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Dopamine quinone Covalent polymerization of dopamine
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Scheme S1 Possible reactions for the co-deposition of dopamine/PEI [1].



The investigation of hydrogen bonding

The 'H NMR and FTIR were used to investigate the hydrogen bonding between
LTL and DA. 'H NMR spectra of LTL, DA, and mixed LTL/DA in d-DMSO are presented
in Fig. S1. The peak corresponding to N-H protons (a) in DA is located at & 8.0%3. It can
be seen that the peak becomes broadened and a downfield shift to 6 8.8, attributing
to the decrease in electron density around N-H protons resulting from the hydrogen-
bonding complexation®. Similarly, the hydroxy protons (b) in LTL that appeared at §
13.0 also becomes broadened, indicating hydrogen-bond formation between LTL and
DA>. The results of 'H NMR spectra provide complementary proof that the hydrogen
bonding could be formed between the amino groups of DA in Fe;0,4-LTL-MIPs and
hydroxyl groups of LTL.
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Fig. S1 'H NMR spectra of DA (1), mixed LTL/DA (2), and LTL (3) in d-DMSO.
Furthermore, the FTIR spectra of LTL (a), Fe304-LTL-MIPs (b), and Fe30,4-LTL-MIPs
absorbed LTL (c) in CHCl; are given in Fig. S2. Peaks at 3463 and 3436 cm™ are
correspond to the stretching of O-H of LTL and N-H of the PDA layer in Fe304-LTL-MIPs,
respectively. After absorption process, the broad peaks shift to lower frequency region

i.e. 3415 cml, signifying the weaken of bonds by additional hydrogen bonding?. The



appearance of new carbonyl peak in Fe;0,4-LTL-MIPs absorbed LTL at lower frequency
region 1608 cm™ along with splitting further indicates that carbonyl takes part in

hydrogen bonding interactions®.
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Fig. S2 FTIR spectra of LTL (a), Fe3s04-LTL-MIPs (b), and Fe304-LTL-MIPs absorbed LTL (c) in CHCls.
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Fig. S3 Effect of the concentration of PEI (A), the immobilization time (B), and the amount of DA

(C) on the absorption performance of Fe;0,4-LTL-MIPs.
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Fig. S4 The size distribution histogram of Fe;0,-NH, (A) and the layer thickness distribution of

Fe;0,4-PEI (B) and Fe;0,-LTL-MIPs (C).
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Fig. S5 DLS of Fe304-NH,, Fe30,4-PEl, and Fe30,4-LTL-MIPs.
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Fig. S6 The zeta potentials of Fe304-NH,, Fe304-PEl, and Fe;0,4-LTL-MIPs.



Fig. S7 The photographic image of the separation process of Fe304-LTL-MIPs with high

concentration.



The XRD patterns of obtained nanomaterials

The XRD patterns of Fe;04-NH,, Fe;04-PEl, and Fe3O04-LTL-MIPs in Fig. S8 show
that six typical diffraction peaks (29 = 30.15°, 35.46°, 43.09°, 53.61°, 57.20°, and
62.63°) are all observed. The peak positions at the corresponding 2¢ values are
indexed as (220), (311), (400), (422), (511), and (440), respectively. These 2 values
are in keeping with the database of magnetite in the JCPDS-International Center for

Diffraction Data (JCPDS Card: 19-629) file.
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Fig. S8 XRD patterns of Fe304-NH; (a), Fe3s04-PEI (b), and Fe30,4-LTL-MIPs (c).
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Fig. S9 Reusability of Fe304-LTL-MIPs.
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Fig. S10 FTIR spectra of Fe;0,-LTL-MIPs before (a) and after (b) the adsorption-desorption

experiment.
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Fig. S11 The adsorption ability of Fes04-LTL-MIPs, co-MIPs, PEI-MIPs, and DA-MIPs in LTL

solutions.

13



Table S1 Equations and parameters for the pseudo-first-order and pseudo-second-order kinetic

models of Fe;30,4-LTL-MIPs and Fe30,4-NIPs for LTL.

Equations
Model Fe304-LTL-MIPs Fes04-NIPs
parameters
Equation In(19.0-Q;) =1n19.0-1.688t In (4.95- Q) =In4.95-1.582t

pseudo-first-

order

pseudo-second-

order

Qe (Mg g™?)

kq (min-t)

RZ

Equation

Qes* (mgg™)

k2 (g mg™* min™)
Vo (mg g™* min)

RZ

19.0

1.69

0.960

t/ Q,=0.0517t + 0.0077
19.34

0.35

129.9

0.999

4.95

1.58

0.927

t/ Q,=0.2023t + 0.0201
4.94

2.04

49.75

0.996

3 Qe ¢ (mg g?) is the calculated value of Q. by pseudo-first-order equation.

b Q,, s (mg g?) is the calculated value of Q. by pseudo-second-order equation.

14



Table S2 Equations and parameters for the Langmuir and Freundlich isotherm models of Fe;0,-

LTL-MIPs and Fe30,4-NIPs for LTL.

Isotherm model Equations and parameters  Fe304-LTL-MIPs Fe30,4-NIPs

Equation C./Q.=0.0435C, + 1.0291 C./Q.=0.1511C. +5.1271
Langmuir K. (mL mg?1) 42.27 29.46
isotherm Qm.® (mg g ) 22.99 6.62

R? 0.994 0.993

Equation log Q=0.3463 log C. +0.5843 log Q =0.5202 log C. + 0.3329
Freundlich K (mg g?) 3.84 0.46
isotherm m 0.35 0.52

R? 0.956 0.928

3 Qm, L (mg g1) is the caculated value of Q. by Langumuir isotherm equation.
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Table S3 Selectivity adsorption parameters of Fe304-LTL-MIP and Fes04-NIP for LTL.

Analytes Quip (umol g1) Quie (umol g?) IF SC
LTL 66.03 16.74 3.94 -
Qu 22.71 15.22 1.49 2.64
RT 7.90 3.99 1.98 1.99
CA 15.37 4.62 3.33 1.18
CH 8.04 2.23 3.61 1.09
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Table S4 Reproducibility of Fe304-LTL-MIPs.

Nanomaterials Batch 1 2 3 4 5 6 7 8 Average

Fe30,4-LTL- Q(mgg') 1864 19.29 1848 1893 19.04 18.87 18.45 18.80 18.81

MIPs RSD (%) 5.2 3.3 4.7 4.0 3.7 4.1 3.8 4.3 1.5
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