Supporting Information

Electrochemical-mediated fixation of CO₂: three-component

synthesis of carbamate compounds from CO₂, amines and N-

alkenylsulfonamides

Ting-Kai Xiong ^a, Xue-Qi Zhou ^a, Min Zhang ^a, Hai-Tao Tang^{b,*}, Ying-Ming Pan^b and Ying Liang ^{a,*}

^aSchool of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
^bState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resour ces, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China.

liangyi0774@guet.edu.cn httang@gxnu.edu.cn.

1.	General Methods	2
2.	Supplementary experiments	3
3.	Synthesis of Substrates and Characterization	5
4.	General procedure for the preparation of products 3	8
5.	Characterization Data for the Substrates Products	9
6.	NMR Data	.24

1. General Methods

Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. Column chromatography on silica gel (300-400 mesh) was carried out using technical grade 60-90 °C petroleum ether and analytical grade EtOAc (without further purification). ¹H and ¹³C spectra were recorded on a 400 MHz, 500 MHz or 600MHz spectrometer. Chemical shifts were reported in ppm. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) or DMSO (2.5 ppm), and ¹³C-NMR spectra were referenced to CDCl₃ (77.0 ppm) or DMSO (39.5 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. The HRMS spectrum was measured by micromass QTOF2 Quadrupole/Time of Flight Tandem mass spectrometer with electron spray ionization. Cyclic voltammograms were recorded on a CHI 660E potentiostat.

2. Supplementary experiments

Table S1 Screening of Reaction electrode^a

	NHTs +	$CO_2 + \bigvee_{H}^{N} \frac{conditions}{undivided or}$		
	1a	2a	3aa	
Entry		electrode	Yield (%) ^b	
1		Pt (+) / Pt (-)	77	
2		C (+) / Pt (-)	42	
3		Pt (+) / C (-)	39	
4		Pt (+) / Ni (-)	61	
5		Pt (+) / Cu (-)	8	
6		Pt (+) / Al (-)	trace	
7		Pt (+) / Ag (-)	trace	

^aReaction conditions: 1a (0.3 mmol), 2a (1.2 mmol), CO_2 (atmospheric pressure), NH_4I as electrolyte (0.3 mmol), CH_3CN as solvent (3 mL), electrolysis at a constant current of 25 mA for 3 h in an undivided cell at -10 °C.

Fig. S1 Cyclic voltammograms. a) background, b) NH₄I (3mmol/L), c) **1a** (8 mmol/L), and d) NH₄I (3 mmol/L) and **1a** (8 mmol/L).

Fig. S3 Gas spectrum of reaction bottle (Reaction time: 60 minutes)

Fig. S4 GC spectrum of air

3. Synthesis of Substrates and Characterization

(1) N-(2-vinylphenyl)-sulfonamides (1a-1d)

Scheme S1 Synthesis of N-(2-vinylphenyl)-sulfonamides (1a-1d)

A dry round bottom flask charged with 2-(2-aminophenyl)ethan-1-ol (4.571 g, 20 mmol) and KOH (1.122 g, 20 mmol) was stirred at 180 °C for 4 h, the mixture was then cooled to room temperature, and H₂O (20 mL) was added. The organic layer was separated and the aqueous layer was extracted with ethyl acetate, then the combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. The mixture was purified by column chromatography on silica gel (PE/EA = 10/1) to afford the corresponding product 2-vinylaniline **B** as a yellow oil. (1.380 g, 58 %).

To a solution of 2-vinylaniline (**B**) (1.119 g, 10 mmol) in CH_2Cl_2 (40 mL) were added pyridine(1.105 g, 14 mmol) and RCl (12 mmol) at 0 °C. After being stirred at 25 °C for 12h, the reaction mixture was poured into water and the product was extracted with CH_2Cl_2 (30 mL x 3), dried over Na_2SO_4 , filtered, and concentrated by rotary evaporation. The crude mixture was purified by column chromatography on silica gel (PE/EA = 10/1) to afford the corresponding product **1a-1d** as a white solid.

