Supporting Information

Ring-Contraction of Hantzsch Ester and Derivatives to Pyrrole via Electrochemical Extrusion of Ethyl Acetate out of Aromatic Rings

Xu Liu, ^{†a} Chang Liu ^{†b} and Xu Cheng ^{*a,b,c}

^a Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nan-jing University, Nanjing, 210023, China.

^b. State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China.

^c State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China.

Contents

Supporting Information	1
1. General Information	3
2. Optimization of reaction conditions	3
2.1 General Procedures	4
3. Electrochemistry analysis	18
3.1 Cyclic Voltammetry Experiments	18
3.2 Square wave Voltammetry Experiments	20
4. Mechanism experiments	20
4.1 ¹³ B NMR analysis	20
4.2 Comparison of BF3 and protonic acid	22
4.3 Isotope-labelling experiment	24
5. Synthesis and characterization of compounds	26

1. General Information

Unless otherwise noted, all reactions were carried out under nitrogen or argon atmosphere. All materials were obtained from commercial suppliers and used directly without further purification. The solvents were dried by distillation over the appropriate drying reagents before use. Other chemical reagents were purchased from commercial sources and used without further purification. Flash chromatography utilized 300-400 mesh silica gel from Qingdao Haiyang Chemical Co., Ltd. Reactions were monitored by thin-layer chromatography (TLC) using 254 nm UV light to visualize the progress of the reactions.

¹H NMR and ¹³C NMR spectra were recorded on Bruker Ascend III 400 (400 MHz and 100 MHz). All ¹H NMR and ¹³C NMR spectra are reported in parts per million (ppm) downfield of TMS. Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet), coupling constants (Hz) and integration.

Melting points were measured with digital melting point detector. High-resolution mass spectra (HRMS) were recorded on Agilent 6540 UHD Accurate-Mass Q-TOF.

2. Optimization of reaction conditions

Entry	Electrolyte	Lewis acid (eq)	Solvent	Yield $(\%)^b$
1	LiClO ₄	BF ₃ Et ₂ O (3)	THF	26
2	LiClO ₄	-	THF	0
3 ^c	LiClO ₄	BF ₃ Et ₂ O (3)	THF	0
4	nBu ₄ NPF ₆	BF ₃ Et ₂ O (3)	THF	24
5	nBu ₄ NCl	BF ₃ Et ₂ O (3)	THF	17
6	<i>n</i> Bu ₄ NBF ₄	BF ₃ Et ₂ O (3)	THF	35
7	LiBF ₄	BF ₃ Et ₂ O (3)	THF	34
8	<i>n</i> Bu ₄ NBF ₄	$B(C_6F_5)_3(3)$	THF	trace
9	<i>n</i> Bu ₄ NBF ₄	Sc(OTf) ₃ (3)	THF	41

10	nBu ₄ NBF ₄	$InCl_3(3)$	THF	trace
11	<i>n</i> Bu ₄ NBF ₄	$CeCl_3(3)$	THF	6
12	<i>n</i> Bu ₄ NBF ₄	$Cu(OTf)_2(3)$	THF	0
13	<i>n</i> Bu ₄ NBF ₄	$Zn(OTf)_2(3)$	THF	0
14	<i>n</i> Bu ₄ NBF ₄	BF ₃ Et ₂ O (3)	MeCN	trace
15	nBu ₄ NBF ₄	BF ₃ Et ₂ O (3)	MeOH	trace
16	<i>n</i> Bu ₄ NBF ₄	BF ₃ Et ₂ O (3)	DMF	15
17	<i>n</i> Bu ₄ NBF ₄	BF ₃ Et ₂ O (3)	DMSO	trace
18	nBu ₄ NBF ₄	BF ₃ Et ₂ O (3)	DCM	0
19	<i>n</i> Bu ₄ NBF ₄	BF ₃ Et ₂ O (4)	THF	45
20	nBu ₄ NBF ₄	BF ₃ Et ₂ O (5)	THF	90 $(75)^d$
21^{e}	nBu ₄ NBF ₄	BF ₃ Et ₂ O (5)	THF	83
22^{f}	<i>n</i> Bu ₄ NBF ₄	BF ₃ Et ₂ O (5)	THF	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), electrolyte (0.1 mmol), Lewis acid, H₂O (40 equiv), solvent (5 mL), Zn (+)/C(-), 20 mA, rt, 12 h. ^{*b*}GC yield. ^{*c*}No H₂O. ^{*d*}Isolated yield. ^{*e*}Mg(+)/C(-). ^{*f*}C(+)/C(-).

2.1 General Procedures

General Procedure A

A flask was charged with Hantzsch ester (5 mmol, 1.0 equiv), $K_2S_2O_8$ (1.5 equiv), MeCN/H₂O (v/v = 1:1, 30 mL). The mixture was stirred at 55 °C until the Hantzsch ester was consumed. Then the reaction was cooled to ambient temperature. The mixture was extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product.

General Procedure B

A flask was charged with polysubstituted pyridine (10 mmol) and anhydrous THF (30 mL) under argon. Then LDA (1.1 equiv) was added at -78 °C and the mixture was stirred for 1 h. Allyl bromide (1.1 equiv) was added subsequently to the reaction mixture that was stirred at room temperature until the reaction was complete. The reaction was quenched with sat. NH₄Cl, and the mixture was extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.36 (m, 3H), 7.28 – 7.26 (m, 2H), 5.96 – 5.86 (m, 1H), 5.09 (dd, *J* = 17.1, 1.6 Hz, 1H), 5.00 (d, *J* = 10.1 Hz, 1H), 4.04 – 3.98 (m, 4H), 2.95 – 2.91 (m, 2H), 2.63 (s, 3H), 2.56 – 2.51 (m, 2H), 0.92 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 167.9, 158.4, 155.6, 146.3, 137.8, 136.7, 128.5, 128.3, 128.2, 127.1, 127.0, 115.2, 61.5, 61.4, 35.9, 33.8, 23.1, 13.7. HRMS (ESI) ([M + H]⁺) Calcd For C₂₂H₂₆NO₄: 368.1862, found: 368.1858.

General Procedure C

A flask was charged with polysubstituted pyridine (1 mmol) and anhydrous THF (3 mL) under argon. LDA (1.1 equiv) was added at -78 °C and the mixture was stirred for 1 h. Allyl bromide (1.1 equiv) was added subsequently and the reaction mixture was stirred at room temperature for 2 h. Then LDA (1.1 equiv) was added at -78 °C and the mixture was stirred for 1 h. Allyl bromide (1.1 equiv) was added at -78 °C and the mixture was stirred at room temperature for 2 h. Then LDA (1.1 equiv) was added at -78 °C and the mixture was stirred for 1 h. Allyl bromide (1.1 equiv) was added at -78 °C and the mixture was stirred for 1 h. Allyl bromide

until the reaction was finished. The reaction was quenched with sat. NH₄Cl, and the mixture was extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.37 (m, 3H), 7.29 – 7.27 (m, 2H), 5.97 – 5.87 (m, 2H), 5.09 (d, *J* = 17.1 Hz, 2H), 5.00 (d, *J* = 10.2 Hz, 2H), 4.01 (q, *J* = 7.1 Hz, 4H), 2.97 – 2.93 (m, 2H), 2.56 (dd, *J* = 15.1, 7.1 Hz, 2H), 0.93 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 158.4, 146.2, 137.9, 136.8, 128.5, 128.4, 128.2, 127.1, 115.1, 61.5, 35.8, 33.5, 13.7. HRMS (ESI) ([M + H]⁺) Calcd For C₂₅H₃₈NO4: 408.2175, found: 408.2179.

General Procedure D

A flask was charged with polysubstituted pyridine (5 mmol) and anhydrous THF (5 mL) under argon. Then 9-BBN (1.2 equiv.) was added dropwise at 0 °C and the mixtre was then stirred at 65 °C for 1.5 h. NaOH (3 M, 5 mL) and H₂O₂ (30%, 5 mL) was then added under 0 °C. The mixture was stirred at room temperature until the reaction was finished. The mixture was extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.37 (m, 3H), 7.28 – 7.26 (m, 2H), 4.05 – 3.97 (m, 4H), 3.70 (t, *J* = 6.3 Hz, 2H), 2.91 – 2.87 (m, 2H), 2.63 (s, 3H), 1.89 (dt, *J* = 15.0, 7.3 Hz, 2H), 1.68 (dt, *J* = 13.5, 6.6 Hz, 2H), 0.94 – 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 168.0, 159.0, 155.6, 146.5, 136.7, 128.6, 128.3, 128.2, 127.2, 127.1, 62.5, 61.5, 35.6, 32.2, 25.8, 23.0, 13.7, 13.7. HRMS (ESI) ([M + H]⁺) Calcd For C₂₂H₂₈NO₅: 386.1967, found: 386.1964.

General Procedure E

A flask was charged with polysubstituted pyridine (1 mmol), imidazole (1.2 equiv), TBDPSCI (1.2 equiv) and DCM (4 mL) under argon. The mixture was stirred at room temperature until the reaction was finished. The mixture was extracted with DCM for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product.

¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 6.5 Hz, 4H), 7.43 – 7.37 (m, 9H), 7.31 – 7.27 (m, 2H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.97 (q, *J* = 7.1 Hz, 2H), 3.72 (t, *J* = 6.4 Hz, 2H), 2.88 – 2.84 (m, 2H), 2.63 (s, 3H), 1.91 – 1.83 (m, 2H), 1.72 – 1.65 (m, 2H), 1.07 (s, 9H), 0.94 (t, *J* = 7.0 Hz, 3H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 168.0, 159.2, 155.6, 146.2, 136.8, 135.7, 134.3, 129.6, 128.5, 128.3, 128.2, 127.7, 127.0, 127.0, 64.0, 61.4, 61.4, 36.3, 32.7, 27.1, 27.0, 26.3, 23.1, 19.4, 13.7. HRMS (ESI) ([M + H]⁺) Calcd For C₃₈H₄₆NO₅Si: 624.3145, found: 624.3140.

General Procedure F

A flask was charged with NaH (1.2 mmol) and anhydrous THF (5 mL) was added at 0 °C. Then polysubstituted pyridine (1 mmol) was added and the mixture was stirred for 10 min. Propargyl bromide (1.5 equiv) was added subsequently and the mixture was stirred until the reaction was finished. The mixture was extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product.

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.33 (m, 3H), 7.25 – 7.22 (m, 2H), 4.11 (d, *J* = 2.4 Hz, 2H), 4.01 – 3.94 (m, 4H), 3.52 (t, *J* = 6.5 Hz, 2H), 2.85 – 2.82 (m, 2H), 2.59 (s, 3H), 2.40 (t, *J* = 2.4 Hz, 1H), 1.88 – 1.78 (m, 2H), 1.71 – 1.63 (m, 2H), 0.90 – 0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.9, 158.9, 155.5, 146.1, 136.7, 128.4, 128.2, 128.1, 127.0, 126.9, 80.1, 74.2, 69.9, 61.3, 58.0, 36.0, 29.3, 26.3, 23.0, 13.6. HRMS (ESI) ([M + H]⁺) Calcd For C₂₅H₃₀NO₅: 424.2124, found: 424.2128.

General Procedure G

A flask was charged with polysubstituted pyridine (1 mmol) and anhydrous DCM (20 mL). (*tert*-butoxycarbonyl)alanine (1.5 equiv) was added at 0 °C under argon. Then EDCI (1.5 equiv) and DMAP (0.2 mol%) was added and the mixture was stirred until the reaction was finished. The reaction was quenched with H₂O and the resulting mixture was extracted with DCM for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.36 (m, 3H), 7.28 – 7.25 (m, 2H), 5.11 (s, 1H), 4.21 – 4.10 (m, 2H), 4.13 (q, *J* = 7.1 Hz, 1H), 4.04 – 3.96 (m, 4H), 2.86 (t, *J* = 7.6 Hz, 2H), 2.62 (s, 3H), 1.89 – 1.82 (m, 2H), 1.79 – 1.72 (m, 2H), 1.45 (s, 9H), 1.40 (d, *J* = 7.2 Hz, 3H), 0.92 – 0.87 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 168.0, 167.9, 158.5, 155.7, 155.2, 146.4, 136.7, 128.6, 128.3, 128.2, 127.2, 127.0, 79.8, 65.2, 61.5, 60.5, 35.8, 28.5, 27.1, 26.1, 23.1, 18.9, 13.7. HRMS (ESI) ([M + H]⁺) Calcd For C₃₀H₄₁N₂O₈: 557.2863, found: 557.2868.

General Procedure H

А flask charged withpolysubstituted pyridine (2.8)mmol), was 2-bromo-2,2-difluoro-N-phenylacetamide (1.4 mmol), Me-HE (1.5 equiv), PhSSPh (10 mol%) and MeCN (10 mL) under argon. The mixture was irradiation by blue LEDs for 24 h. Then the reaction was quenched with H₂O and the resulting mixture was extracted with DCM for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.59 (d, J = 7.6 Hz, 2H), 7.40 – 7.36 (m, 5H), 7.27 – 7.24 (m, 2H), 7.20 (t, J = 7.4 Hz, 1H), 4.05 – 3.95 (m, 4H), 2.88 – 2.84 (m, 2H), 2.61 (s, 3H), 2.30 -2.19 (m, 2H), 1.90 - 1.84 (m, 2H), 1.68 - 1.60 (m, 2H), 0.94 - 0.87 (m, 6H); 13 C NMR (101) MHz, CDCl₃) δ 168.0, 167.9, 162.3 (t, J = 28.7 Hz), 162.0, 158.5, 155.7, 146.4, 136.7, 136.2,

129.3, 128.6, 128.3, 128.2, 125.6, 120.4, 118.4 (t, J = 252.0 Hz), 61.5, 61.5, 36.0, 33.8 (t, J = 23.1 Hz), 29.3, 27.1, 23.0, 21.7 (t, J = 4.4 Hz), 13.7, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -105.51. HRMS (ESI) ([M + H]⁺) Calcd For C₃₀H₃₃F₂N₂O₅: 539.2358, found: 539.2347.

General Procedure I

A 10 mL three-necked flask was charged with the substrate **1** (0.2 mmol), nBu_4NBF_4 (0.1 mmol) and a magnetic stir bar. The flask was equipped with rubber stoppers, graphite felt as cathode and

zinc plate as anode. The zinc plate anode attached to a platinum wire and the graphite felt cathode attached to a copper wire. The flask was evacuated and backfilled with argon for 3 times. H_2O (40.0 equiv), $BF_3 Et_2O$ (5 equiv) and anhydrous THF (5 mL) were added by syringe. The mixture was stirred at room temperature under constant current electrolysis. After the reaction reached completion with monitoring with TLC or GC-MS analysis, the mixture was extracted with EtOAc. The organic layers were washed with brine, dried over Mg_2SO_4 , filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desire product.

Figure S1. Procedures on making electrodes

Gram Scale Experiment

A 500 mL cup was charged with the substrate **1b** (15.0 g, 45.9 mmol), nBu_4NBF_4 (2.0 g) and a magnetic stir bar. The cup was equipped with a plastic cover, graphite felt (8 cm x 5 cm x 1 cm) as cathode and zinc plate as anode. The zinc plate anode (8 cm X 12 cm X 4 pieces) attached to a platinum wire and the graphite felt cathode attached to a copper wire. The cup was flushed with argon for 1 minute. Anhydrous DMF (300 mL), H₂O (40 equiv) and BF₃ Et₂O (5 equiv) were added via syringe. The mixture was stirred at room temperature under constant current electrolysis. After the reaction reached completion by monitoring with TLC or GC-MS analysis, the mixture was extracted with EtOAc. The organic layers were washed with brine, dried over Mg₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desire product.

Figure S2. Reactor for gram scale experiment

A 10 mL three-necked flask was charged with the substrate **1b'** (0.2 mmol), nBu_4NBF_4 (32.9 mg, 0.1 mmol) and a magnetic stir bar. The flask was equipped with a rubber stopper, graphite felt (2 cm x 1 cm x 0.5 cm) as anode and cathode. The graphite felt anode attached to a platinum wire and cathode attached to a copper wire. The flask was evacuated and backfilled with argon for 3 times. Anhydrous THF (5 mL) was added and the mixture was stirred under 3 mA electrolysis until the was finished. Then the anode was changed to zinc plate and BF₃ Et₂O (5 equiv) and H₂O (40 equiv) was added. The mixture was stirred under 20 mA electrolysis for 12 h. When the reaction was finished, the mixture was extracted with EtOAc. The organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desire product.

Faradaic efficiency

A 10 mL three-necked flask was charged with the substrate **1a** (0.8 mmol), nBu_4NBF_4 (0.1 mmol) and a magnetic stir bar. The flask was equipped with rubber stoppers, graphite felt as cathode and zinc plate as anode. The zinc plate anode attached to a platinum wire and the graphite felt cathode

attached to a copper wire. The flask was evacuated and backfilled with argon for 3 times. H₂O (40.0 equiv), BF₃ Et₂O (5 equiv) and anhydrous THF (5 mL) were added via syringes. The mixture was stirred at room temperature under constant current electrolysis. The reaction was stopped after 4h, the 55% yield of **2a** was analyzed by ¹H NMR spectrum, CH₂Br₂ was used as internal standard. Faradaic efficiency FE = 0.55*0.8*0.001*4*96485/(0.02*4*3600)= 59%

Preparation and X-ray analysis of compound 3

A flask was charged with **2ai** (301 mg, 1 mmol), 4,5,6,7-tetrachloroisoindoline-1,3-dione (283 mg, 1 mmol), PPh₃ (393 mg, 1.5 mmol) and anhydrous THF (10 mL) under Ar atmosphere. The mixture was stirred for 30 min at room temperature. DIAD (303 mg, 1.5 mmol) was then added and the mixture was stirred until the reaction was finished. The reaction was diluted with H₂O and the resulting mixture was extracted with DCM for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography to afford the desired product **3** as yellow solid (489 mg, 86% yield). The product was crystallized by EtOH.

