SUPPORTING INFORMATION

for

Exploiting a Silver–Bismuth Hybrid Material as Heterogeneous Noble Metal Catalyst for Decarboxylations and Decarboxylative Deuterations of Carboxylic Acids under Batch and Continuous Flow Conditions

Rebeka Mészáros^a, András Márton^b, Márton Szabados^{b,c}, Gábor Varga^{*,c,d}, Zoltán Kónya^{e,f}, Ákos Kukovecz^e, Ferenc Fülöp^{*,a,g}, István Pálinkó^{†,b,c} and Sándor B. Ötvös^{*,g,h}

^aInstitute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, Szeged, H-6720 Hungary.
^bDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary.
^cMaterial and Solution Structure Research Group and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged, H-6720 Hungary.
^dDepartment of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary. E-mail: gabor.varga5@chem.u-szeged.hu
^eDepartment of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
^fMTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged, H-6720 Hungary
^gMTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, Szeged, H-6720. *E*-mail: fulop@pharm.u-szeged.hu
^hInstitute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, A-8010 Austria. *E*-mail: sandor.oetvoes@uni-graz.at

[†]Deceased *Corresponding authors

Table of Contents

1. Additional Figures and Tables	S3
2. Analytical Data of the Reaction Products	
3. Collection of NMR Spectra	
4. References	

1. Additional Figures and Tables

Fig. S1 Investigation of the effects of the temperature (a) and reaction time (b) on the AgBi-HM-catalyzed decarboxylation of 2-nitrobenzoic acid. (Reaction conditions: 0.15 M substrate concentration, 5 mol% catalyst, 15 mol% of KOH as base, DMF as solvent.)

Table S1 Investigation of the effects the substrate concentration in the AgBi-HM-catalyzeddecarboxylation of 2-nitrobenzoic acid under batch conditions.

		5 mol% AgBi-HM 15 mol% KOH		соок
		110 °C, 24 h DMF A	+ U	
Entry	<i>c</i> (M)	Conversion (%) ^a	Selectivity (%) ^a	
			А	В
1	0.25	63	100	0
2	0.2	86	100	0
3	0.15	100	100	0
4	0.1	100	100	0

^aDetermined by ¹H NMR analysis of the crude product.

Fig. S2 TEM images: as-prepared AgBi-HM sample (A), AgBi-HM sample used in flow scale-out (B).

Fig. S3 SEM-EDX results of AgBi-HM catalyst samples used a) in batch process b) in flow scale-out process.

2. Analytical Data of the Reaction Products

nitrobenzene

¹H NMR (500 MHz, CDCl₃): δ = 8.22-8.21 (d, J= 8.38 Hz, 2H), 7.72- 7.69 (t, J=7.38 Hz, 1H), 7.56-7.53 (t, J= 8.38 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 148.2, 134.3, 129.3, 123.4. NMR data is in agreement with the published data.¹ MS (EI) m/z = 51, 65, 77, 93, 123

bromobenzene

¹H NMR (500 MHz, CDCl₃): δ = 7.87-7.85 (dd, J= 7.63 Hz, 1H), 7.68-7.66 (dd, J= 7.63 Hz, 1 H), 7.39-7.31 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): 134.5, 132.7, 131.4, 127.1. NMR data is in agreement with the published data.² MS (EI) m/z = 51, 63, 77, 84, 100, 157

chlorobenzene

¹H NMR (500 MHz, CDCl₃): δ = 7.48-7.33 (m, 3+2H); ¹³C NMR (125 MHz, CDCl₃): 132.8, 131.6, 131.2, 126.6. NMR data is in agreement with the published data.² MS (EI) m/z = 51, 61, 77, 113

phenol

¹H NMR (500 MHz, CDCl₃): δ = 7.24-7.21 (t, J= 7.27 Hz, 2H), 6.91-6.83 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): 155.4, 129.6, 120.7, 115.3. NMR data is in agreement with the published data.³ MS (EI) m/z = 51, 65, 78, 94

anisole

¹H NMR (500 MHz, CDCl₃): δ = 7.80-7.78 (m, 1H), 7.48-7.43 (m, 1H), 6.99-6.96 (m, 3H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 159.1, 131.6, 120.1, 112.4, 55.9. NMR data is in agreement with the published data.⁴ MS (EI) m/z = 51, 65, 78, 93, 108

4-nitroanisole

¹H NMR (500 MHz, CDCl₃): δ = 8.22-8.19 (d, J= 9.24 Hz, 2H), 6.98-6.94 (d, J= 9.24 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 164.6, 141.6, 125.9, 114.0, 56.2. NMR data is in agreement with the published data.⁵ MS (EI) m/z = 63, 77, 92, 95, 107, 123, 137, 153