(2) N-(2-vinylphenyl)-sulfonamides (1e-1j)

Scheme S2 Synthesis of N-(2-vinylphenyl)-sulfonamides (1e-1j)

To a suspension of potassium vinyltrifluoroborate (0.736 g, 5.5 mmol), Cs₂CO₃ (4.875 g, 15 mmol), PdCl₂(dppf) (0.363 g, 0.45 mmol) and the corresponding 2bromoaniline (5 mmol) in THF (50 mL) was added water (5.0 mL). The reaction mixture was heated to 130°C under reflux for 16 h, then cooled to room temperature and diluted with water (30 mL) followed by extraction with ether (30 mL x 3). The ethereal solution was washed with brine (50 mL), and then dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography on silica gel (PE/EA = 10/1) to give the desired products **D** as a yellow oil.

To a solution of products **D** (2 mmol) in CH_2Cl_2 (20 mL) were added pyridine (0.221 g, 2.8 mmol) and TsCl (0.457 g, 2.4 mmol) at 0 °C. After being stirred at 25 °C for 12 h, the reaction mixture was poured into water and the product was extracted with CH_2Cl_2 (20 mL x 3), dried over Na_2SO_4 , filtered, and concentrated by rotary evaporation. The crude mixture was purified by column chromatography on silica gel (PE/EA = 10/1) to afford the corresponding product **1e-1j** as a white solid.

4. General procedure for the preparation of products 3

Scheme S3 Synthesis of products 3

A 10 mL three-necked round-bottomed flask was charged with the **1** derivatives (0.3 mmol) and NH₄I (0.3 mmol). The cell was equipped with platinum electrodes $(1.0 \times 1.0 \text{ cm}^{-2})$ as both the anode and cathode. The three-necked flask is pumped and ventilated three times so that the inside is filled with CO₂. Then inject amine **2** (1.2 mmol), CH₃CN (3 mL) into the three-necked flask. Continuously inject CO₂ into the bottle at room temperature. After half an hour, place the reaction flask in cold hydrazine at -10°C and electrolyzed at a constant current of 25 mA for corresponding time. When the reaction was finished, the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on silica gel to afford the desired product **3**.

5. Characterization Data for the Substrates Products

5.1 Characterization data for the products

4-methyl-N-(4-methyl-2-vinylphenyl)benzenesulfonamide (**1e**). White solid (0.487 g, 85%). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.22-7.18 (m, 3H), 7.14 (d, *J* = 8.1 Hz, 1H), 7.00 (d, *J* = 7.9 Hz, 1H), 6.58-6.51 (m, 2H), 5.49 (d, *J* = 17.4 Hz, 1H), 5.20 (d, *J* = 11.1 Hz, 1H), 2.34 (d, *J* = 35.3 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.68, 136.50, 136.37, 133.11, 131.56, 130.39, 129.52, 129.25, 127.20, 127.10, 125.69, 117.45, 21.50, 20.96.

N-(4-chloro-2-vinylphenyl)-4-methylbenzenesulfonamide (**1f**). White solid (0.503 g, 82%). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 2.4 Hz, 1H), 7.24-7.21 (m, 3H), 7.16-7.13 (m, 1H), 6.92 (s, 1H), 6.57-6.50 (m, 1H), 5.52 – 5.48 (m, 1H), 5.27-5.24 (m, 1H), 2.38 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.05, 135.93, 134.69, 132.21, 131.57, 130.36, 129.65, 128.35, 127.13, 126.74, 126.51, 118.97, 21.49.

N-(4-bromo-2-vinylphenyl)-4-methylbenzenesulfonamide (**1g**). White solid (0.504 g, 72%). ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 2.2 Hz, 1H), 7.31-7.29 (m, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 0H), 6.76 (s, 1H), 6.51-6.46 (m, 1H), 5.50 (d, *J* = 17.3 Hz, 1H), 5.28 (d, *J* = 11.1 Hz, 1H), 2.39 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.12, 135.94, 134.72, 132.15, 131.37, 130.25, 129.71, 129.62, 127.14, 126.63, 120.03, 119.33, 21.54.

N-(4-methoxy-2-vinylphenyl)-4-methylbenzenesulfonamide (**1h**). White solid (0.460 g, 76%). ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 8.8 Hz, 1H), 6.92 (d, *J* = 2.9 Hz, 1H), 6.72-6.69 (m, 2H), 6.63-6.58 (m, 1H), 5.49 (d, *J* = 17.4 Hz, 1H), 5.16 (d, *J* = 11.2 Hz, 1H), 3.77 (s, 3H), 2.37 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 158.39, 143.57, 136.19, 135.91, 131.57, 129.43, 128.74, 127.20, 125.67, 116.99, 113.91, 110.88, 21.44.

