L. Dreibelbis, N. Khatri and M. Walborsky; J. Org. Chem. 1975, 14, 2074.
[31] M. Yamaji, H. Maeda, K. Minamida, T. Maeda, K. Asai, G.-I. Konishi and K. Mizuno; Res. Chem. Intermed. 2013, 39, 321.
[32] G. Meng and M. Szostak; Org. Lett. 2016, 18, 796.
[33] E. Doni and J. A. Murphy; Org. Chem. Front. 2014, 1, 1072.
[34] T. Kawamoto, S. J. Geib and D. P. Curran; J. Am. Chem. Soc. 2015, 137, 8617.
[35] T. Sawada, M. Nakada; Tetrahedron: Asymmetry 2012, 23, 350.
[36] A. Modak, A. Deb, T. Patra, S. Rana, S. Maity and D. Maiti; Chem. Commun. 2012, 48, 4253.
[37] H. Liu, B. Yin, Z. Gao, Y. Li and H. Jiang; Chem. Commun. 2012, 48, 2033.
[38] G. Cahiez, A. Moyeuxab and M. Poizat; Chem. Commun. 2014, 50, 8982.
[39] F. Rajabi, R. A. D. Arancon and R. Luque; Catal. Commun. 2015, 59, 101.
[40] B. Feng, Y. Li, H. Li, X. Zhang, H. Xie, H. Cao, L. Yu and Q. Xu; J. Org. Chem. 2018, 83, 6769.
[41] P. Ye, Y. Shao, X. Ye, F. Zhang, R. Li, J. Sun, B. Xu and J. Chen; Org. Lett. 2020, 22, 1306.
[42] J. Chen, J.-H. Lin and J.-C. Xiao; Chem. Commun. 2018, 54, 7034.
[43] Z.-S. Chen, X.-H. Duan, P.-X. Zhou, S. Ali, J.-Y. Luo and Y.-M. Liang; Angew. Chem. Int. Ed. 2012, 51, 1370.
[44] J. Ke, H. Wang, L. Zhou, C. Mou, J. Zhang, L. Pan and Y. R. Chi; Chem. Eur. J. 2019, 25, 6911.
[45] Y. Siddaraju and K. R. Prabhu; Org. Biomol. Chem. 2015, 13, 6749.
[46] G. Zhang, Y. Zhao, L. Xuan and C. Ding; Eur. J. Org. Chem. 2019, 2019, 4911.
[47] J. Ferguson, F. Zeng, N. Alwis and H. Alper; Org. Lett. 2013, 15, 1998.
[48] P. Zhao, H. Yin, H. Gao and C. Xi; J. Org. Chem. 2013, 78, 5001.
[49] W. D. Guerra, R. A. Rossi, A. B. Pierini and S. M. Barolo; J. Org. Chem. 2015, 80, 928.
[50] S. V. Chankeshwara and A. K. Chakraborti; Org. Lett. 2006, 8, 3259.
[51] W. Chen and J. Wang; Organometallics 2013, 32, 1958.
[52] R. Beniazza, B. Abadie, L. Remisse, D. Jardel, D. Lastécouèresa and J.-M. Vincent; Chem. Commun. 2017, 53, 12708.
[53] A. Bej, D. Srimani and A. Sarkar; Green Chem. 2012, 14, 661.
[54] T. Nishiyama, H. Kameyama, H. Maekawa and K. Watanuki; Can. J. Chem. 2001, 77, 258.
[55] S. Agasti, A. Dey and D. Maiti; Chem. Commun. 2016, 52, 12191.
[56] A. M. Whittaker and G. Lalic; Org. Lett. 2013, 15, 1112.
[57] Y.-Y. Sun, J. Yi, X. Lu, Z.-Q. Zhang, B. Xiao and Y. Fu; Chem. Commun. 2014, 50, 11060.
[58] I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz and D. A. Nicewicz; Nature 2020, 580, 76.
[59] Q. Shen, S. Shekhar, J. P. Stambuli and J. F. Hartwig; Angew. Chem. Int. Ed. 2005, 44, 1371.
[60] L. Lu, C. Chen, H. Jiang and B. Yin; J. Org. Chem. 2018, 83, 14385.
[61] M. C. Henry, H. M. Senn and A. Sutherland; J. Org. Chem. 2019, 84, 346.
[62] D.-H. Lee, Y. Qian, J.-H. Park, J.-S. Lee, S.-E. Shim and M.-J. Jin; Adv. Synth. Catal. 2013, 355, 1729.
[63] J. Kim, J. S. Shin, S. Ahn, S. B. Han and Y.-S. Jung; ACS Med. Chem. Lett. 2018, 9, 667.
[64] P. P. Kelly, D. Lipscomb, D. J. Quinn, K. Lemon, J. Caswell, J. Spratt, B. Kosjek, M. Truppo and T. S. Moody; Adv. Synth. Catal. 2016, 358,731.
[65] M. K. Barman, K. Das and B. Maji; J. Org. Chem. 2019, 84, 1570.
[66] Q. Xia, X. Liu, Y. Zhang, C. Chen and W. Chen; Org. Lett. 2013, 15, 3326.
[67] Y. A. Ho, M. Leiendecker, X. Liu, C. Wang, N. Alandini and M. Rueping; Org. Lett. 2018, 20, 5644.
[68] S. Zheng, C. Yu and Z. Shen; Org. Lett. 2012, 14, 3644.
[69] X. Xin, D. Xiang, J. Yang, Q. Zhang, F. Zhou and D. Dong; J. Org. Chem. 2013, 78, 11956.
[70] C. Zhao, G.-F. Zha, W.-Y. Fang, K. P. Rakesh and H.-L. Qin; Eur. J. Org. Chem. 2019, 1801.
[71] R. Shang, D.-S. Ji, L. Chu, Y. Fu and L. Liu; Angew. Chem. Int. Ed. 2011, 50, 4470.
[72] M. Sai; Adv. Synth. Catal. 2018, 360, 4330.
[73] J. Li, L. He, X. Liu, X. Cheng and G. Li; Angew .Chem. Int. Ed. 2019, 58, 1759.
[74] J. Lai, L. Chang and G. Yuan; Org. Lett. 2016, 18, 3194.
[75] Z. Fang, M. G. Flynn, J. E. Jackson and E. L. Hegg; Green Chem. 2021, 23, 412.

