## **Supporting Information**

## A Closed-loop and Scalable Process for Production of Biomass-derived Superhydrophilic Carbon for Supercapacitors

Rong Fu<sup>a</sup>, Chang Yu<sup>\*a</sup>, Shaofeng Li<sup>a</sup>, Jinhe Yu<sup>a</sup>, Zhao Wang<sup>a</sup>, Wei Guo<sup>a</sup>, Yuanyang Xie<sup>a</sup>, Le Yang<sup>a</sup>, Kunlun Liu<sup>a</sup>, Weicheng Ren<sup>a</sup> and Jieshan Qiu<sup>\* a,b</sup>

<sup>a</sup>State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China

<sup>b</sup>College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China

> \*Corresponding author: E-mail: chang.yu@dlut.edu.cn (C. Yu) ; carbon@dlut.edu.cn (J. S. Qiu)



Fig. S1. Thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) curves of boric acid in a  $N_2$  atmosphere.



Fig. S2. (a, b) SEM images of DFC.



Fig. S3. SEM images of  $(a, b) B_{0.5}$ -SC and  $(c, d) B_3$ -SC.



Fig. S4. XRD patterns of B<sub>0.5</sub>-SC and B<sub>3</sub>-SC.







**Fig. S6.** (a) Nitrogen adsorption-desorption isotherms and (b) pore size distributions of  $B_{0.5}$ -SC and  $B_3$ -SC.



Fig. S7. XPS survey spectra of  $B_{0.5}$ -SC and  $B_3$ -SC.



Fig. S8. High-resolution XPS spectra of (a) N 1s and (b) B 1s for B<sub>0.5</sub>-SC and B<sub>3</sub>-SC.



Fig. S9. (a) The CV curves of different cycle numbers and (b) cycling performance for  $B_1$ -SC at 20 mV s<sup>-1</sup>.

![](_page_4_Picture_0.jpeg)

Fig. S10. SEM image of B<sub>1</sub>-SC after CV cycling test.

![](_page_4_Figure_2.jpeg)

**Fig. S11.** The CV curves for  $B_{0.5}$ -SC,  $B_1$ -SC and  $B_3$ -SC at scan rates of (a) 20 mV s<sup>-1</sup> and (b) 100 mV s<sup>-1</sup>.

![](_page_4_Figure_4.jpeg)

**Fig. S12.** The GC curves for  $B_{0.5}$ -SC,  $B_1$ -SC and  $B_3$ -SC at current densities of (a) 1 A  $g^{-1}$  and (b) 30 A  $g^{-1}$ .

![](_page_5_Figure_0.jpeg)

Fig. S13. The gravimetric specific capacitances for the  $B_{0.5}$ -SC,  $B_1$ -SC and  $B_3$ -SC at current densities from 0.5 to 50 A g<sup>-1</sup>.

![](_page_5_Figure_2.jpeg)

**Fig. S14.** Nyquist plots of the  $B_{0.5}$ -SC,  $B_1$ -SC and  $B_3$ -SC (inset: a magnification for the high-frequency region).

![](_page_6_Figure_0.jpeg)

**Fig. S15.** Electrochemical performance of  $B_1$ -SC based symmetric supercapacitors in various electrolytes: CV curves at different scan rates from 5 to 200 mV s<sup>-1</sup> with 1 M  $H_2SO_4$  (a) and 1 M TEABF<sub>4</sub>/PC (c), respectively; GC curves at various current densities of 0.5-4 A g<sup>-1</sup> with 1 M  $H_2SO_4$  (b), 1 M TEABF<sub>4</sub>/PC (d) and 10 mol kg<sup>-1</sup> NaOTF (e), respectively.

![](_page_7_Figure_0.jpeg)

**Fig. S16.** (a) The cycling performance of  $B_1$ -SC for the symmetric supercapacitor with 1 M  $H_2$ SO<sub>4</sub> at 4 A g<sup>-1</sup>. The first ten cycles (b) and last ten cycles (c) of GC curves.

![](_page_7_Figure_2.jpeg)

Fig. S17. The process flow chart of scalable and green production for  $B_1$ -SC.