N-(4-cyano-2-vinylphenyl)-4-methylbenzenesulfonamide (**1i**). Red solid (0.482 g, 81%). ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.2 Hz, 1H), 7.54-7.51 (m, 2H), 7.46 (d, *J* = 10.1 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 2H), 7.05 (s, 1H), 6.53-6.48 (m, 1H), 5.56 (d, *J* = 17.3 Hz, 1H), 5.46 (d, *J* = 11.0 Hz, 1H), 2.38 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.72, 137.59, 135.75, 132.14, 131.46, 131.15, 129.96, 129.63, 127.11, 121.68, 121.63, 118.29, 108.66, 21.58.

4-methyl-N-(5-methyl-2-vinylphenyl)benzenesulfonamide (**1j**). White solid (0.464 g, 81%). ¹**H NMR** (600 MHz, Chloroform-d) δ 7.59 (d, J = 8.3 Hz, 2H), 7.26-7.16 (m, 4H), 6.97 (d, J = 7.8 Hz, 1H), 6.45-6.40 (m, 2H), 5.44 (d, J = 18.3 Hz, 1H), 5.18 (d, J = 12.0 Hz, 1H), 2.38 (s, 3H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.81, 138.77, 136.35, 132.85, 131.19, 129.69, 129.56, 127.33, 127.16, 126.61, 125.44, 117.40, 21.54, 21.16.

4-methyl-N-(2-vinylphenyl)benzenesulfonamide (1a). White solid (2.211 g, 81%). ¹H

NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, J = 8.3 Hz, 2H), 7.37-7.35(m, 1H), 7.32 - 7.28 (m, 1H), 7.21-7.13 (m, 4H), 6.81 (s, 1H), 6.64 - 6.56 (m, 1H), 5.51 (d, J = 17.4 Hz, 1H), 5.24 (d, J = 11.0 Hz, 1H), 2.37 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 143.90, 136.37, 133.16, 132.94, 131.53, 129.66, 128.58, 127.26, 126.85, 126.55, 125.11, 118.07, 21.59.

NHSO₂Ph

N-(2-vinylphenyl)benzenesulfonamide (**1b**). White solid (2.150 g, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75-7.72 (m, 2H), 7.55-7.51 (m, 1H), 7.43-7.39 (m, 2H), 7.38-7.36 (m, 1H), 7.31-7.29 (m, 1H), 7.22-7.14 (m, 2H), 6.89 (s, 1H), 6.61-6.54 (m, 1H), 5.51-5.47 (m, 1H), 5.23-5.20 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.12, 133.07, 132.93, 132.83, 131.25, 128.94, 128.48, 127.09, 126.67, 125.39, 117.92,.

4-methoxy-N-(2-vinylphenyl)benzenesulfonamide (**1c**). White solid (2.349g, 83%). **¹H NMR** (600 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.9 Hz, 1H), 7.37-7.36 (m, 1H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.20-7.17 (m, 1H), 7.16-7.13 (m, 1H), 6.89-6.85 (m, 3H), 6.66-6.61 (m, 1H), 5.51 (d, *J* = 17.4 Hz, 1H), 5.23 (d, *J* = 11.0 Hz, 1H), 3.80 (s, 3H). **¹³C NMR** (151 MHz, CDCl₃) δ 163.02, 133.08, 132.93, 131.40, 130.70, 129.27, 128.41, 126.63, 126.44, 125.18, 117.74, 114.03, 55.49.

4-chloro-N-(2-vinylphenyl)benzenesulfonamide (**1d**). White solid (2.473 g, 84%). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 3H), 7.30-7.28 (m, 1H), 7.24-7.17 (m, 2H), 6.83 (s, 1H), 6.61-6.54 (m, 1H), 5.54-5.49 (m, 1H), 5.26-5.23 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 139.50, 137.64, 133.20, 132.48, 131.14, 129.25, 128.62, 127.00, 126.85, 125.53, 118.20.