5. NMR spectra

12-Br ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

13-Br ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

14-Br ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR

L2 $\mathrm{SOL}-$

29-I ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR

(1000

35-Cl ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

36-Cl ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

38-Cl ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

49-Ts ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

51-Ts ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

54-Ts ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

1-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

$\mathbf{2 - H}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

3-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

4-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

5-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

6-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

垣邂

7-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

8-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

9-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

10-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

Cols

11-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

12-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

13-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

14-H ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR

15-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

16-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

$\mathbf{1 7 - H}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

18-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

19-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

20-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

21-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

22-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

22-H' ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

23-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

24-H (58-Bz) ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

25-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

26-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

27-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

28－H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR
Fニニ二

29-H ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR

30-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

31-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

32-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

33-H + 33-H' mixture ${ }^{1} \mathrm{H}$ NMR (by Method A and Method B, respectively)

34-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

35-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

36-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

37－H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

萃縎登鰠
$\stackrel{\square}{7}$

38-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

39-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

40-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

$\mathbf{4 0 - H}+\mathbf{4 0 - H}{ }^{\prime}{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR

(4:1)

41-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

42-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR
玉op

43-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

44-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

45-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

46-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

47-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR
(

48-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(10)

49-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR
(

50-H (58-Ts) ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

51-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

52-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

53-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

54-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

55-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

56-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

57-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

57-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(10000

59-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

(

60-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

61-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

62-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

62-H, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

62-H ${ }^{\prime}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

63-H'-Et ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

63-H'-Me ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

8
-6.5×10^{7}
-6.0×10^{7}
-5.5×10^{7}
-5.0×10^{7}
-4.5×10^{7}
-4.0×10^{2}
-3.5×10^{2}
-3.0×10^{2}
-2.5×10^{2}
-2.0×10^{2}
-1.5×10^{2}
-1.0×10^{2}
-5.0×10^{2}
-0.0

63-H ${ }^{\prime}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

64-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

65-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

65-H, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

66-H ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