¹H NMR (400 MHz, DMSO) δ 11.93 (s, 1H), 7.28 (t, *J* = 7.3 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 2H), 3.92 (q, *J* = 5.9 Hz, 2H), 3.61 (s, 2H), 2.83 (s, 2H), 2.02 (s, 3H), 1.63 (s, 4H), 0.98 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 165.0, 163.9, 138.4, 130.6, 129.6, 128.9, 128.4, 128.4, 127.5, 58.6, 38.7, 27.8, 27.3, 26.8, 14.3, 11.5.

Figure S3. X-ray crystallographic analysis of compound 3

General procedure for application of pyrrole products

According to the literature procedure¹, a solution of pyrrole **2q** (97.5 mg, 0.5 mmol) in conc. H₂SO₄ (0.28 mL), EtOH (1 mL) and water (25 μ L) was refluxed for 1 h and poured into water (2 mL). This mixture was extracted with DCM (3 × 20 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure to afford **5** as a yellow oil which was used in the next step without further purification. 12 M HCl (0.17 mL) was added to a suspension of aniline (0.5 mmol, 1.0 equiv.) on water (0.4 mL) at 0 °C and the mixture was stirred for 5 min. NaNO₂ (0.55 mmol, 1.1 equiv.) in water (0.4 mL) was added dropwise and the resulting solution was stirred at 0 °C for 1 h. A suspension of the appropriate pyrrole derivative (1.0 equiv.) in MeOH (2.4 mL) and pyridine (0.4 mL) was added, resulting in the formation of an orange red precipitate. The suspension was stirred for 1 h at 0 °C, then concentrated under reduced pressure. The resulting residue was extracted with EtOAc (3 × 10 mL/mmol). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure to afford the desire

product 6 as an orange solid (40.0 mg, 18%).

¹H NMR (400 MHz, CDCl3) δ 7.91 – 7.73 (m, 2H), 7.69 (s, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 2.75 (d, *J* = 7.4 Hz, 2H), 2.56 (s, 3H), 2.17 (s, 3H), 1.16 (t, *J* = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl₃) δ 154.42, 138.03, 131.33, 128.88, 128.32, 123.30, 121.63, 115.19, 18.49, 15.39, 11.51, 10.63. HRMS (ESI) ([M + H]⁺) Calcd For C₁₄H₁₉N₃: 228.1501, found: 228.1497.

A suspension of **2ae** (12.1 mg, 0.5 mmol) and 10% Pd/C catalyst (110.0 mg, 50% wet, 0.05 mmol) on anhydrous EtOH (2 mL) was stirred vigorously under a hydrogen atmosphere (20 atm) at room temperature until the complete conversion of substrate **2ae** (12 hours) was achieved. Then the reaction mixture was filtered through celite. The filtration was concentrated, and the residue **7** was used in next step without further purification. **7** (49.0 mg, 0.32 mmol) in THF (2 mL) was added with 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (92.2 mg, 0.48 mmol), hydroxybenzotriazole (64.9 mg, 0.48 mmol), and amine (90 μ L, 0.64 mmol). The resulting mixture was stirred at room temperature for 12 hours, then concentrated under reduced pressure. The resulting residue was extracted with EtOAc (3 × 10 mL/mmol). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure to afford the crude product. The residue was purified by chromatography on silica gel to afford the desire product **8** as a colorless oil (39.0 mg, 48%).

¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 6.41 (s, 1H), 3.44 (dt, *J* = 6.1, 4.9 Hz, 2H), 2.62 (t, *J* = 6.0 Hz, 2H), 2.55 (q, *J* = 7.1 Hz, 4H), 2.41 (s, 3H), 2.13 (s, 3H), 2.09 (s, 3H), 1.01 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.27, 129.80, 122.22, 114.82, 112.42, 51.88, 46.61, 36.78, 13.26, 11.86, 11.05, 10.61. HRMS (ESI) ([M + H]⁺) Calcd For C₁₄H₂₆N₃O: 252.2076, found: 252.2072.

A 100 mL cup was charged with the substrate **1ar** (4.6 g, 13 mmol), nBu_4NBF_4 (0.6 g) and a magnetic stir bar. The cup was equipped with a plastic cover, graphite felt (8 cm x 5 cm x 1 cm) as cathode and zinc plate as anode. The zinc plate anode (8 cm X 12 cm X 4 pieces) attached to a platinum wire and the graphite felt cathode attached to a copper wire. The cup was flushed with argon for 1 minute. Anhydrous THF (60 mL), H₂O (9.4 mL, 520 mmol) and BF₃ Et₂O (7.8 mL, 65 mmol) were added via syringe. The mixture was stirred at room temperature under constant current electrolysis. After the reaction reached completion by monitoring with TLC or GC-MS analysis, the mixture was extracted with EtOAc. The organic layers were washed with brine, dried over Mg₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desire product **2ar** (2.5 g, 72%). **2ar** (2.5 g, 9.3 mmol) was added into the suspension of 60% NaH (740.0 mg, 18.6 mmol) on anhydrous THF (20 mL) at 0 °C and stirred for 1 h, then 2,4-Difluorobenzyl bromide (3.8 g, 18.6 mmol) was added, the mixture was stirred under room temperature until the reaction reached completion by monitoring with TLC. The reaction residue was purified by chromatography on silica gel to afford the desire product **2** as a yellow oil (3.0 g, 82%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.35 (m, 4H), 6.92 – 6.70 (m, 2H), 6.48 (q, J = 8.4 Hz, 1H), 5.10 (s, 2H), 4.06 (q, J = 7.2 Hz, 2H), 2.49 (s, 3H), 2.00 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 163.7, 163.6, 161.2, 161.1, 160.9, 160.8, 158.4, 158.3, 138.0, 135.8, 135.3, 134.2, 129.6, 128.2, 127.9, 127.8, 127.8, 127.7, 126.6, 120.8, 119.9, 119.9, 119.8, 119.7, 119.2, 112.0, 112.0, 111.8, 111.4, 110.9, 104.3, 104.0, 103.8, 59.3, 40.9, 40.9, 13.9, 11.4, 10.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.62 (d, J = 6.9 Hz), -114.11 (d, J = 7.4 Hz). HRMS (ESI) ([M + H]⁺) Calcd For C₂₃H₂₁F₂N₂O₂: 395.1571, found: 395.1568.

3. Electrochemistry analysis

3.1 Cyclic Voltammetry Experiments

Figure S4. CV of Blank sample using glassy carbon working electrode at 50 mV/s A solution of Bu_4NBF_4 (0.1 mmol), H_2O (8 mmol) in 5 mL anhydrous THF was subject to cyclic voltammetry experiment. Electrodes included a carbon working electrode, a platinum wire counter electrode and a saturated calomel electrode (SCE). Potential sweep rate was 50 mV/s.

Figure S5. CV of **1b** using **glassy carbon** working electrode at **50** mV/s A solution of **1b** (0.2 mmol), H₂O (8 mmol) and Bu₄NBF₄ (0.1 mmol) in 5 mL anhydrous THF

was subject to cyclic voltammetry experiment. Electrodes included a carbon working electrode, a platinum wire counter electrode and a saturated calomel electrode (SCE). Potential sweep rate was 50 mV/s.

Figure S6. CV of **1b** and BF₃ Et₂O using **glassy carbon** working electrode at **50** mV/s A solution of **1b** (0.2 mmol), BF₃ Et₂O (1 mmol), H₂O (8 mmol) and Bu₄NBF₄ (0.1 mmol) in 5 mL anhydrous THF was subject to cyclic voltammetry experiment. Electrodes included a carbon working electrode, a platinum wire counter electrode and a saturated calomel electrode (SCE). Potential sweep rate was **50** mV/s.

3.2 Square wave Voltammetry Experiments

Figure S7. SWV of 1b and BF₃ Et₂O using glassy carbon working electrode at 10 Hz A solution of 1b (0.2 mmol), BF₃ Et₂O (1 mmol), H₂O (8 mmol) and Bu₄NBF₄ (0.1 mmol) in 5 mL anhydrous THF was subject to square wave voltammetry experiment. Electrodes included a carbon working electrode, a platinum wire counter electrode and a saturated calomel electrode (SCE). Frequency was 10 Hz

4. Mechanism experiments

4.1 ¹³B NMR analysis

2

-2 -3

1b, BF₃ Et₂O (1.0 equiv), H₂O (40.0 equiv) in 5 mL d_8 -THF

9 8

20 19 18 17 16 15 14 13 12 11 10 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 2 1 0 -1 f1 (ppm) 9 3 -2

1b', BF₃ Et₂O (1.0 equiv), H₂O (40.0 equiv) in 5 mL *d*₈-THF

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20

4.2 Comparison of BF3 and protonic acid

A 10 mL three-necked flask was charged with the substrate **1ah** (0.2 mmol), nBu_4NBF_4 (0.1 mmol) and a magnetic stir bar. The flask was equipped with rubber stoppers, graphite felt as cathode and zinc plate as anode. The zinc plate anode attached to a platinum wire and the graphite felt cathode attached to a copper wire. The flask was evacuated and backfilled with argon for 3 times. H₂O (40.0 equiv), BF₃ Et₂O (5.0 equiv) and anhydrous THF (5 mL) were added via syringe. The mixture was stirred at room temperature under constant current electrolysis. After the reaction was completed by monitoring with TLC or GC-MS analysis, the mixture was extracted with EtOAc. The organic layers were washed with brine, dried over Mg₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desire product **2ah**.