1,3-dinitrobenzene

¹H NMR (500 MHz, CDCl₃): δ = 9.10-9.07 (m, 1H), 8.59-8.57 (m, 2H), 7.83-7.79 (t, J=8.45 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 148.6, 130.7, 128.8, 119.0. NMR data is in agreement with the published data.⁶ MS (EI) m/z = 51, 64, 75, 83, 85, 92, 122, 168

1,3-dimethoxybenzene

¹H NMR (500 MHz, CDCl₃): δ = 7.29-7.26 (t, J=8.47 Hz 1H), 6.56-6.54 (d, J=8.47 Hz, 2 H), 6.52-6.51 (m, 1H), 3.79 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): 157.4, 131.0, 104.1, 100.2, 56.0. NMR data is in agreement with the published data.² MS (EI) m/z = 51, 52, 65, 78, 95, 109, 138

1,3-dichlorobenzene

¹H NMR (500 MHz, CDCl₃): δ = 7.44-7.42 (m, 1H), 7.32-7.30 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): 132.6, 131.1, 128.8, 127.0. NMR data is in agreement with the published data.⁷ MS (EI) m/z = 55, 75, 83, 111, 145, 148

naphthalene

¹H NMR (500 MHz, CDCl₃): δ = 8.04-8.03 (d, J= 8.12 Hz, 4H), 7.63-7.62 (d, J=8.12 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): 133.7, 128.5, 126.2. NMR data is in agreement with the published data.⁷ MS (EI) m/z = 51, 63, 83, 102, 127, 128

pyridine

¹H NMR (500 MHz, CDCl₃): δ = 8.61-8.59 (m, 2H); 7.66-7.62 (m, 1H); 7.35-7.24 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): 149.8, 135.8, 123.7. NMR data is in agreement with the published data.⁶ MS (EI) m/z = 51, 52, 64, 78, 79

tiophene

¹H NMR (500 MHz, CDCl₃): δ = 7.34-7.33 (m, 2H), 7.12-7.11 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): 126.9, 125,2. NMR data is in agreement with the published data.⁴ MS (EI) m/z = 58, 84

1H-indole

¹H NMR (500 MHz, CDCl₃): δ = 8.56 (s, 1H), 7.64-7.63 (d, J= 7.83 Hz, 1H) 7.37-7.35 (d, J= 7.83 Hz, 1H), 7.19-7.08 (m, 3H), 6.53-6.52 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 135.9, 127.9, 124.3, 121.8, 120.6, 119.8, 111.2, 102.3; NMR data is in agreement with the published data.⁸ MS (EI) m/z = 117, 116, 90, 89, 64, 63

2H-chromen-2-one

¹H NMR (500 MHz, CDCl₃): δ = 7.72-7.70 (d, J= 9.61 Hz, 1H), 7.55-7.48 (m, 2H), 7.35-7.26 (m, 2H), 6.44-6.42 (d, J= 9.61 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 160.8, 154.1, 143.4, 131.8, 127.9, 124.4, 118.8, 116.9, 116.8; NMR data is in agreement with the published data.⁸ MS (EI) m/z = 146, 118, 90, 89, 64, 63

4H-1-benzopyran-4-one

¹H NMR (500 MHz, CDCl₃): δ = 8.22-8.21 (m, 1H), 7.87-7.86 (m, 1H), 7.69-7.68 (m, 1H), 7.45-7.38 (m, 2H), 6.36-6.35 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 177.7, 155.4, 154.8, 134.0, 125.8, 125.3, 125.0, 118.2, 113.0; NMR data is in agreement with the published data.⁸ MS (EI) m/z = 146, 120, 118, 92, 90, 74, 63

2-nitro-1-deuterobenzene

¹H NMR (500 MHz, DMSO-d6): δ = 7.90-7.88 (m, 1H), 7.83-7.82 (m, 1H), 7.76-7.68 (m, 2H); ¹³C NMR (125 MHz, DMSO-d6): 148.2, 135.6, 130.2, 123.7. NMR data is in agreement with the published data.⁹ MS (EI) m/z = 51, 65, 77, 93, 123

2-bromo-1-deuterobenzene

¹H NMR (500 MHz, DMSO-d6): δ = 7.63-7.61 (d, J= 8.14 Hz, 2H), 7.41-7.38 (t, J=7.76 Hz, 1H), 7.33-7.30 (m, 1H); ¹³C NMR (125 MHz, DMSO-d6): 133.6, 131.8, 130.1, 127.9. NMR data is in agreement with the published data.² MS (EI) m/z = 51, 63, 77, 84, 155