![](_page_8_Picture_0.jpeg)

Fig. S18. The digital photograph of (a) the  $B_1$ -SC black product and (b) recycled boric acid.

| Sample                      | S <sub>BET</sub> <sup>a</sup><br>(m <sup>2</sup> g <sup>-1</sup> ) | $\frac{V_{\text{total}}}{(\text{cm}^3\text{g}^{-1})}$ | $V_{\text{micro}}^{c}$<br>(cm <sup>3</sup> g <sup>-1</sup> ) | $\frac{V_{\text{meso}}^{d}}{(\text{cm}^3\text{g}^{-1})}$ | W <sub>d</sub> <sup>e</sup><br>(nm) | V <sub>micro</sub> /V <sub>total</sub> f<br>% | V <sub>meso</sub> /V <sub>total</sub> <sup>g</sup><br>% | V <sub>macro</sub> /V <sub>total</sub> <sup>h</sup><br>% |
|-----------------------------|--------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| DFC                         | 1073                                                               | 0.63                                                  | 0.28                                                         | 0.17                                                     | 7.7                                 | 44                                            | 27                                                      | 29                                                       |
| <b>B</b> <sub>0.5</sub> -SC | 676                                                                | 0.37                                                  | 0.18                                                         | 0.15                                                     | 4.8                                 | 49                                            | 41                                                      | 10                                                       |
| B <sub>1</sub> -SC          | 844                                                                | 0.55                                                  | 0.20                                                         | 0.20                                                     | 6.9                                 | 36                                            | 36                                                      | 28                                                       |
| B <sub>3</sub> -SC          | 668                                                                | 0.54                                                  | 0.12                                                         | 0.10                                                     | 11.1                                | 22                                            | 19                                                      | 59                                                       |

**Table S1.** Pore structure parameters of DFC,  $B_{0.5}$ -SC,  $B_1$ -SC and  $B_3$ -SC measured by  $N_2$  adsorption–desorption isotherms.

<sup>*a*</sup> Specific surface area calculated by BET method. <sup>*b*</sup> Total pore volume calculated by DFT method. <sup>*c*</sup> Micropore volume (DFT, pore size < 2 nm). <sup>*d*</sup> Mesopore volume (DFT, 2 nm < pore size < 50 nm). <sup>*e*</sup> Adsorption average pore diameter. <sup>*f*</sup> Percentage of micropore volume in total pore volume (DFT). <sup>*g*</sup> Percentage of mesopore volume in total pore volume (DFT). <sup>*h*</sup> Percentage of macropore volume in total pore volume in total pore volume (DFT).

| Sample                      | C<br>at% | O<br>at% | B<br>at% | N<br>at% |
|-----------------------------|----------|----------|----------|----------|
| DFC                         | 86.78    | 8.77     | /        | 4.45     |
| <b>B</b> <sub>0.5</sub> -SC | 74.40    | 14.15    | 4.94     | 6.51     |
| B <sub>1</sub> -SC          | 73.46    | 13.88    | 5.94     | 6.72     |
| B <sub>3</sub> -SC          | 77.05    | 12.63    | 4.25     | 6.07     |

**Table S2.** Percentages of carbon, oxygen, boron and nitrogen elements in DFC,  $B_{0.5}$ -SC,  $B_1$ -SC and  $B_3$ -SC derived from XPS analysis (based on the atomic ratio).

**Table S3.** Total N content and the percentages of different N species in DFC,  $B_{0.5}$ -SC,  $B_1$ -SC and  $B_3$ -SC derived from the XPS analysis.

|                             |                      |                  | 2                       |                  |                  |
|-----------------------------|----------------------|------------------|-------------------------|------------------|------------------|
| Comula                      | N total <sup>a</sup> | N-6 <sup>b</sup> | <b>N-5</b> <sup>c</sup> | N-Q <sup>d</sup> | N-X <sup>e</sup> |
| Sample                      | at%                  | %                | %                       | %                | %                |
| DFC                         | 4.34                 | 1.30             | 1.43                    | 1.17             | 0.43             |
| <b>B</b> <sub>0.5</sub> -SC | 6.48                 | 2.33             | 1.81                    | 1.68             | 0.65             |
| B <sub>1</sub> -SC          | 6.69                 | 1.34             | 2.61                    | 2.21             | 0.54             |
| B <sub>3</sub> -SC          | 6.05                 | 2.06             | 1.94                    | 1.82             | 0.24             |

<sup>*a*</sup> Total N content. <sup>*b*</sup> Pyridinic N (N-6). <sup>*c*</sup> Pyrrolic N (N-5). <sup>*d*</sup> Quanternary N (N-Q). <sup>*e*</sup> Pyridine-N-oxide (N-X).

