Supporting information

Eco-friendly Antisolvent Enabled Inverted MAPbI₃ Perovskite Solar Cells with Fill Factors over 84%

Yuying Cui^{a†}, Shurong Wang^{a†}, Chengbo Li^a, Aili Wang^a, Jing Ren^a, Chenguang

Yang^{ab}, Bin Chen^a, Zhen Wang^b and Feng Hao^{a*}

^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China

^b Faculty of Printing, Packaging and Digital Media Technology, Xi'an University of Technology,

Xi'an 710048, Shaanxi, China.

[†]*There authors contributed equally to this work.*

*Corresponding authors. E-mail addresses: haofeng@uestc.edu.cn (F. Hao)

Fig. S1. Photo-CELIV transients recorded at various light intensity for the control (a) and PA-treated single carrier devices.

Fig. S2. *J-V* curve of the devices with different antisolvents (DE: PA = 1:0, 1:0.1, 1:0.2, 1:0.3 and 1:0.4, respectively).

Fig. S3. *J-V* curves of PSCs with different antisolvents.

Fig. S4. Stability tests of unencapsulated devices with DE and 20% PA-treated PSCs (stored in ambient condition at 25°C, 30% relatively humidity).

Fig. S5. Contact angles of DE and 20% PA-treated perovskite films.

Fig. S6. XRD stability tests of unencapsulated devices with DE and PA-treated PSCs (stored at 50-60% relative humidity and 100 °C).

Fig. S7. UV stability tests of unencapsulated devices with DE and PA-treated PSCs (stored at 50-60% relative humidity and 100 °C).

0				
Antisolvent	Environmental impact	ital impact Healthy impact		
DE	5	5		
PA	7	8		
TOL	3	4		
Anisole	6	7		
EA	8	8		
isopropyl acetate	7	7		
IPA	9	8		
PE	2	2		

Table S1. The environmental and healthy impact of different antisolvents¹. (The higher the score, the greener it is.)

Table S2. The detailed parameters of photo-CELIV current transients for devices with different antisolvents.

Antisolvent	A (100 V ms ⁻¹)	t _{max} (μs)	Δ <i>j</i> (mA cm ⁻²)	<i>j</i> ₀ (mA cm ⁻²)	d (nm)
Ctr.	100	2.703	2.541	1.046	420
PA	100	2.186	3.276	1.049	420

Table S3. Photovoltaic parameters for the champion PSCs with different antisolvents ratios.

Antisolvent	Voc (V)	Jsc (mA cm ⁻²)	FF (%)	PCE (%)
Ctr.	1.02	22.64	79.13	18.28
10% PA	1.03	22.86	81.89	19.23
20% PA	1.05	23.20	84.49	20.61
30% PA	1.04	23.30	81.37	19.63
40% PA	1.02	22.88	80.19	18.65

Table S4. The detailed performance data of PSCs with different antisolvents.

Antisolvent	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
СВ	1.02	21.17	77.25	16.65
DE	1.02	22.64	79.13	18.28
IPA	0.97	18.42	76.75	13.75
PA	1.00	21.06	78.26	16.52
Toluene	0.97	17.62	74.49	12.73
<i>n</i> -butyl alcohol	1.02	17.85	78.82	14.35

Method	Antisolvent	$V_{ m oc}$ (V)	$J_{\rm sc}$	FF (%)	PCE (%)	Refs
			(mA cm ⁻²)			
Antisovent	EA	1.08	22.00	79.90	18.98	2
Single crystal	-	1.14	21.93	81.00	21.93	3
Antisovent	Toluene	1.13	22.19	81.29	20.46	4
Antisovent	СВ	1.10	23.38	81.87	21.11	5
Thin monocrystal	-	1.08	22.60	82.50	20.10	6
Antisovent	СВ	1.13	23.10	83.81	21.88	7
Blade coating	-	1.10	22.60	86.30	21.50	8
Antisovent	PA	1.05	23.20	84.49	20.61	This work

Table S5. Representative inverted MAPbI₃ PSCs with high fill factors.

References

- R. K. Henderson, C. Jiménez-González, D. J. C. Constable, S. R. Alston, G. G. A. Inglis, G. Fisher, J. Sherwood, S. P. Binks and A. D. Curzons, *Green Chem.*, 2011, 13, 854-862.
- 2. J. Liu, N. Li, J. Jia, J. Dong, Z. Qiu, S. Iqbal and B. Cao, Sol. Energy, 2019, 181, 285-292.
- A. Y. Alsalloum, B. Turedi, X. Zheng, S. Mitra, A. A. Zhumekenov, K. J. Lee, P. Maity, I. Gereige, A. AlSaggaf, I. S. Roqan, O. F. Mohammed and O. M. Bakr, *ACS Energy Lett.*, 2020, 5, 657-662.
- 4. Y. Kang, S. Kwon, S. Cho, Y. Seo, M. Choi, S. Kim and S. Na, *ACS Energy Lett.*, 2020, 5, 2535-2545.
- 5. S. Wang, Z. He, J. Yang, T. Li, X. Pu, J. Han, Q. Cao, B. Gao and X. Li, *J. Energy Chem.*, 2021, **60**, 169-177.
- W. Kong, S. Wang, F. Li, C. Zhao, J. Xing, Y. Zou, Z. Yu, C. Lin, Y. Shan, Y. H. Lai, Q. Dong, T. Wu, W. Yu and C. Guo, *Adv. Energy Mater.*, 2020, 10, 2000453.
- S. Xiong, Z. Hou, S. Zou, X. Lu, J. Yang, T. Hao, Z. Zhou, J. Xu, Y. Zeng, W. Xiao, W. Dong, D. Li, X. Wang, Z. Hu, L. Sun, Y. Wu, X. Liu, L. Ding, Z. Sun, M. Fahlman and Q. Bao, *Joule*, 2021, DOI: <u>https://doi.org/10.1016/j.joule.2020.12.009</u>.
- W. Wu, J. Zhong, J. Liao, C. Zhang, Y. Zhou, W. Feng, L. Ding, L. Wang and D. Kuang, *Nano Energy*, 2020, 75, 104929.