A 10 mL three-necked flask was charged with the substrate **1ah** (0.2 mmol), nBu_4NBF_4 (0.1 mmol) and a magnetic stir bar. The flask was equipped with rubber stoppers, graphite felt as cathode and zinc plate as anode. The zinc plate anode attached to a platinum wire and the graphite felt cathode attached to a copper wire. The flask was evacuated and backfilled with argon for 3 times. H₂O (40.0 equiv), TFA (5.0 equiv) and anhydrous THF (5 mL) were added via syringe. The mixture was stirred at room temperature under constant current electrolysis. After the reaction was completed by monitoring with TLC or GC-MS analysis, the mixture was extracted with EtOAc. The organic layers were washed with brine, dried over Mg₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desire product **2ah** and **2ah**'.

2ah, 19.8 mg, 39%. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 3H), 5.93 (ddt, *J* = 17.0, 10.5, 6.7 Hz, 1H), 5.14 (d, *J* = 17.2 Hz, 1H), 5.07 (d, *J* = 10.2 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.05 (t, *J* = 7.6 Hz, 2H), 2.46 (q, *J* = 7.3 Hz, 2H), 2.13 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.1, 137.7, 136.4, 130.5, 127.4, 126.0, 123.7, 122.7, 115.6, 110.5, 59.2, 33.8, 27.2, 14.1, 11.4. HRMS (ESI) ([M + H]⁺) Calcd For C₁₈H₂₂NO₂: 284.1651, found: 284.1656.

2ah', 5.1 mg, 10%. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.37 – 7.28 (m, 2H), 7.29 – 7.20 (m, 3H), 5.80 (ddt, *J* = 17.0, 10.3, 6.7 Hz, 1H), 5.08 – 4.93 (m, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.56 (t, *J* = 7.4 Hz, 2H), 2.52 (s, 2H), 2.26 (q, *J* = 6.9 Hz, 2H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 138.0, 136.3, 134.0, 130.6, 127.7, 127.5, 126.1, 122.9, 115.9, 110.8, 59.2, 34.2, 24.8, 14.1, 13.9. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₈H₂₁NNaO₂: 306.1470, found: 306.1462.

GC-MS analysis:

1ah reacted with BF3 Et2O

4.3 Isotope-labelling experiment

A 10 mL three-necked flask was charged with the substrate **1aq** (0.2 mmol), nBu_4NBF_4 (0.1 mmol) and a magnetic stir bar. The flask was equipped with rubber stoppers, graphite felt as cathode and zinc plate as anode. The zinc plate anode attached to a platinum wire and the graphite felt cathode attached to a copper wire. The flask was evacuated and backfilled with argon for 3 times. D₂O (40.0 equiv), BF₃ Et₂O (5.0 equiv) and anhydrous d_8 -THF (5 mL) were added via syringe. The mixture was stirred at room temperature under constant current electrolysis. After the reaction was

completed by monitoring with TLC or GC-MS analysis, the mixture was extracted with EtOAc. The organic layers were washed with brine, dried over Mg₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desire product.

2aq, 22.4 mg, 36%. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.43 – 7.31 (m, 3H), 5.27 (s, 2H), 3.16 (t, *J* = 12.0 Hz, 1H), 2.40 (s, 3H), 2.22 (s, 3H), 1.74 – 1.63 (m, 8H), 1.32 – 1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 136.9, 133.4, 128.4, 128.2, 127.8, 126.0, 121.44 110.0, 65.2, 35.9, 32.7, 27.4, 26.3, 14.5, 13.0. HRMS (ESI) ([M + H]⁺) Calcd For C₂₀H₂₆NO₂: 312.1964, found: 312.1969.

3aq, 36.8 mg, 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 10H), 5.76 (s, 1H), 5.17 (q, J = 12.7 Hz, 4H), 4.05 (d, J = 5.4 Hz, 1H), 2.30 (s, 6H), 1.60 – 1.49 (m, 5H), 1.29 – 1.21 (m, 1H), 1.05 – 1.00 (m, 3H), 0.91 – 0.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 145.2, 136.9, 128.5, 128.0, 127.9, 101.8, 65.6, 46.1, 38.6, 28.9, 26.8, 26.7, 19.6. HRMS (ESI) ([M + H]⁺) Calcd For C₂₉H₃₂NNaO₄: 483.2307, found: 482.2299.

4, 9.5 mg, 32%. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 5H), 5.11 (s, 2H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 136.0, 128.7, 128.4, 66.5, 21.2.

A 10 mL three-necked flask was charged with the substrate **1ad** (0.2 mmol), nBu_4NBF_4 (0.1 mmol) and a magnetic stir bar. The flask was equipped with rubber stoppers, graphite felt as cathode and zinc plate as anode. The zinc plate anode attached to a platinum wire and the graphite felt cathode attached to a copper wire. The flask was evacuated and backfilled with argon for 3 times. D₂O (40.0 equiv), BF₃ Et₂O (5 equiv) and anhydrous THF (5 mL) were added via syringes. The mixture was stirred at room temperature under constant current electrolysis. After the reaction reached completion by monitoring with TLC or GC-MS analysis, the mixture was extracted with EtOAc for 3 times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the

desire product d_3 -4.

2aq, 24.2 mg, 39%. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.43 (d, J = 7.4 Hz, 2H), 7.40 – 7.27 (m, 3H), 5.27 (s, 2H), 3.16 (tt, J = 12.1, 3.5 Hz, 1H), 2.40 (s, 3H), 2.22 (s, 3H), 1.78 – 1.61 (m, 8H), 1.34 – 1.13 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.11, 137.00, 133.47, 128.52, 128.30, 127.91, 126.07, 121.54, 110.04, 65.33, 35.91, 32.72, 27.46, 26.42, 14.61, 13.14. HRMS (ESI) ([M + H]⁺) Calcd For C₂₀H₂₆NO₂: 312.1964, found: 312.1969.

d-3aq, 28.4 mg, 31%. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 10H), 5.74 (s, 1H), 5.23 – 5.11 (m, 4H), 2.30 (s, 6H), 1.62 – 1.46 (m, 5H), 1.27 – 1.19 (m, 1H), 1.01 (d, *J* = 8.3 Hz, 3H), 0.93 – 0.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 145.1, 136.9, 128.5, 128.0, 127.9, 101.7, 65.6, 46.0, 38.4 – 38.0 (m), 28.9, 26.8, 19.6. HRMS (ESI) ([M + H]⁺) Calcd For C₂₉H₃₂DNNaO₄: 483.2370, found: 483.2363.

 d_3 -4, 10.3 mg, 34%. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 5H), 5.11 (s, 2H), 2.09 (dq, J = 4.3, 2.4 Hz, 0.65H, 78%D); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 136.1, 128.70 128.4, 66.4, 20.9 – 20.5 (m).

5. Synthesis and characterization of compounds

Ethyl 4-(4-fluorophenyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2a)

Following the general procedure I, the product **2a** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (39.2 mg, 75%). Mp. 127.0-127.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.20 (dd, *J* = 8.4, 5.7 Hz, 2H), 7.01 (t, *J* = 8.7 Hz, 2H), 4.10 (q, *J* = 7.0 Hz, 2H), 2.49 (s, 3H), 2.06 (s, 3H), 1.09 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 161.6 (d, *J* = 244.0 Hz), 134.2, 132.3 (d, *J* = 3.3 Hz), 132.0 (d, *J* = 7.8 Hz), 123.7, 121.6, 114.2 (d, *J* = 21.2 Hz), 110.6, 59.2, 14.2, 13.8, 11.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.56. HRMS (ESI)

 $([M + H]^+)$ Calcd For C₁₅H₁₇FNO₂: 262.1243, found: 262.1231.

Ethyl 2,5-dimethyl-4-phenyl-1*H*-pyrrole-3-carboxylate (2b)

Following the general procedure I, the product **2b** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (28.7 mg, 59%). Mp. 121.0-122.1 °C.¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 3H), 4.08 (q, *J* = 7.0 Hz, 2H), 2.49 (s, 3H), 2.09 (s, 3H), 1.06 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 136.3, 134.0, 130.5, 127.4, 125.9, 123.6, 122.5, 110.6, 59.2, 14.1, 13.7, 11.3. HRMS (ESI) ([M + H]⁺) Calcd For C₁₅H₁₈NO₂: 244.1338, found: 244.1336.

Ethyl 2,5-dimethyl-4-(p-tolyl)-1*H*-pyrrole-3-carboxylate (2c)

Following the general procedure I, the product **2c** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (39.2 mg, 76%). Mp. 120.7-122.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.17-7.13 (m, 4H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.48 (s, 3H), 2.36 (s, 3H), 2.09 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 135.4, 133.9, 133.2, 130.3, 128.2, 123.5, 122.4, 110.6, 59.2, 21.3, 14.2, 13.8, 11.3. HRMS (ESI) ([M + H]⁺) Calcd For C₁₆H₂₀NO₂: 258.1494, found: 258.1490.