5.2 Characterization data for the products

1-tosylindolin-3-yl pyrrolidine-1-carboxylate (**3aa**). White solid (0.089 g, 77%). mp: 107-109°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.07-7.03 (m, 1H), 5.93-5.90 (m, 1H), 4.01 (d, *J* = 5.2 Hz, 2H), 3.37-3.33 (m, 2H), 2.97-2.94 (m, 2H), 2.35 (s, 3H), 1.82-1.76 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 154.04, 144.07, 142.76, 133.88, 130.62, 129.69, 129.62, 127.33, 126.90, 123.93, 115.00, 71.59, 56.13, 46.12, 45.62, 25.57, 24.85, 21.47. **HRMS** (m/z) [ESI]: calculated for C₂₀H₂₂N₂O₄SNa⁺[M+Na]⁺: 409.1300, found 409.1195.

1-tosylindolin-3-yl diisobutylcarbamate (**3ab**). White solid (0.092 g, 69%). mp: 135-137°C. Petroleum ether/ethyl acetate = 20/1 (v/v) as eluent for column chromatography. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.37-7.31 (m, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.06-7.02 (m, 1H), 5.94-5.92 (m, 1H), 4.06-4.01 (m, 1H), 3.94-3.90 (m, 1H), 3.16-3.10 (m, 1H), 2.98-2.93 (m, 1H), 2.80-2.69 (m, 2H), 2.35 (s, 3H), 1.96-1.89 (m, 1H), 1.74-1.67 (m, 1H), 0.87 (d, J = 6.6 Hz, 6H), 0.73-0.65 (m, 6H). ¹³C **NMR** (101 MHz, CDCl₃) δ 155.94, 144.12, 142.70, 133.75, 130.56, 129.68, 129.38, 127.25, 126.66, 123.87, 114.87,

71.77, 56.01, 54.75, 54.04, 27.18, 26.81, 21.50, 19.96, 19.78. **HRMS** (m/z) [ESI]: calculated for $C_{24}H_{32}N_2O_4SNa^+$ [M+Na]⁺: 467.2083, found 467.1984.

1-tosylindolin-3-yl dibutylcarbamate (**3ac**). White solid (0.061 g, 47%). mp: 129-131°C. Petroleum ether/ethyl acetate = 20/1(v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.37-7.33 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.06-7.03 (m, 1H), 5.93-5.91 (m, 1H), 4.03-3.95 (m, 2H), 3.26-3.21 (m, 1H), 3.15-3.11 (m, 1H), 2.91-2.88 (m, 1H), 2.36 (s, 3H), 1.50-1.47 (m, 2H), 1.10-1.06 (m, 2H), 0.94-0.92 (m, 3H), 0.77-0.75 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 155.43, 144.15, 142.70, 133.74, 130.59, 129.67, 129.47, 127.30, 126.68, 123.86, 114.85, 77.21, 77.00, 76.79, 71.80, 56.04, 47.10, 46.17, 30.53, 30.10, 21.54, 20.01, 19.68, 13.87, 13.72. HRMS (m/z) [ESI]: calculated for C₂₄H₃₂N₂O₄SNa⁺ [M+Na]⁺: 467.2083, found 467.1982.

1-tosylindolin-3-yl diethylcarbamate (**3ad**). Yellow oil (0.084 g, 72%). Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹H NMR (400 MHz, DMSO- d_6) δ 7.67 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.2 Hz, 1H), 7.43-7.34 (m, 4H), 7.12-7.08 (m, 1H), 5.86-5.84 (m, 1H), 4.16-4.11 (m, 1H), 3.89-3.85 (m, 1H), 3.33-3.13 (m, 2H), 2.78 (d, J = 6.7 Hz, 2H), 2.32 (s, 3H), 1.03-1.00 (m, 3H), 0.79-

0.76 (m, 3H). ¹³**C NMR** (101 MHz, DMSO) δ 154.15, 144.46, 142.11, 133.10, 130.73, 129.96, 129.90, 127.06, 126.94, 124.20, 114.56, 71.24, 55.76, 41.26, 40.47, 20.97, 13.80, 13.35. **HRMS** (m/z) [ESI]: calculated for C₂₀H₂₄N₂O₄SNa⁺ [M+Na]⁺: 411.1457, found 411.1352.

