Supporting Information

Electrochemical Multicomponent Synthesis of 4-Selanylpyrazoles under Catalyst- and Chemical Oxidant-free Conditions

Yan Wu^a, Jin-Yang Chen^a, Jing Ning^b, Xue Jiang^b, Jie Deng^b, Yu Deng^b, Rui Xu^b, Wei-Min He^a*

^aSchool of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China

^bCollege of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408000, China

E-mail: weiminhe2016@yeah.net

Table of Content

1. General information	
 2. Experimental Section 3. Characterization data of products 	S4
4. References	
5. ¹ H and ¹³ C NMR spectra of products	S16

1. General Information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). The anode electrode is reticulated vitreous carbon (RVC) (5 mm \times 5 mm) and cathode electrode is netted platinum electrode (Pd net, 15 mm \times 15 mm \times 0.3 mm), and all electrodes were purchased from Beijing instrument electric technologe co., LTD and used directly. All reagents were purchased from Energy Chemical (China) and used directly. The instrument for cyclic voltammetrys is ElectraSyn 2.0 (IKA, made in Germany), and the conditions are as follow: 3 mm diameter glassy carbon disc working electrode, Pt plate electrode, Ag wire reference electrode. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 100 MHz by using a Bruker Avance 400 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹ H NMR: CDCl₃ 7.26 ppm, ¹³C NMR: CDCl₃ 77.0 ppm,), the chemical shifts (δ) were expressed in ppm and J values were given in Hz. Mass spectra were performed on a spectrometer operating on ESI-TOF.

Photographic depiction of the reaction setup:

Figure S1 Photographic depiction of the reaction setup

Figure S2 Photographs of electrodes

2. Experimental Section

2.1 General experimental procedures for Compound 4

In an undivided three-necked flask (25 mL) equipped with a stir bar, aromatic hydrazine (0.5 mmol), diacetone (0.5 mmol) and various dialkyldiselenides (diaryldiselenides) (0.375 mmol), LiBF₄ (0.1 mmol) and MeCN (8 mL) were added. The flask was equipped with reticulated vitreous carbon (RVC) (5 mm×5 mm) as anode and netted platinum electrode (15 mm×15 mm × 0.3 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA under room temperature for 9 h. After completion, the reaction mixture was concentrated under reduced pressure. The pure products **4** were obtained by flash chromatography on silica gel (elute: petroleum ether/ethyl acetate).

2.2 Larger-scale synthesis of 4aaa

In an undivided three-necked flask (25 mL) equipped with a stir bar, aromatic hydrazine (5.0 mmol), diacetone (5.0 mmol) and diphenyldiselenides (3.75 mmol), LiBF₄ (1.0 mmol) and MeCN (16 mL) were added. The flask was equipped with reticulated vitreous carbon (RVC) (5 mm×5 mm) as anode and netted platinum electrode (15 mm×15 mm×0.3 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA under room temperature for 72 h. After completion, the reaction mixture was concentrated under reduced pressure. The pure products **4aaa** were obtained by flash chromatography on silica gel (elute: petroleum ether/ethyl acetate).

2.3 Cyclic voltammetry experiment:

CV measurements were performed on an ElectraSyn 2.0 (IKA, made in Germany), and the conditions are as follow: 3 mm diameter glassy carbon disc working electrode, Pt plate electrode, Ag wire reference electrode, scan rate = 0.10 v/s (0-3.0 v), and 0.2 M of LiBF₄ as supporting electrolyte. The measurements were carried out as follows: a) 0.2 M solution of LiBF₄ in CH₃CN was added to the measuring cell. After recording the baseline, the

electroactive compound **3a**, **5a** (0. 2 M) or the mixture of **1a**, **2a** and **3a** (0. 2 M) in DMSO was added respectively. The cyclic voltammogram was recorded with one to three scans.

Figure S3 Cyclic voltammetry experiment

3. Characterization data of products

3,5-dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (**4aaa**)^[1]: (92%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 4.0 Hz, 4H), 7.39-7.35 (m, 1H), 7.20-7.17 (m, 4H), 7.16-7.12 (m, 1H), 3.38 (s, 3H), 3.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.32, 144.13, 139.90, 133.02, 129.21, 129.19, 128.37, 127.82, 125.82, 124.81, 102.63, 13.02, 12.53.

3,5-dimethyl-1-phenyl-4-(p-tolylselanyl)-1H-pyrazole (**4aab**)^[1]: (91%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 4.0 Hz, 4H), 7.50-7.26 (m, 1H), 7.04-7.01 (m, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.24, 143.96, 139.93, 135.73, 130.02, 129.17, 129.07, 128.80, 127.77, 124.79, 103.07, 21.01, 13.05, 12.56.