Ethyl 4-(4-methoxyphenyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2d)

Following the general procedure I, the product **2d** was isolated by chromatography on silica gel (PE/EA = 3/1, eluent) as a yellow oil (31.1 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.18 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 4.11 (q, *J* = 7.0 Hz, 2H), 3.82 (s, 3H), 2.48 (s, 3H), 2.08 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 157.9, 133.9, 131.5, 128.7, 123.5, 122.1, 112.9, 110.6, 59.1, 55.3, 14.3, 13.9, 11.2. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₆H₁₉NNaO₃: 296.1263, found: 296.1272.

Ethyl 4-(4-(benzyloxy)phenyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2e)

Following the general procedure I, the product **2e** was isolated by chromatography on silica gel (PE/EA = 4/1, eluent) as a white solid (44.6 mg, 64%). Mp. 151.5-151.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 5.08 (s, 2H), 4.11 (q, *J* = 8.0, 7.1 Hz, 2H), 2.49 (s, 3H), 2.09 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 157.2, 137.4, 133.9, 131.6, 129.0, 128.7, 128.0, 127.7, 123.5, 122.1, 113.9, 110.6, 70.1, 59.2, 14.3, 13.8, 11.3. HRMS (ESI) ([M + Na]⁺) Calcd For C₂₂H₂₃NNaO₃: 372.1576, found: 372.1571.

Ethyl 2,5-dimethyl-4-(4-(methylthio)phenyl)-1H-pyrrole-3-carboxylate (2f)

Following the general procedure I, the product **2f** was isolated by chromatography on silica gel (PE/EA = 4/1, eluent) as a white solid (34.6 mg, 60%). Mp. 143.5-144.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.24 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.49 (s, 3H), 2.48 (s, 3H), 2.08 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 135.4, 134.1, 133.4, 131.0, 126.1, 123.7, 122.0, 110.6, 59.2, 16.3, 14.2, 13.8, 11.3. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₆H₁₉NNaO₂S: 312.1034, found: 312.1029.

Ethyl 2,5-dimethyl-4-(4-(trifluoromethoxy)phenyl)-1*H*-pyrrole-3-carboxylate (2g)

Following the general procedure I, the product **2g** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (35.3 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.52 (s, 3H), 2.10 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 147.6, 135.3, 134.4, 131.8, 123.9, 120.7 (q, *J* = 256.5 Hz), 120.0, 110.6, 59.3, 14.0, 13.7, 11.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.81. HRMS (ESI) ([M + H]⁺) Calcd For C₁₆H₁₇F₃NO₃: 328.1161, found: 328.1158.

Ethyl 4-(4-(dimethylamino)phenyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2h)

Following the general procedure I, the product **2h** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (33.0 mg, 58%). Mp. 150.9-151.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.75 (d, *J* = 8.3 Hz, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 2.95 (s, 6H), 2.47 (s, 3H), 2.09 (s, 3H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

166.1, 149.0, 133.7, 131.1, 124.6, 123.3, 122.5, 112.1, 110.6, 59.1, 40.9, 14.3, 13.9, 11.3. HRMS (ESI) ([M + H]⁺) Calcd For C₁₇H₂₃N₂O₂: 287.1760, found: 287.1759.

Ethyl 4-(4-chlorophenyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2i)

Following the general procedure I, the product **2i** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a pale yellow solid (40.1 mg, 72%). Mp. 102.1-102.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 4.10 (q, *J* = 7.0 Hz, 2H), 2.48 (s, 3H), 2.06 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 134.8, 134.3, 131.8, 131.8, 127.6, 123.8, 121.4, 110.4, 59.3, 14.2, 13.8, 11.2. HRMS (ESI) ([M + H]⁺) Calcd For C₁₅H₁₇CINO₂: 278.0948, found: 278.0943.

Ethyl 4-(4-bromophenyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2j)

Following the general procedure I, the product **2j** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (34.9 mg, 54%). Mp. 133.1-134.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 4.11 (q, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 2.07 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 135.3, 134.3, 132.2, 130.5, 123.8, 121.4, 120.0, 110.4, 59.3, 14.2, 13.8, 11.2. HRMS (ESI) ([M + H]⁺) Calcd For C₁₅H₁₇BrNO₂: 322.0443, found: 322.0429.

Ethyl 4-(4-iodophenyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2k)

Following the general procedure I, the product **2k** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (38.0 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.74 – 7.54 (m, 2H), 7.07 – 6.94 (m, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.49 (s, 3H), 2.08 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 136.6, 136.0, 134.2, 132.6, 123.7, 121.6, 110.6, 91.5, 59.3, 14.2, 13.8, 11.3. HRMS (ESI) ([M + H]⁺) Calcd For C₁₅H₁₇INO₂: 370.0304, found: 370.0292.

Ethyl

2,5-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1*H*-pyrrole-3-carbox ylate (2l)

Following the general procedure I, the product **21** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (31.3 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.79 (d, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 9.4 Hz, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.51 (s, 3H), 2.11 (s, 3H), 1.38 (s, 12H), 1.09 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 139.5, 134.1, 134.0, 129.9, 123.8, 122.4, 110.6, 83.7, 59.2, 25.0, 25.0, 14.2, 13.7, 11.3; ¹¹B NMR (128 MHz, CDCl₃) δ 37.11. HRMS (ESI) ([M + Na]⁺) Calcd For C₂₁H₂₈BNNaO₄: 392.2009, found: 392.2004.

Ethyl 4-(2,3-dihydrobenzofuran-5-yl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2m)

Following the general procedure I, the product **2m** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (34.8 mg, 61%). Mp. 112.9-113.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.08 (s, 1H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 8.1 Hz, 2H), 4.56 (t, *J* = 8.6 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.19 (t, *J* = 8.6 Hz, 2H), 2.47 (s, 3H), 2.07 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 158.4, 133.8, 130.0, 128.4, 127.1, 125.9, 123.4, 122.4, 110.5, 108.2, 71.2, 59.1, 29.9, 14.3, 13.8, 11.2. HRMS (ESI) ([M + H]⁺) Calcd For C₁₇H₂₀NO₃: 286.1443, found: 286.1441.

Ethyl 2,5-dimethyl-4-(thiophen-2-yl)-1*H*-pyrrole-3-carboxylate (2n)

Following the general procedure I, the product **2n** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (18.9 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.27 (d, *J* = 4.8 Hz, 1H), 7.03 – 7.00 (m, 1H), 6.89 (d, *J* = 3.4 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.49 (s, 3H), 2.16 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 137.3, 134.1, 127.1, 126.3, 125.7, 124.7, 114.5, 111.7, 59.3, 14.2, 13.8, 11.6. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₃H₁₅NNaO₂S: 250.0902, found: 250.0905.

Ethyl 2,5-dimethyl-4-(naphthalen-1-yl)-1*H*-pyrrole-3-carboxylate (20)

Following the general procedure I, the product **20** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a pale yellow solid (40.6 mg, 69%). Mp. 160.4-161.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.72 (d, *J* = 8.3 Hz, 1H), 7.47 (t, *J* = 7.1 Hz, 1H), 7.43 (t, *J* = 7.3 Hz, 1H), 7.34 (dd, *J* = 17.8, 7.5 Hz, 2H), 3.84 – 3.71 (m, 2H), 2.56 (s, 3H), 1.95 (s, 3H), 0.49 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 135.0, 134.3, 133.9, 133.5, 128.0, 127.7, 126.7, 126.7, 125.3, 125.3, 125.2, 124.3, 120.0, 112.0, 58.8, 13.6, 13.3, 11.2. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₉H₁₉NNaO₂: 294.1494, found: 294.1483.

Ethyl 2,4,5-trimethyl-1*H*-pyrrole-3-carboxylate (2p)

Following the general procedure I, the product **2p** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (28.6 mg, 79%). Mp. 93.9-94.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 2.15 (s, 3H), 2.10 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 133.8, 122.1, 116.0, 110.7, 59.1, 14.6, 13.9, 11.1, 10.6. HRMS (ESI) ([M + H]⁺) Calcd For C₁₀H₁₆NO₂:182.1181, found:182.1175.

Ethyl 4-ethyl-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2q)

Following the general procedure I, the product 2q was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a yellow oil (24.2 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.62 (d, *J* = 7.4 Hz, 2H), 2.45 (s, 3H), 2.13 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.09 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 133.8, 123.0, 121.7, 110.0, 59.1, 18.7, 16.0, 14.6, 14.0, 10.5. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₁H₁₇NNaO₂: 218.1157, found: 218.1152.

Ethyl 4-butyl-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (**2r**)

Following the general procedure I, the product **2r** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (24.6 mg, 55%). Mp. 91.7-92.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.59 (t, *J* = 7.3 Hz, 2H), 2.45 (s, 3H), 2.11 (s, 3H), 1.50 – 1.42 (m, 2H), 1.38 – 1.29 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 134.0, 122.1, 121.4, 110.2, 59.1, 33.9, 25.3, 22.9, 14.6, 14.2, 14.1, 10.7. HRMS (ESI) ([M + H]⁺) Calcd For C₁₃H₂₂NO₂: 224.1651, found: 224.1648.

