Electronic Supplementary Information (ESI) For

Eco-friendly additives in acidic pretreatment to boost enzymatic

saccharification of hardwood for sustainable biorefinery applications

Authors:

Qiulu Chu, a Wenyao Tong, b Shufang Wu, a Yongcan Jin, a Jinguang Hu c and Kai Song b

Affiliations:

^a Co-Innovation Center for Efficient Processing and Utilization of Forest Resources,

College of Light Industry and Food Engineering, Nanjing Forestry University,

Nanjing 210037, China

^b College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

^c Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1Z4, Canada

* Corresponding author. E-mail address: ksong@njfu.edu.cn

This file includes:

Figure S1 to S4 Table S1 to S2

Fig. S1 Overview of experimental configuration for studying effect of additives in DA pretreatment on lignin properties and resulting lignin inhibition on cellulose hydrolysis.

Fig. S2 Surface barrier effect and irreversible binding effect of lignin on enzymatic hydrolysis of cellulose (Enzyme loading: 5 FPU/g) after dilute acid (DA) pretreatment with additives: syringic acid (SA), mannitol (MT), 2-naphthol-7-sulfonate (NS).

Fig. S3 SEM observations of substrates after dilute acid (DA) pretreatment with various additives at different magnifications.

Fig. S4 FTIR spectra for the surfaces of raw biomass and dilute acid (DA) pretreated substrates in the absence and presence of various additives: syringic acid (SA), mannitol (MT), 2-naphthol-7-sulfonate (NS)

Table S1 Pretreatment efficacy of dilute acid (DA) pretreatment with various addition of syrigic acid (SA, 5 %, 10 % and 20 %, w/w, based on dry mass of poplar sawdust), and enzymatic hydrolysis yield of the pretreated substrates.

	Cellulose (%)	Hemicellulose (%)	Lignin (%)	Cellulose recovery in solid (%)	Hemicellulose recovery in solid (%)	Hemicellulose recovery in prehydrolysate (%)	Lignin removal (%)	Cellulsoe hydrolysis yield (%)	BSA treatment + cellulose hydrolysis (%)	Delignificaton + cellulose hydrolysis (%)
DA	59.30	0.34	38.85	91.71	0.97	39.22	6.83	42.39	72.32	96.59
	±0.51	±0.07	±1.28	±1.66	±0.19	±1.19	± 1.08	±0.97	±1.30	±1.09
DA-SA 5%	58.64	0.47	38.52	90.15	1.35	36.67	7.53	56.57	79.46	96.10
	±0.17	±0.11	± 0.80	±0.70	±0.31	±0.01	±0.94	±0.69	±0.05	±1.56
DA-SA 10%	58.94	0.66	39.78	87.93	1.83	36.41	9.71	60.07	82.99	97.35
	±1.12	±0.00	±0.09	±1.50	±0.02	±0.69	±0.44	±1.10	± 1.01	±0.67
DA-SA 20%	55.41	0.35	41.67	84.37	0.99	32.24	3.48	45.06	82.27	97.16
	±1.03	±0.17	±1.02	±1.37	±0.47	±2.23	±2.30	± 2.81	±0.53	±2.03

Table S2 XPS elemental analysis on fiber surface of dilute acid (DA) pretreated
substrates in the absence and presence of various additives (5 %, w/w): syringic acid
(SA), mannitol (MT), 2-naphthol-7-sulfonate (NS).

		Carbon (C1s)		Oxygen (O _{1s})			
	C ₁ (284.7 eV)	C ₂ (286.6 eV)	C ₃ (288.4 eV)	O ₁ (531.3 eV)	O ₂ (532.4 eV)	O ₃ (533.3 eV)	
DA	0.70	0.26	0.04	0.11	0.46	0.43	
DA-MT (5%)	0.40	0.52	0.08	0.08	0.54	0.38	
DA-SA (5%)	0.56	0.38	0.06	0.10	0.47	0.43	
DA-NS (5%)	0.49	0.46	0.05	0.12	0.50	0.38	

^a Subpeaks in C_{1s} correspond to C₁ (C-C), C₂ (C-S, C-OH or C-O-C) and C₃ (O-C-O or C=O), respectively.

^b Subpeaks in O_{1s} correspond to O₁ (O-C=O and Ar-O-Ar), O₂ (C-O-, C=O, C-O-C and O-C=O), O₃ (Ph-O), respectively.