4-((4-methoxyphenyl)selanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4aac)^[1]: (89%). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.48 (m, 4H), 7.42-7.38 (m, 1H), 7.23 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 3.79 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.50, 153.00, 143.68, 139.89, 131.11, 129.15, 127.75, 124.78, 122.70, 114.94, 103.90, 55.33, 12.55.

3,5-dimethyl-1-phenyl-4-((4-(trifluoromethoxy)phenyl)selanyl)-1H-pyrazole (4aad): (87%). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.38 (m, 4H), 7.32-7.28 (m, 1H), 7.11 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 2.29 (s, 3H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.21, 147.57, 147.55, 147.53, 147.51, 144.21, 139.77, 131.51, 129.49, 129.22, 127.94, 124.80, 121.92, 119.16, 102.32, 12.95, 12.46; HRMS: calcd for C₁₈H₁₆F₃N₂OSe [M+H]⁺ 413.0304, found 413.0306.

4-((4-fluorophenyl)selanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4aae)^[2]: (91%) ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, J = 8.0 Hz, 4H), 7.40 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.94 (t, J = 8.0 Hz, 2H), 2.41 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.86, 160.43, 153.07, 143.95, 139.83, 130.56, 130.49, 129.20, 127.86, 127.27, 127.24, 124.78, 116.43, 116.21, 103.12, 13.01, 12.50.

4-((4-chlorophenyl)selanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4aaf)^[1]: (80%) ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.0 Hz, 4H), 7.32 (t, J = 8.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 2.30 (s, 3H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.19, 144.14, 139.77, 131.83, 131.27, 129.65, 129.28, 129.21, 127.93, 124.80, 102.36, 12.96, 12.48.

4-((4-bromophenyl)selanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4aag): (87%) ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 4H), 7.33 (d, J = 4.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 2.29 (s, 3H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 144.16, 139.77, 132.17, 132.07, 129.92, 129.22, 127.94, 124.80, 119.69, 102.23, 12.97, 12.49; HRMS: calcd for C₁₇H₁₆BrN₂Se [M+H]⁺ 406.9662, found 406.9656.

3,5-dimethyl-1-phenyl-4-((4-(trifluoromethyl)phenyl)selanyl)-1H-pyrazole (4aah)^[1]: (86%) ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 4.0 Hz, 4H), 7.47 (d, *J* = 8.0 Hz, 3H), 7.28(d, *J* = 8.0 Hz, 2H), 2.40 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.32, 144.41, 139.73, 138.71, 129.25, 128.03, 127.78, 125.94, 125.90, 125.86, 125.83, 124.82, 101.42, 12.92, 12.43.

3,5-dimethyl-4-((4-nitrophenyl)selanyl)-1-phenyl-1H-pyrazole (4aai): (85%) ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 8.0 Hz, 4H), 7.44 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.20, 145.96, 144.56, 144.20, 139.59, 129.30, 128.17, 127.60, 124.83, 124.05, 100.83, 12.89, 12.42; HRMS: calcd for C₁₇H₁₆N₃OSe [M+H]⁺ 374.0325, found 374.0328.

4-((3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)selanyl)benzonitrile (4aaj): (85%) ¹H NMR

(400 MHz, CDCl₃) δ 7.48 (m, 6H), 7.42 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 2.37 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.22, 144.52, 141.33, 139.62, 132.44, 129.28, 128.12, 127.91, 124.80, 118.95, 108.97, 100.87, 12.90, 12.43; HRMS: calcd for C₁₈H₁₆N₃Se [M+H]⁺ 354.0431, found 351.0428.

3,5-dimethyl-1-phenyl-4-(m-tolylselanyl)-1H-pyrazole (4aak): (86%) ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 4.0 Hz, 4H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 4.0 Hz, 2H), 2.42 (s, 3H), 2.37 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.35, 144.11, 139.90, 139.00, 132.76, 129.19, 129.04, 128.96, 127.81, 126.76, 125.38, 124.80, 102.67, 21.45, 13.05, 12.57; HRMS: calcd for C₁₈H₁₉N₂Se [M+H]⁺ 343.0708, found 343.0699.

3,5-dimethyl-1-phenyl-4-(o-tolylselanyl)-1H-pyrazole (4aal): (90%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 4H), 7.44-7.41 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 8.0 Hz, 1H), 7.03 (t, *J* = 4.0 Hz, 1H), 6.83 (d, *J* = 4.0 Hz, 1H), 2.46 (s, 3H), 2.39 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.63, 144.42, 139.85, 136.18, 133.49, 130.11, 129.20, 127.86, 126.90, 126.64, 125.51, 124.82, 101.63, 21.21, 12.96, 12.50; HRMS: calcd for C₁₈H₁₉N₂Se [M+H]⁺ 343.0708, found 343.0702.