| Sample                    | Electrolyte                         | Capacitances<br>or<br>Energy<br>density          | Current<br>densities<br>or<br>Power density      | Measuremen<br>t<br>configuration | Ref.         |
|---------------------------|-------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
| B <sub>1</sub> -SC        | $1 \text{ M H}_2 \text{SO}_4$       | 181 F g <sup>-1</sup><br>6.0 Wh kg <sup>-1</sup> | 0.5 A g <sup>-1</sup><br>1.0 kW kg <sup>-1</sup> | 2-Electrode                      | This<br>work |
| B/N–carbon<br>nanosphere  | $1 \text{ M H}_2 \text{SO}_4$       | 60 F g <sup>-1</sup><br>2.1 Wh kg <sup>-1</sup>  | 0.5 A g <sup>-1</sup><br>2.7 kW kg <sup>-1</sup> | 2-Electrode                      | 1            |
| N-doped<br>porous biochar | $1 \text{ M H}_2 \text{SO}_4$       | 147 F g <sup>-1</sup><br>76 F g <sup>-1</sup>    | 0.05 A g <sup>-1</sup><br>10 A g <sup>-1</sup>   | 2-Electrode                      | 2            |
| HPCSLS                    | 7 М КОН                             | 104 F g <sup>-1</sup><br>3.6 Wh kg <sup>-1</sup> | 20 A g <sup>-1</sup><br>5.7 kW kg <sup>-1</sup>  | 2-Electrode                      | 3            |
| G/CNTs-200                | 1 M Na <sub>2</sub> SO <sub>4</sub> | 33 F g <sup>-1</sup><br>8.2 Wh kg <sup>-1</sup>  | 2 mV s <sup>-1</sup><br>0.9 kW kg <sup>-1</sup>  | 2-Electrode                      | 4            |
| BCN                       | $1 \text{ M H}_2 \text{SO}_4$       | 228 F g <sup>-1</sup><br>7.9 Wh kg <sup>-1</sup> | 1 A g <sup>-1</sup><br>0.2 kW kg <sup>-1</sup>   | 2-Electrode                      | 5            |
| BMG-h                     | $1 \text{ M H}_2 \text{SO}_4$       | 122 F g <sup>-1</sup>                            | 1 A g <sup>-1</sup>                              | 2-Electrode                      | 6            |
| B-rGO                     | $1 \text{ M H}_2\text{SO}_4$        | 240 F g <sup>-1</sup>                            | 0.5 A g <sup>-1</sup>                            | 3-Electrode                      | 7            |
| NPOC                      | $0.5 \text{ M H}_2 \text{SO}_4$     | 215 F g <sup>-1</sup><br>123 F g <sup>-1</sup>   | 1 mV s <sup>-1</sup><br>80 A g <sup>-1</sup>     | 3-Electrode                      | 8            |
| LGPCN                     | 6 M KOH                             | 11.7 Wh kg <sup>-1</sup>                         | 0.03 kW kg <sup>-1</sup>                         | 2-Electrode                      | 9            |

**Table S4.** A comparasion of reported symmetric carbon based aqueous supercapacitors with our B<sub>1</sub>-SC capacitor.

**Equation S1.** The possible redox reactions for the N-configurations (1)-(3), O-functional groups (4) and (5) as well as B species (6) in the acidic electrolyte, which refers to the literature<sup>1-9</sup>.

- 1. J. Hao, J. Wang, S. Qin, D. Liu, Y. Li and W. Lei, J. Mater. Chem. A, 2018, 6, 8053-8058.
- M. Zhang, C. Yu, Z. Ling, J. Yu, S. Li, C. Zhao, H. Huang and J. Qiu, *Green Chem.*, 2019, 21, 2095-2103.
- 3. J. Pang, W. Zhang, J. Zhang, G. Cao, M. Han and Y. Yang, *Green Chem.*, 2017, **19**, 3916-3926.
- 4. B. Ding, D. Guo, Y. Wang, X. Wu and Z. Fan, *J. Power Sources*, 2018, **398**, 113-119.
- 5. A. K. Thakur, M. Majumder, R. B. Choudhary and S. B. Singh, *J. Power Sources*, 2018, **402**, 163-173.
- 6. R. Nankya, J. Lee, D. O. Opar and H. Jung, *Appl. Surf. Sci.*, 2019, **489**, 552-559.
- 7. T. Zhu, S. Li, B. Ren, L. Zhang, L. Dong and L. Tan, J. Mater. Sci., 2019, 54, 9632-9642.
- 8. C. Cui, Y. Gao, J. Li, C. Yang, M. Liu, H. Jin, Z. Xia, L. Dai, Y. Lei, J. Wang and S. Wang, *Angew. Chem. Int. Ed.*, 2020, **59**, 7928-7933.
- 9. Q. Niu, K. Gao, Q. Tang, L. Wang, L. Han, H. Fang, Y. Zhang, S. Wang and L. Wang, *Carbon*, 2017, **123**, 290-298.