1-tosylindolin-3-yl propylcarbamate (**3ae**). White solid (0.084 g, 75%). mp: 109-111°C.Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.2 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.39-7.34 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.08-7.04 (m, 1H), 5.88-5.86 (m, 1H), 4.39 (s, 1H), 4.01-3.92 (m, 2H), 3.12-3.06 (m, 2H), 2.36 (s, 3H), 1.52-1.43 (m, 2H), 0.91-0.87 (m, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 155.42, 144.04, 142.83, 133.78, 130.76, 129.58, 129.46, 127.48, 126.69, 124.12, 115.35, 71.51, 56.05, 42.68, 23.08, 21.50, 11.15. **HRMS** (m/z) [ESI]: calculated for C₁₉H₂₂N₂O₄SNa⁺ [M+Na]⁺: 397.1300, found 397.1188.

1-tosylindolin-3-yl isopropylcarbamate (**3af**). White solid (0.058 g, 52%). mp: 113-115°C.Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 7.9 Hz, 2H), 7.38-7.35 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.07-7.05 (m, 1H), 5.85 (d, *J* = 5.7 Hz, 1H), 4.21 (d, *J* = 6.9 Hz, 1H), 3.99-3.94 (m, 2H), 3.78-3.73 (m, 1H), 2.36 (s, 3H), 1.14-1.09 (m, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 154.47, 143.97, 142.82, 133.72, 130.74, 129.59, 129.51, 127.47, 126.67, 124.16, 115.43, 71.33, 56.08, 43.04, 22.86, 21.53. **HRMS** (m/z) [ESI]: calculated for C₁₉H₂₂N₂O₄SNa⁺ [M+Na]⁺: 397.1300, found 397.1184.

1-tosylindolin-3-yl butylcarbamate (**3ag**). White solid (0.078 g, 67%). mp:121-123°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.2 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.38-7.34 (m, 2H), 7.08-7.04 (m, 1H), 5.87-5.85 (m, 1H), 4.38 (s, 1H), 4.00-3.91 (m, 2H), 3.15-3.09 (m, 2H), 2.36 (s, 3H), 1.45-1.41 (m, 2H), 1.33-1.28 (m, 2H), 0.93-0.89 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.39, 144.04, 142.80, 133.73, 130.75, 129.57, 129.44, 127.46, 126.68, 124.11, 115.32, 71.48, 56.04, 40.66, 31.87, 21.49, 19.80, 13.66. **HRMS** (m/z) [ESI]: calculated for C₂₀H₂₄N₂O₄SNa⁺ [M+Na]⁺: 411.1457, found 411.1347.

1-tosylindolin-3-yl isobutylcarbamate (**3ah**). White solid (0.055 g, 47%). mp: 135-137°C.Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.39-7.34 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.08-7.04 (m, 1H), 5.88-5.86 (m, 1H), 4.45-4.43 (m, 1H), 4.01-3.92 (m, 2H), 2.97-2.93 (m, 2H), 2.36 (s, 3H), 1.73-1.66 (m, 1H), 0.88–0.86 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.53, 144.05, 142.81, 133.75, 130.76, 129.45, 127.47, 126.68, 124.12, 115.33, 71.51, 56.04, 48.36, 28.69, 21.50, 19.83. **HRMS** (m/z) [ESI]: calculated for C₂₀H₂₄N₂O₄SNa⁺ [M+Na]⁺: 411.1457, found 411.13473.

1-tosylindolin-3-yl (2-methoxyethyl)carbamate (**3ai**). Yellow oil (0.070 g, 65%). Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 6.7 Hz, 2H), 7.37-7.33 (m, 2H), 7.21 (d, *J* = 6.7 Hz, 2H), 7.07-7.03 (m, 1H), 5.85-5.84 (m, 1H), 4.75 (s, 1H), 4.00-3.93 (m, 2H), 3.40-3.30 (m, 7H), 2.36-2.35 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 155.38, 144.15, 142.82, 133.64, 130.75, 129.53, 129.43, 127.42, 126.68, 124.16, 115.52, 71.62, 71.11, 58.70, 56.04, 40.69, 21.42. **HRMS** (m/z) [ESI]: calculated for C₁₉H₂₂N₂O₅SNa⁺ [M+Na]⁺: 413.1249, found 413.1138.