Ethyl 4-isobutyl-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2s)

Following the general procedure I, the product **2s** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a yellow oil (25.5 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.48 (hept, *J* = 7.1 Hz, 1H), 2.41 (s, 3H), 2.20 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.26 (d, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 133.2, 126.7, 121.3, 110.2, 59.2, 25.3, 22.6, 14.6, 14.4, 12.6. HRMS (ESI) ([M + H]⁺) Calcd For C₁₃H₂₂NO₂: 224.1651, found: 224.1647.

Ethyl 2,5-dimethyl-4-neopentyl-1*H*-pyrrole-3-carboxylate (2t)

Following the general procedure I, the product 2t was isolated by chromatography on silica gel

(PE/EA = 5/1, eluent) as a white solid (26.2 mg, 55%). Mp. 123.0-123.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 2.63 (s, 2H), 2.43 (s, 3H), 2.10 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 0.86 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 133.3, 123.7, 118.1, 111.9, 59.1, 37.4, 33.8, 29.6, 14.6, 14.1, 11.9. HRMS (ESI) ([M + H]⁺) Calcd For C₁₄H₂₄NO₂: 238.1807, found: 238.1801.

Ethyl 4-(((3*r*,5*r*,7*r*)-adamantan-1-yl)methyl)-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2u) Following the general procedure I, the product 2u was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (36.4 mg, 58%). Mp. 179.7-180.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 2.51 (s, 2H), 2.44 (s, 3H), 2.10 (s, 3H), 1.88 (s, 3H), 1.59 (q, *J* = 11.8 Hz, 6H), 1.48 (s, 6H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 133.1, 123.8, 116.7, 112.2, 59.1, 42.5, 38.5, 37.3, 35.6, 29.0, 14.6, 14.1, 12.0. HRMS (ESI) ([M + H]⁺) Calcd For C₁₉H₂₈NO₂: 302.2020, found: 302.2121.

Ethyl 4-benzyl-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2v)

Following the general procedure I, the product 2v was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (30.6 mg, 59%). Mp. 108.8-109.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.28 – 7.23 (m, 2H), 7.19 – 7.12 (m, 3H), 4.18 (q, *J* = 7.0 Hz, 2H), 4.08 (s, 2H), 2.49 (s, 3H), 2.15 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 142.7, 134.3, 130.2, 128.2, 128.1, 125.3, 123.4, 118.8, 110.6, 59.1, 31.0, 14.4, 14.1, 10.9. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₆H₁₉NNaO₂: 280.1313, found: 280.1308.

Ethyl 2,5-dimethyl-4-phenethyl-1*H*-pyrrole-3-carboxylate (2w)

Following the general procedure I, the product **2w** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a yellow oil (37.1 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.31 – 7.27 (m, 2H), 7.21 – 7.20 (m, 3H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.93 (dd, *J* = 8.9, 6.0 Hz, 2H), 2.83 (dd, *J* = 9.0, 6.1 Hz, 2H), 2.51 (s, 3H), 1.91 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 143.0, 134.1, 128.8, 128.2, 125.6, 122.8, 120.1, 110.0, 59.2, 37.8, 28.0, 14.7, 14.1, 10.3. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₇H₂₁NNaO₂: 294.1470, found: 294.1462.

Ethyl 2,5-dimethyl-4-(2-(5-methylfuran-2-yl)ethyl)-1*H*-pyrrole-3-carboxylate (2x)

Following the general procedure I, the product **2x** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (32.3 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 5.83 – 5.79 (m, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.91 (t, *J* = 7.6 Hz, 2H), 2.75 (t, *J* = 7.6 Hz, 2H), 2.46 (s, 3H), 2.26 (s, 3H), 2.01 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 154.9, 150.0, 134.2, 122.8, 119.7, 110.1, 105.9, 105.5, 59.2, 29.9, 24.7, 14.6, 14.0, 13.6, 10.4. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₆H₂₁NNaO₃: 298.1419, found: 298.1414.

Ethyl 2,5-dimethyl-4-(2-(methylthio)ethyl)-1*H*-pyrrole-3-carboxylate (2y)

Following the general procedure I, the product **2y** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (29.4 mg, 61%). Mp. 83.6-84.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.88 (t, *J* = 7.1 Hz, 2H), 2.66 (q, *J* = 7.1 Hz, 2H), 2.43 (s, 3H), 2.13 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 134.3, 123.0, 119.2, 109.9, 59.15, 35.7, 25.8, 15.6, 14.6, 14.0, 10.8. HRMS (ESI) ([M + H]⁺) Calcd For C₁₂H₂₀NO₂S: 242.1215, found: 242.1217.

Ethyl 4-isopropyl-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2z)

Following the general procedure I, the product **2z** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (25.5 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.48 (hept, *J* = 7.1 Hz, 1H), 2.41 (s, 3H), 2.20 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.26 (d, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 133.2, 126.7, 121.3, 110.2, 59.2, 25.3, 22.6, 14.6, 14.4, 12.6. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₂H₁₉NNaO₂: 232.1313, found: 232.1300.

Ethyl 4-cyclohexyl-2,5-dimethyl-1*H*-pyrrole-3-carboxylate (2aa)

Following the general procedure I, the product **2aa** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (15.3 mg, 30%). Mp. 164.0-164.6 °C. ¹H NMR (400 MHz,

CDCl₃) δ 7.73 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.12 (tt, *J* = 11.7, 3.8 Hz, 1H), 2.41 (s, 3H), 2.22 (s, 3H), 1.80 – 1.62 (m, 8H), 1.40 – 1.28 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 133.1, 125.9, 121.4, 110.5, 59.2, 36.1, 32.8, 27.6, 26.5, 14.7, 14.4, 13.1. HRMS (ESI) ([M + H]⁺) Calcd For C₁₅H₂₄NO₂: 250.1807, found: 250.1797.

tert-Butyl 4-(4-(ethoxycarbonyl)-2,5-dimethyl-1*H*-pyrrol-3-yl)piperidine-1-carboxylate (2ab) Following the general procedure I, the product 2ab was isolated by chromatography on silica gel (PE/EA = 3/1, eluent) as a colorless oil (40.1 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 4.21 – 4.12 (m, 2H), 3.31 (tt, *J* = 12.4, 3.6 Hz, 1H), 2.74 (s, 2H), 2.40 (s, 3H), 2.19 (s, 3H), 1.88 – 1.77 (m, 2H), 1.69 – 1.64 (m, 2H), 1.46 (s, 9H), 1.32 (t, *J* = 7.1 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 155.1, 133.5, 123.6, 121.9, 110.2, 79.3, 45.0, 59.2, 34.3, 31.7, 28.6, 14.6, 14.3, 13.0. HRMS (ESI) ([M + H]⁺) Calcd For C₁₉H₃₁N₂O₄: 351.2284, found: 351.2284.

Methyl 2,4,5-trimethyl-1*H*-pyrrole-3-carboxylate (2ac)

Following the general procedure I, the product **2ac** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (24.4 mg, 73%). Mp. 104.4-104.9 °C. ¹H NMR (400 MHz, CDCl₃ δ 8.08 (s, 1H), 3.79 (s, 3H), 2.44 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 133.9, 122.2, 116.1, 110.6, 50.4, 13.9, 11.0, 10.6. HRMS (ESI) ([M + H]⁺) Calcd For C₉H₁₄NO₂: 168.1025, found: 168.1019.

tert-Butyl 2,4,5-trimethyl-1*H*-pyrrole-3-carboxylate (2ad)

Following the general procedure I, the product **2ad** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (24.2 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 2.43 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 1.55 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 133.1, 121.8, 116.0, 112.34, 79.2, 28.8, 14.1, 11.2, 10.7. HRMS (ESI) ([M + H]⁺) Calcd For C₁₂H₂₀NO₂: 210.1494, found: 210.1496.

Benzyl 2,4,5-trimethyl-1*H*-pyrrole-3-carboxylate (2ae)

Following the general procedure I, the product **2ae** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a white solid (37.5 mg, 77%). Mp. 84.5-85.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.44-7.26 (m, 5H), 5.30 (s, 2H), 2.45 (s, 3H), 2.18 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 137.2, 134.2, 128.5, 127.9, 127.8, 122.2, 116.2, 110.4, 65.0, 14.1, 11.2, 10.5. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₅H₁₇NNaO₂: 266.1157, found: 266.1152.

Ethyl 4-phenyl-2,5-dipropyl-1*H*-pyrrole-3-carboxylate (2af)

Following the general procedure I, the product **2af** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a pale yellow oil (33.9 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.33 – 7.29 (m, 2H), 7.25 – 7.21 (m, 2H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.89 (t, *J* = 7.6 Hz, 2H), 2.41 (t, *J* = 7.5 Hz, 2H), 1.69 (h, *J* = 7.4 Hz, 2H), 1.50 (h, *J* = 7.4 Hz, 2H), 1.03 – 0.96 (m, 6H), 0.84 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 138.5, 136.7, 130.6, 128.3, 127.4,

125.9, 122.6, 110.3, 59.1, 29.8, 27.5, 23.4, 23.1, 14.1, 14.0, 13.8. HRMS (ESI) ([M + H]⁺) Calcd For C₁₉H₂₆NO₂: 300.1964, found: 300.1966.