3,5-dinitro-1-deuterobenzene

¹H NMR (500 MHz, DMSO-d6): δ = 8.94-8.93 (d, J= 2.18 Hz, 2H), 8.88-8.87 (t, J= 2.18 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d6): 148.2, 140.6, 128.9, 120.2. NMR data is in agreement with the published data.² MS (EI) m/z = 51, 64, 75, 83, 92, 122, 168

2,4-dichloro-1-deuterobenzene

¹H NMR (500 MHz, DMSO-d6): δ = 7.66-7.64 (d, J= 8.17 Hz, 1H), 7.56-7.52 (m, 1H), 7.42-7.40 (d, J= 8.17 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d6): 135.2, 131.4, 129.8, 127.4. NMR data is in agreement with the published data.² MS (EI) m/z = 55, 75, 83, 111, 145, 148

2,6-dimethoxy-1-deuterobenzene

¹H NMR (500 MHz, DMSO-d6): δ = 7.32-7.29 (t, J= 8.37 Hz, 1H), 6.71-6.70 (d, J= 8.37 Hz, 2H), 3.79 (s, 6H); ¹³C NMR (125 MHz, DMSO-d6): 156.9, 130.8, 114.8, 104.6, 56.1. NMR data is in agreement with the published data.⁹ MS (EI) m/z = 52, 65, 78, 95, 109, 138

2-methoxy-5-nitro-1-deuterobenzene

¹H NMR (500 MHz, DMSO-d6): δ = 7.87-7.86 (d, J= 8.81 Hz, 1H), 7.05-7.01 (m, 2H), 3.88 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6): 162.9, 138.1, 126.2, 126.1, 114.3, 113.8, 56.4. NMR data is in agreement with the published data.¹⁰ MS (EI) m/z = 63, 77, 92, 95, 107, 123, 137, 153

potassium-2-nitrobenzoate

¹H NMR (500 MHz, DMSO-d6): δ = 7.69-7.67 (d, J= 7.99 Hz, 1H), 7.23-7.19 (m, 1H), 6.74-6.72 (d, J= 7.99 Hz, 1H), 6.51-6.48 (m, 1H). NMR data is in agreement with the published data.¹¹ MS (EI) m/z = 57, 77, 86, 91, 105, 115, 145, 161, 177, 205

3. Collection of NMR Spectra

_Br

_CI

la se genera da y de seu a la site de se general de la desta de sectores de la sectore de

1

_ОН

0₂N

CI 、

with a stand with the stand of the stand often of the stand of the sta

Η

 O_2N^2

MeO

O₂N

4. References

- 1. S. Seo, J. B. Taylor and M. F. Greaney, *Chem. Commun.*, 2012, **48**, 8270–8272.
- 2. S. Dupuy and S. P. Nolan, *Chem. Eur. J.*, 2013, **19**, 14034–14038.
- 3. R. R. Behera, R. Ghosh, S. Panda, S. Khamari and B. Bagh, Org. Lett., 2020, 22, 3642–3648.
- 4. G. Cahiez, A. Moyeux, O. Gager and M. Poizat, *Adv. Synth. Catal.*, 2013, **355**, 790–796.
- 5. B. G. Reed-Berendt, N. Mast and L. C. Morrill, *Eur. J. Org. Chem.*, 2020, **9**, 1136–1140.
- 6. K.-S. Du and J.-M. Huang, *Green Chem.*, 2019, **21**, 1680–1685.
- 7. A. Dewanji, C. Mück-Lichtenfeld and A. Studer, *Angew. Chem. Int. Ed.*, 2016, **55**, 6749–6752.
- X.-W. Zhang, G.-Q. Jiang, S.-H. Lei, X.-H. Shan, J.-P. Qu, and Y.-B. Kang, *Org. Lett.*, 2021, 23, 1611–1615.
- 9. M. Kuriyama, N. Hamaguchi, G. Yano, K. Tsukuda, K. Sato and O. Onomura, *J. Org. Chem.*, 2016, **81**, 8934–8946.
- 10. P.-F. Wang, X.-Q. Wang, J.-J. Dai, Y.-S. Feng and H.-J. Xu, Org. Lett., 2014, 16, 4586–4589.
- 11. D. Hackenberger, B. Song, M. F. Grünberg, S. Farsadpour, F. Menges, H. Kelm, C. Groß, T. Wolff, G. Niedner-Schatteburg, W. R. Thiel and L. J. Gooßen, *ChemCatChem*, 2015, **7**, 3579–3588.