1-tosylindolin-3-yl cyclopentylcarbamate (**3aj**). White solid (0.068 g, 57%). mp: 157-159°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.38-7.35 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.08-7.05 (m, 1H), 5.86 (d, *J* = 5.5 Hz, 1H), 4.31 (d, *J* = 6.8 Hz, 1H), 4.00-3.93 (m, 2H), 2.37 (s, 3H), 1.95-1.91 (m, 2H), 1.63-1.59 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 154.83, 144.01, 142.84, 133.74, 130.77, 129.59, 129.47, 127.49, 126.68, 124.15, 115.41, 71.40, 56.11, 52.66, 33.11, 23.43, 21.55. **HRMS** (m/z) [ESI]: calculated for C₂₁H₂₄N₂O₄SNa⁺ [M+Na]⁺: 423.1457, found 423.1341.

1-tosylindolin-3-yl benzylcarbamate (**3ak**). White solid (0.061 g, 49%). mp:161-163°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.3 Hz, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.40-7.29 (m, 5H), 7.23 (d, *J* = 7.0 Hz, 2H), 7.14-7.06 (m, 3H), 5.90-5.88 (m, 1H), 4.60 (s, 1H), 4.36-4.24 (m, 2H), 4.02-3.98 (m, 2H), 2.23 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 155.32, 144.02, 142.88, 137.92, 133.76, 130.85, 129.53, 129.46, 128.73, 127.70, 127.53, 127.45, 126.73, 124.26, 115.66, 71.85, 56.06, 45.05, 21.33. **HRMS** (m/z) [ESI]: calculated for C₂₃H₂₂N₂O₄SNa⁺ [M+Na]⁺: 445.1300, found 445.1188.

methyl 2-((((1-tosylindolin-3-yl)oxy)carbonyl)amino)pentanoate (**3al**). Yellow oil (0.044 g, 33%). Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.2 Hz, 1H), 7.66-7.64 (m, 2H), 7.39-7.34 (m, 2H), 7.24-7.22 (m, 2H), 7.08-7.06 (m, 1H), 5.86 (d,

J = 4.3 Hz, 1H), 4.88-4.80 (m, 1H), 4.30 (d, J = 7.9 Hz, 1H), 4.01-3.98 (m, 2H), 3.74 (d, J = 25.8 Hz, 2H), 2.37 (d, J = 2.2 Hz, 3H), 1.78-1.74 (m, 2H), 1.36-1.33 (m, 2H), 0.91-0.86 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.76, 154.86, 144.18, 142.90, 133.70, 130.89, 129.58, 127.52, 126.71, 124.26, 115.75, 115.56, 71.96, 56.05, 53.51, 52.36, 34.78, 21.52, 18.45, 13.63. **HRMS** (m/z) [ESI]: calculated for C₂₂H₂₆N₂O₆SNa⁺ [M+Na]⁺: 469.1512, found 469.1405.

tert-butyl (((1-tosylindolin-3-yl)oxy)carbonyl)alaninate (**3ak**). Yellow oil (0.042 g, 31%). Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.74 (d, J = 8.1 Hz, 1H), 7.64-7.62 (m, 2H), 7.38-7.34 (m, 2H), 7.23-7.21 (m, 2H), 7.08-7.05 (m, 1H), 5.86-5.82 (m, 1H), 4.95-4.91 (m, 1H), 4.17-4.14 (m, 1H), 3.99-3.98 (m, 2H), 2.37 (s, 3H), 1.44 (d, J = 4.6 Hz, 9H), 1.36-1.34 (m, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 171.79, 154.49, 144.24, 142.87, 133.65, 130.81, 129.59, 129.37, 127.43, 126.73, 124.27, 115.70, 82.09, 71.73, 56.04, 49.97, 49.30, 27.92, 21.48, 19.28. **HRMS** (m/z) [ESI]: calculated for C₂₃H₂₈N₂O₆SNa⁺ [M+Na]⁺: 483.1668, found 483.1559.

1-(phenylsulfonyl)indolin-3-yl pyrrolidine-1-carboxylate (3ba). White solid (0.084 g, 75%). mp:117-119°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.3 Hz,

1H), 7.75 (d, J = 8.2 Hz, 1H), 7.56-7.52 (m, 1H), 7.45-7.35 (m, 4H), 7.08-7.04 (m, 1H), 5.93-5.90 (m, 1H), 4.04-4.03 (m, 2H), 3.36-3.33 (m, 2H), 2.97-2.94 (m, 2H), 1.82-1.77 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 154.03, 142.65, 136.90, 133.16, 130.68, 129.66, 129.03, 127.29, 126.96, 124.04, 114.95, 71.58, 56.19, 46.16, 45.66, 25.52, 24.85. **HRMS** (m/z) [ESI]: calculated for C₁₉H₂₀N₂O₄SNa⁺ [M+Na]⁺: 395.1144, found 395.1035.