Ethyl 2,5-di(but-3-en-1-yl)-4-phenyl-1*H*-pyrrole-3-carboxylate (2ag)

Following the general procedure I, the product **2ag** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a pale yellow oil (34.5 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.34 – 7.30 (m, 2H), 7.26 – 7.23 (m, 3H), 5.95 – 5.85 (m, 1H), 5.84 – 5.74 (m, 1H), 5.13 – 4.99 (m, 4H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.04 (t, *J* = 7.5 Hz, 2H), 2.56 (t, *J* = 7.4 Hz, 2H), 2.43 (q, *J* = 7.2 Hz, 2H), 2.25 (q, *J* = 7.2 Hz, 2H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.2, 138.0, 137.7, 136.4, 130.6, 127.8, 127.4, 126.1, 122.8, 115.9, 115.7, 110.5, 59.2, 34.1, 33.6, 27.1, 24.9, 14.0. HRMS (ESI) ([M + H]⁺) Calcd For C₂₁H₂₆NO₂: 324.1964, found: 324.1968.

Ethyl 2-(but-3-en-1-yl)-5-methyl-4-phenyl-1*H*-pyrrole-3-carboxylate (2ah)

Following the general procedure I, the product **2ah** was isolated by chromatography on silica gel (PE/EA = 4/1, eluent) as a pale yellow oil (30.0 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 3H), 5.93 (ddt, *J* = 17.0, 10.5, 6.7 Hz, 1H), 5.14 (d, *J* = 17.2 Hz, 1H), 5.07 (d, *J* = 10.2 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.05 (t, *J* = 7.6 Hz, 2H), 2.46 (q, *J* = 7.3 Hz, 2H), 2.13 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.1, 137.7, 136.4, 130.5, 127.4, 126.0, 123.7, 122.7, 115.6, 110.5, 59.2, 33.8, 27.2, 14.1, 11.4. HRMS (ESI) ([M + H]⁺) Calcd For C₁₈H₂₂NO₂: 284.1651, found: 284.1656.

Ethyl 2-(but-3-en-1-yl)-5-methyl-3-phenyl-1H-pyrrole-4-carboxylate (2ah')

Following the general procedure I, the product **2ah'** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a pale yellow oil (5.1 mg, 10%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.37 – 7.28 (m, 2H), 7.29 – 7.20 (m, 3H), 5.80 (ddt, *J* = 17.0, 10.3, 6.7 Hz, 1H), 5.08 – 4.93 (m, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.56 (t, *J* = 7.4 Hz, 2H), 2.52 (s, 2H), 2.26 (q, *J* = 6.9 Hz, 2H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 138.0, 136.3, 134.0, 130.6, 127.7, 127.5, 126.1, 122.9, 115.9, 110.8, 59.2, 34.2, 24.8, 14.1, 13.9. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₈H₂₁NNaO₂: 306.1470, found: 306.1462.

Ethyl 2-(4-hydroxybutyl)-5-methyl-4-phenyl-1*H*-pyrrole-3-carboxylate (2ai)

Following the general procedure I, the product **2ai** was isolated by chromatography on silica gel (PE/EA = 3/1, eluent) as a colorless oil (24.6 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.34 – 7.30 (m, 2H), 7.25 – 7.22 (m, 3H), 4.05 (q, J = 7.1 Hz, 2H), 3.74 (t, J = 6.1 Hz, 2H), 2.97 (t, J = 6.1 Hz, 2H), 2.12 (s, 3H), 1.82 – 1.75 (m, 2H), 1.70 – 1.63 (m, 2H), 1.01 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 138.4, 136.5, 130.6, 127.4, 126.0, 123.6, 116.3, 110.4, 62.6, 59.2, 31.8, 27.0, 26.1, 14.0, 11.4. HRMS (ESI) ([M + H]⁺) Calcd For C₁₈H₂₄NO₃: 302.1756, found: 302.1759.

Ethyl 2-(4-((*tert*-butyldiphenylsilyl)oxy)butyl)-5-methyl-4-phenyl-1*H*-pyrrole-3-carboxylate (2aj)

Following the general procedure I, the product **2aj** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (51.8 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.69 (d, *J* = 6.4 Hz, 4H), 7.46 – 7.38 (m, 7H), 7.36 – 7.32 (m, 2H), 7.26 (d, *J* = 7.3 Hz, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.76 (t, *J* = 6.0 Hz, 2H), 2.95 (t, *J* = 7.4 Hz, 2H), 2.07 (s, 3H), 1.81 – 1.73 (m, 2H), 1.70 – 1.63 (m, 2H), 1.09 (s, 9H), 1.04 (t, *J* = 7.1 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.3, 136.4, 135.7, 134.1, 130.5, 129.8, 127.8, 127.4, 125.9, 123.5, 110.3, 64.1, 59.1, 32.2, 27.4, 27.1, 26.1, 19.4, 14.1, 11.3. HRMS (ESI) ([M + H]⁺) Calcd For C₃₄H₄₂NO₃Si: 540.2934, found: 540.2930.

Ethyl

2-(4-((*N*-(isopropoxycarbonyl)-4-methylphenyl)sulfonamido)butyl)-5-methyl-4-phenyl-1*H*-py rrole-3-carboxylate (2ak)

Following the general procedure I, the product **2ak** was isolated by chromatography on silica gel (PE/EA = 3/1, eluent) as a colorless oil (40.9 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.34 – 7.30 (m, 2H), 7.25 – 7.22 (m, 3H), 4.05 (q, J = 7.1 Hz, 2H), 3.74 (t, J = 6.1 Hz, 2H), 2.97 (t, J = 6.1 Hz, 2H), 2.12 (s, 3H), 1.82 – 1.75 (m, 2H), 1.70 – 1.63 (m, 2H), 1.01 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 138.4, 136.5, 130.6, 127.4, 126.0, 123.6, 116.3, 110.4, 62.6, 59.2, 31.8, 27.0, 26.1, 14.0, 11.4. HRMS (ESI) ([M + H]⁺) Calcd For C₂₉H₃₇N₂O₆S: 541.2372, found: 541.2375.

Ethyl 2-(4-(((*tert*-butoxycarbonyl)alanyl)oxy)butyl)-5-methyl-4-phenyl-1*H*-pyrrole-3-carboxylate Following the general procedure I, the product **2al** was isolated by chromatography on silica gel (PE/EA = 3/1, eluent) as a colorless oil (37.9 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.33 – 7.29 (m, 2H), 7.25 – 7.20 (m, 3H), 5.08 (d, J = 6.4 Hz, 1H), 4.32 – 4.26 (m, 2H), 4.18 – 4.13 (m, 1H), 4.05 (q, J = 7.1 Hz, 2H), 3.00 – 2.87 (m, 2H), 2.11 (s, 3H), 1.75 – 1.72 (m, 4H), 1.44 (s, 9H), 1.39 (d, J = 7.2 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) 173.6, 165.7, 155.4, 137.8, 136.4, 130.4, 127.3, 125.7, 123.9, 122.3, 110.2, 80.0, 64.7, 59.0, 49.4, 28.3, 28.0, 26.7, 25.8, 18.2, 13.9, 11.2. HRMS (ESI) ([M + H]⁺) Calcd For C₂₆H₃₇N₂O₆: 473.2652, found: 473.2655.

Ethyl

5-methyl-2-(4-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)butyl)-4-phenyl-1H-pyrrole-3-carboxylate (2am) Following the general procedure I, the product 2am was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (48.7 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.36 – 7.30 (m, 2H), 7.27 – 7.15 (m, 4H), 6.72 (dd, *J* = 8.6, 2.8 Hz, 1H), 6.66 (d, *J* = 2.7 Hz, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 4.00 (q, J = 4.1, 3.4 Hz, 2H), 3.07 – 2.96 (m, 2H), 2.95 – 2.85 (m, 2H), 2.50 (dd, J = 18.8, 8.6 Hz, 1H), 2.45 – 2.36 (m, 1H), 2.29 – 2.22 (m, 1H), 2.21 – 1.92 (m, 7H), 1.87 (p, J = 3.4 Hz, 4H), 1.70 – 1.38 (m, 8H), 1.03 (t, J = 7.1 Hz, 3H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 221.0, 165.8, 157.1, 138.0, 138.0, 136.4, 132.3, 130.6, 127.4, 126.5, 126.0, 123.7, 122.7, 114.7, 112.3, 110.6, 68.0, 59.1, 50.6, 48.2, 44.1, 38.5, 36.0, 31.8, 29.8, 28.9, 27.2, 26.7, 26.4, 26.1, 21.7, 14.1, 14.0, 11.43. HRMS (ESI) ([M + Na]⁺) Calcd For C₃₆H₄₃NNaO₄: 576.3090, found: 576.3073.