4-((2,6-dimethylphenyl)selanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4aam): (83%) ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, J = 8.0 Hz, 2H), 7.40 (t, J = 8.0 Hz, 3H), 7.14-7.07 (m, 3H), 2.50 (s, 6H), 2.28 (s, 3H),2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.84, 141.96, 141.68, 139.84, 131.47, 129.09, 127.98, 127.87, 127.59, 124.75, 104.08, 24.20, 12.95, 12.31; HRMS: calcd for C₁₉H₂₁N₂Se [M+H]⁺ 357.0870, found 357.0853.

4-(mesitylselanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4aan)^[3]: (81%) ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.38 (m, 5H), 6.91 (s, 2H), 2.47 (s, 6H), 2.29 (s, 3H), 2.28 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.83, 141.82, 141.63, 139.87, 137.61, 129.07, 128.86, 127.90, 127.54, 124.75, 104.26, 24.08, 20.90, 12.98, 12.32.

3,5-dimethyl-4-(naphthalen-1-ylselanyl)-1-phenyl-1H-pyrazole (4aao): (87%) ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.54 (m, 4H), 7.44 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 4.0 Hz, 1H), 7.12 (d, J = 4.0 Hz, 1H), 2.43 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.67, 144.49, 139.90, 134.00, 132.17, 131.80, 129.22, 128.65, 127.87, 126.32, 126.29, 126.24, 126.10, 125.50, 125.42, 124.83, 101.61, 13.04, 12.56; HRMS: calcd for C₂₁H₁₉N₂Se [M+H]⁺ 379.0635, found 379.0641.

3,5-dimethyl-4-(methylselanyl)-1-phenyl-1H-pyrazole (4aap): (91%). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.43 (m, 4H), 7.41-7.36 (m, 1H), 2.43 (s, 3H), 2,42 (s, 3H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.48, 142.87, 139.93, 129.11, 127.62, 124.75, 104.31, 13.06, 12.51, 8.87; HRMS: calcd for C₁₂H₁₅N₂Se [M+H]⁺ 267.0435, found 267.0432.

4-(benzylselanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4aaq)^[4]: (88%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 8.0 Hz, 2H), 7.25 (t, *J* = 8.0 Hz, 3H), 7.10-7.08 (m, 3H), 6.89-6.87 (m, 2H), 3.60 (s, 2H), 2.17 (s, 3H), 1.77 (s,3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.24, 144.52, 139.99, 139.29, 129.09, 128.96, 128.20, 127.64, 126.61, 124.81, 102.59, 31.72, 12.91, 11.83.

3,5-dimethyl-4-(phenylselanyl)-1-(p-tolyl)-1H-pyrazole (**4baa**)^[4]: (89%) ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.22 (s, 4H), 7.19 (d, J = 4.0 Hz, 1H), 2.44 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.09, 144.12, 137.80, 137.44, 133.10, 129.72, 129.18, 128.31, 125.76, 124.72, 102.20, 21.17, 13.00, 12.44.

3,5-dimethyl-4-(phenylselanyl)-1-(4-(trifluoromethoxy)phenyl)-1H-pyrazole (4caa): (86%). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.26-7.17 (m, 5H), 2.43 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.76, 148.24, 148.21, 144.17, 138.38, 132.74, 129.24, 128.47, 126.03, 125.94, 119.15, 103.31, 12.98, 12.56; HRMS: calcd for C₁₈H₁₆F₃N₂OSe [M+H]⁺ 413.0304, found 413.0302.

1-(4-fluorophenyl)-3,5-dimethyl-4-(phenylselanyl)-1H-pyrazole (4daa)^[5]: (94%). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.46 (m, 2H), 7.24-7.17 (m, 7H), 2.38-2.35 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.12, 160.66, 153.42, 144.23, 136.03, 132.88, 129.22, 128.42, 126.75, 126.66, 125.88, 116.22, 115.99, 102.68, 12.98, 12.40.

1-(4-chlorophenyl)-3,5-dimethyl-4-(phenylselanyl)-1H-pyrazole (4eaa)^[5]: (88%). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.44 (m, 4H), 7.24-7.18 (m, 5H), 2.41 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.66, 144.12, 138.41, 133.46, 132.80, 129.35, 129.25, 128.45, 125.92, 125.86, 103.22, 13.03, 12.60.