1-((4-methoxyphenyl)sulfonyl)indolin-3-yl pyrrolidine-1-carboxylate (**3ca**). White solid (0.081 g, 67%). mp:137-139°C.Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75-7.72 (m, 3H), 7.40-7.34 (m, 2H), 7.07-7.03 (m, 1H), 6.88 (d, *J* = 8.8 Hz, 2H), 5.92-5.90 (m, 1H), 4.00 (d, *J* = 4.6 Hz, 2H), 3.80 (s, 3H), 3.36-3.33 (m, 2H), 2.99-2.96 (m, 2H), 1.82-1.76 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 163.35, 154.05, 142.86, 130.61, 129.71, 129.45, 128.43, 126.90, 123.90, 115.03, 114.15, 71.65, 56.10, 55.51, 46.14, 45.67, 25.52, 24.85. HRMS (m/z) [ESI]: calculated for C₂₀H₂₂N₂O₅SNa⁺ [M+Na]⁺: 425.1249, found 425.1140.

1-((4-chlorophenyl)sulfonyl)indolin-3-yl pyrrolidine-1-carboxylate (**3da**). White solid (0.090 g, 73%). mp:131-133°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (t, *J* =

8.1 Hz, 2H), 7.45-7.34 (m, 3H), 7.09 (td, J = 7.5, 0.8 Hz, 1H), 5.89 (dd, J = 6.8, 2.1 Hz, 1H), 3.34 (t, J = 6.1 Hz, 2H), 2.89 (dt, J = 9.1, 5.0 Hz, 2H), 1.86-1.75 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 153.90, 142.39, 139.82, 135.33, 130.77, 129.87, 129.30, 128.66, 127.05, 124.46, 115.28, 71.53, 56.22, 46.17, 45.66, 25.58, 24.84. HRMS (m/z) [ESI]: calculated for C₁₉H₁₉ClN₂O₄SNa⁺ [M+Na]⁺: 429.0754, found 429.0634.

5-methyl-1-tosylindolin-3-yl pyrrolidine-1-carboxylate (**3ea**). White solid (0.090 g, 75%). mp:152-153°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.67-7.61 (m, 3H), 7.21-7.15 (m, 4H), 5.88-5.86 (m, 1H), 3.39-3.38 (m, 2H), 3.36-3.33 (m, 2H), 2.96-2.93 (m, 2H), 2.32 (d, *J* = 32.7 Hz, 6H), 1.82-1.77 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 154.08, 143.94, 140.43, 133.81, 133.75, 131.33, 129.83, 129.59, 127.23, 114.93, 71.69, 56.26, 46.12, 45.63, 25.58, 24.86, 21.49, 20.85. HRMS (m/z) [ESI]: calculated for C₂₁H₂₄N₂O₄SNa⁺ [M+Na]⁺: 423.1457, found 423.1368.

5-chloro-1-tosylindolin-3-yl pyrrolidine-1-carboxylate (3fa). White solid (0.066 g, 53%). mp:126-128°C. Petroleum ether/ethyl acetate = 20/1-10/1 (v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.68-7.65 (m, 3H), 7.37 (d, J = 1.8 Hz, 1H), 7.32-7.31 (m, 1H), 7.23 (d, J = 8.1 Hz, 2H), 5.87-5.86 (m, 1H), 4.02-4.00 (m, 2H), 3.36-3.34 (m, 2H), 2.96-2.94 (m, 2H), 2.37 (s, 3H), 1.83-1.78

(m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 153.74, 144.37, 141.39, 133.51, 131.53, 130.68, 129.75, 129.11, 127.32, 127.04, 116.13, 70.98, 56.26, 46.18, 45.67, 25.58, 24.84, 21.51. HRMS (m/z) [ESI]: calculated for C₂₀H₂₁ClN₂O₄SNa⁺ [M+Na]⁺: 443.0911, found 443.0798.