(2al)

Ethyl 2-(4-bromobutyl)-5-methyl-4-phenyl-1*H*-pyrrole-3-carboxylate (2an)

Following the general procedure I, the product **2an** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a colorless oil (30.5 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.34 – 7.31 (m, 2H), 7.25 – 7.22 (m, 3H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.45 (t, *J* = 6.6 Hz, 2H), 2.97 – 2.93 (m, 2H), 2.11 (s, 3H), 1.98 – 1.91 (m, 2H), 1.86 – 1.78 (m, 2H), 1.03 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 137.5, 136.3, 130.5, 127.4, 126.0, 123.9, 122.7, 110.7, 59.2, 33.8, 32.5, 28.4, 26.8, 14.1, 11.4. HRMS (ESI) ([M + H]⁺) Calcd For C₁₈H₂₃BrNO₂: 364.0912, found: 364.0916.

Ethyl

2-(5,5-difluoro-6-oxo-6-(phenylamino)hexyl)-5-methyl-4-phenyl-1*H*-pyrrole-3-carboxylate (2ao)

Following the general procedure I, the product **2ao** was isolated by chromatography on silica gel (PE/EA = 3/1, eluent) as a colorless oil (35.4 mg, 39%). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.15 (s, 1H), 7.58 (d, *J* = 7.9 Hz, 2H), 7.36 (t, *J* = 7.9 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.24 – 7.18 (m, 4H), 4.04 (q, *J* = 7.1 Hz, 2H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.31 – 2.19 (m, 2H), 2.06 (s, 3H), 1.79 – 1.72 (m, 2H), 1.62 – 1.54 (m, 2H), 1.01 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 162.5 (t, *J* = 28.7 Hz), 137.6, 136.4, 136.1, 130.5, 129.3, 127.4, 125.9, 125.8, 124.0, 122.6, 120.6, 118.6 (t, *J* = 252.0 Hz), 110.5, 59.2, 33.2 (t, *J* = 23.1 Hz), 27.0, 26.8, 21.3 (t, *J* = 4.4 Hz), 14.0, 11.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.81. HRMS (ESI) ([M + H]⁺) Calcd For C₂₆H₂₉F₂N₂O₃: 455.2146, found: 455.2142.

Ethyl 2-(4-(1H-pyrazol-1-yl)butyl)-5-methyl-4-phenyl-1H-pyrrole-3-carboxylate (2ap)

Following the general procedure I, the product **2ap** was isolated by chromatography on silica gel (PE/EA = 3/1, eluent) as a colorless oil (33.2 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.53 (d, J = 1.5 Hz, 1H), 7.40 (d, J = 2.1 Hz, 1H), 7.30 (d, J = 6.6 Hz, 2H), 7.24 (d, J = 7.3 Hz, 3H), 6.26 (t, J = 2.0 Hz, 1H), 4.19 (t, J = 6.7 Hz, 2H), 4.05 (q, J = 7.1 Hz, 4H), 2.93 (t, J = 7.4 Hz, 2H), 2.11 (s, 3H), 2.01 – 1.93 (m, 2H), 1.72 – 1.65 (m, 2H), 1.01 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 139.2, 137.8, 136.5, 130.5, 129.6, 127.4, 125.9, 123.9, 122.5, 110.3, 105.6, 59.1, 51.6, 29.6, 26.4, 26.3, 14.1, 11.4. HRMS (ESI) ([M + H]⁺) Calcd For C₂₁H₂₆N₃O₂: 352.2025, found: 352.2016.

Benzyl 4-cyclohexyl-2,5-dimethyl-1H-pyrrole-3-carboxylate (2aq)

Following the general procedure I, the product **2aq** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a pale yellow solid (22.4 mg, 36%). Mp. 111.7-112.4 °C. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.43 – 7.31 (m, 3H), 5.27 (s, 2H), 3.16 (t, *J* = 12.0 Hz, 1H), 2.40 (s, 3H), 2.22 (s, 3H), 1.74 – 1.63 (m, 8H), 1.32 – 1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 136.9, 133.4, 128.4, 128.2, 127.8, 126.0, 121.44 110.0, 65.2, 35.9, 32.7, 27.4, 26.3, 14.5, 13.0. HRMS (ESI) ([M + H]⁺) Calcd For C₂₀H₂₆NO₂: 312.1964, found: 312.1969.

Ethyl 4-(3-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carboxylate (2ar)

Following the general procedure of I, the product **2ar** was isolated by chromatography on silica gel (PE/EA = 5/1, eluent) as a yellow oil (2.5 g, 72%, starting from 13.0 mmol of **1ar**). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.57 – 7.47 (m, 3H), 7.42 (t, *J* = 8.0 Hz, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 2.52 (s, 3H), 2.10 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.41, 137.80, 135.29, 134.72, 134.12, 129.67, 128.25, 124.16, 120.54, 119.46, 111.49, 110.48, 59.38, 14.18, 13.84, 11.28. HRMS (ESI) ([M + Na]⁺) Calcd For C₁₆H₁₆N₂NaO₂: 291.1109, found: 291.1103.

6. Reference

1. J. Calbo, C. E. Weston, A. J. P. White, H. S. Rzepa, J. Contreras-Garc á and M. J. Fuchter, *J. Am. Chem. Soc.* 2017, **139**, 1261-1274.

7. NMR spectra

¹H NMR (400 MHz, CDCl₃) of **1ag**

8879779448700977779	4000	N N N N N N N N N N N N N N N N N N N	7 3 2
$\phi \rightarrow \phi \phi$	0000	ດດດດດດດ	ດດດ
	4440	0 0 0 0 0 0 0 0 0	000
	4		\checkmark

¹H NMR (400 MHz, CDCl₃) of 1ah

 $\begin{array}{c} & 7.33\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.37\\ & 7.36\\ & 7.28\\ & 7.28\\ & 7.29$

¹H NMR (400 MHz, CDCl₃) of 1ai

190
180
170
160
150
140
130
120
110
100
90

fl (ppm)
fl
fl 80 70 60 50 40 30 20 10 0

${}^{1}H NMR (400 MHz, CDCl_{3}) of 1aj$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) of 2a

¹⁹F NMR (376 MHz, CDCl₃) of 2a

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **2b**

¹³C NMR (100 MHz, CDCl₃) of **2b**

¹³C NMR (100 MHz, CDCl₃) of **2c**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 2k

90 80 70 60 50 40 30 20 10 0 f1 (ppm) -40 -50 -60 -70 -80 -90 -10 -20 -30

¹³C NMR (100 MHz, CDCl₃) of **2n**

¹³C NMR (100 MHz, CDCl₃) of **20**

¹H NMR (400 MHz, CDCl₃) of **2p**

 1 H NMR (400 MHz, CDCl₃) of **2**q

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

90 80 f1 (ppm)
¹H NMR (400 MHz, CDCl₃) of 2s

fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 2u

rı (ppm)

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

¹H NMR (400 MHz, CDCl₃) of 2z

¹³C NMR (100 MHz, CDCl₃) of **2z**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) of 2aa

¹H NMR (400 MHz, CDCl₃) of 2ac

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) of **2ae**

- 166.20	137.28 134.10 134.10 128.53 128.50 122.15 112.15 110.57		、 14.18 、 11.22 、 10.63
----------	--	--	--

 1 H NMR (400 MHz, CDCl₃) of **2af**

- 165.9 $ - 165.9 $ $ - 138.5 $ $ - 138.6 $ $ - 138.6 $ $ - 138.6 $ $ - 127.4 $ $ - 127.4 $ $ - 127.4 $ $ - 127.6 $ $ - 110.3$	77.5 76.8 - 59.1	∠ 29.8 27.5 23.4 23.4 14.1 14.1 13.8
--	------------------------	--

140 130 120

90 80 f1 (ppm) 34.1
 33.6
 27.1
 24.9
 24.9
 14.0

-1(

fl (ppm)

¹³C NMR (100 MHz, CDCl₃) of 2ai

- 166.08 - 166.08 - 138.55 - 136.53 - 136.53 - 127.39 - 123.76 - 123.78	— 110.17	77.48 77.16 76.84	— 62.39 — 59.20	→ 31.82 → 26.94 → 26.05	14.00 11.33
--	----------	-------------------------	--------------------	-------------------------------	----------------

¹³C NMR (100 MHz, CDCl₃) of **2aj**

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of **2an**

- 14.1 - 11.4

¹³ C NMR (100 M	MHz, CDCl ₃) of 2a	n			
- 165.8	 137.5 137.5 136.3 123.6 123.6 123.6 122.7 	— 110.6	<u>77.5</u> 77.2 76.8	59.2	ン33.8 ン33.8 ン28.4 ン26.8

¹ H NMR (400 MHz, CDCl ₃) of 2ao			
- 8.37 - 8.37 - 8.37 - 8.37 - 7.59 - 7.59 - 7.53 - 7.55 - 7.55	4.07 4.05 4.03 4.03	<u>√</u> 2.96 √ 2.94 2.92	2.29 2.27 2.27 2.27 2.27 2.23 2.21 2.19 2.19 2.19 2.19 2.19 2.19 2.19

NH

¹³C NMR (100 MHz, CDCl₃) of 2ar

¹³C NMR (100 MHz, CDCl₃) of *d*-3aq

¹³C NMR (100 MHz, CDCl₃) of **6**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