1-(4-bromophenyl)-3,5-dimethyl-4-(phenylselanyl)-1H-pyrazole (4faa)^[5]: (90%). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.24-7.22 (m, 4H), 7.20-7.16 (m, 1H), 2.41 (s, 3H), 2.35(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.71, 144.08, 138.91, 132.78, 132.32, 129.26, 128.48, 126.12, 125.94, 121.39, 103.34, 13.05, 12.64.

3,5-dimethyl-4-(phenylselanyl)-1-(o-tolyl)-1H-pyrazole (**4gaa**)^[1]: (88%). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.33 (m, 2H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.26-7.15 (m, 5H), 2.36 (s, 3H), 2.16 (s, 3H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.95, 145.20, 138.77, 136.03, 133.33, 131.04, 129.42, 129.20, 128.04, 127.74, 126.72, 125.69, 100.58, 17.29, 13.05, 11.39.

3,5-dimethyl-4-(phenylselanyl)-1-(m-tolyl)-1H-pyrazole (4haa)^[1]: (90%) ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 2H), 7.24 (m, 6H), 7.18 (d, J = 8.0 Hz, 1H), 2.45 (s, 3H), 2.41 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.18, 144.13, 139.80, 139.38, 133.07, 129.20, 128.87, 128.63, 128.33, 125.79, 125.58, 121.77, 102.42, 21.42, 13.02, 12.53.

1-(4-methoxyphenyl)-3,5-dimethyl-4-(phenylselanyl)-1H-pyrazole (4iaa)^[4]: (84%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.0 Hz, 2H), 7.23-7.22 (m, 4H), 7.19-7.17 (m, 1H), 7.01 (d, J = 8.0 Hz, 2H), 3.87 (s, 3H), 2.35(s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 159.13, 152.94, 144.25, 136.38, 133.12, 129.18, 128.31, 126.38, 125.76, 114.27, 101.86, 55.60, 12.98, 12.29.

3-cyclopropyl-5-methyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (4aba): (82%) ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.50 (t, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 1H), 7.23 (t, J = 4.0 Hz, 4H), 7.17 (m, 1H), 2.32 (s, 3H), 1.84 (m, 1H), 0.85 (t, J = 4.0 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 153.56, 147.11, 139.96, 133.62, 129.23, 128.93, 128.12, 127.68, 125.69, 125.16, 101.48, 12.88, 8.12, 7.76; HRMS: calcd for C₁₉H₁₉N₂Se [M+H]⁺ 355.0713, found 355.0717.

3,5-diethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (4aca)^[1]: (62%). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (m, 4H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.29-7.23 (m, 4H), 7.17 (t, *J* = 8.0 Hz, 1H), 2.84-2.80 (m, 2H), 2.75 (t, *J* = 8.0 Hz, 2H), 1.26 (t, *J* = 8.0 Hz, 3H), 1.03 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.38, 149.87, 140.04, 133.72, 129.24, 129.11, 128.17, 128.07, 125.65, 125.45, 100.33, 20.93, 19.25, 14.01, 13.82.

4. References

[1] D. H. Oliveira, T. B. Aquino, J. E. R. Nascimento, G. Perin, R. G. Jacob, D. Alves, *Adv. Synth. Catal.*, **2015**, 357, 4041–4049.

[2] R. G. Jacob, D. H. de Oliveira, T. J. Peglow, J. E. R. Nascimento, R. H. Bartz, *J. Braz. Chem. Soc.*, **2019**, 30, 2144-2152.

[3] J. F. Souza, T. F. B. de Aquino, J E. R. Nascimento, R. G. Jacob, A. R. Fajardo, *Catal. Sci. Technol.*, **2020**, 10, 3918-3930.

[4] J. Wang, Y. Liu, J. Yan, New J. Chem., 2018, 42, 13684-13688.

[5] Y. Fang, J. Wang, Y. Liu, J. Yan, Appl Organometal Chem., 2019, 33, 4921-4929.

¹³C NMR of compound **4aaa**

¹³C NMR of compound **4aad**

¹³C NMR of compound **4aaf**

¹³C NMR of compound **4aah**

¹³C NMR of compound **4aai**

¹³C NMR of compound **4aaj**

¹³C NMR of compound **4aak**

¹³C NMR of compound **4aan**

¹³C NMR of compound **4aao**

¹³C NMR of compound **4baa**

¹³C NMR of compound **4daa**

¹³C NMR of compound **4eaa**

¹³C NMR of compound **4gaa**

¹³C NMR of compound **4iaa**

¹³C NMR of compound **4aca**