5-bromo-1-tosylindolin-3-yl pyrrolidine-1-carboxylate (**3ga**). White solid (0.050 g, 36%). mp:133-135°C.Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 1H), 7.52 (d, *J* = 1.8 Hz, 1H), 7.47-7.45 (m, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 5.88-5.87 (m, 1H), 4.01-3.99 (m, 2H), 3.36-3.34 (m, 2H), 2.97-2.95 (m, 2H), 2.37 (s, 3H), 1.83-1.78 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 153.73, 144.40, 141.91, 133.55, 133.50, 131.89, 129.96, 129.77, 127.31, 116.53, 116.48, 70.90, 56.20, 46.19, 45.68, 25.58, 24.84, 21.52. HRMS (m/z) [ESI]: calculated for C₂₀H₂₁BrN₂O₄SNa⁺[M+Na]⁺: 487.0405, found 489.0274.

5-methoxy-1-tosylindolin-3-yl pyrrolidine-1-carboxylate (**3ha**). White solid (0.028 g, 23%). mp:116-118°C. Petroleum ether/ethyl acetate = 20/1-5/1 (v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 9.6 Hz, 1H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.92-6.91 (m, 2H), 5.85-5.84 (m, 1H), 4.05-4.01 (m, 1H), 3.97-3.95 (m, 1H), 3.76 (s, 3H), 3.36-3.32 (m, 2H), 2.91-2.89 (m, 2H), 2.35 (s, 4H), 1.82-1.77 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 156.72,

153.97, 143.89, 136.18, 133.61, 131.30, 129.56, 127.45, 116.74, 116.53, 111.40, 71.81, 56.40, 55.68, 46.13, 45.61, 25.59, 24.86, 21.49. **HRMS** (m/z) [ESI]: calculated for C₂₁H₂₄N₂O₅SNa⁺ [M+Na]⁺: 439.1406, found 439.1293.

5-cyano-1-tosylindolin-3-yl pyrrolidine-1-carboxylate (**3ia**). White solid (0.039 g, 32%). mp: 119-120°C. Petroleum ether/ethyl acetate = 10/1-8/1 (v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-d) δ 7.77 (d, J = 8.5 Hz, 1H), 7.69-7.67 (m, 3H), 7.62-7.61 (m, 1H), 7.24 (d, J = 4.1 Hz, 2H), 5.93-5.91 (m, 1H), 4.04-4.03 (m, 2H), 3.35-3.33 (m, 2H), 3.02-2.97 (m, 2H), 2.36 (s, 3H), 1.82-1.78 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 153.55, 146.28, 144.96, 135.06, 133.50, 131.29, 130.65, 129.97, 127.15, 118.54, 114.79, 106.87, 70.31, 56.14, 46.25, 45.73, 25.56, 24.81, 21.55. **HRMS** (m/z) [ESI]: calculated for C₂₁H₂₁N₃O₄SNa⁺ [M+Na]⁺: 434.1100, found 434.1105.

6-methyl-1-tosylindolin-3-yl pyrrolidine-1-carboxylate (**3ja**). White solid (0.080 g, 67%). mp: 123-125°C. Petroleum ether/ethyl acetate = 10/1-8/1 (v/v) as eluent for column chromatography. ¹H NMR (600 MHz, Chloroform-d) δ 7.67 (d, J = 8.2 Hz, 2H), 7.56 (s, 1H), 7.25 (d, J = 6.6 Hz, 2H), 7.21 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 5.86-5.85 (m, 1H), 3.98 (d, J = 4.6 Hz, 2H), 3.34-3.31 (m, 2H), 2.93-2.91 (m, 2H), 2.39 (s, 3H), 2.34 (s, 3H), 1.80-1.74 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

154.11, 144.00, 142.95, 141.12, 133.96, 129.62, 127.29, 126.89, 126.53, 124.89, 115.46, 71.47, 56.44, 46.08, 45.59, 25.57, 24.85, 21.91, 21.49. **HRMS** (m/z) [ESI]: calculated for C₂₁H₂₄N₂O₄SNa⁺ [M+Na]⁺: 423.1457, found 423.1364.

6. NMR Data

NMR Spectra of Substrates

7,66 40,77,73 40,77,30 40,77,30 7,7,30 7,7,72 40,57 40,57 41,17 7,119 40,57 41,17 7,119 40,57 41,17 7,119 40,57 41,17 7,119 40,57 41,17 41

NMR spectra for the products

7.7.7 7.7.7.7 7.7.

7 <th7</th> <th7</th> <th7</th> <th7</th>

747474 747474 747474 747474 747474 747474 74747 74

7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.165 7.175</

