Electrical Supporting Information

Design of a self-sufficient hydride-shuttling cascade for concurrent bioproduction of 7,12-dioxolithocholate and L-*tert*-leucine

Zhi-Neng You,[†] Ke Zhou,[†] Yu Han,[†] Bing-Yi Yang,[†] Qi Chen,^{†,‡} Jiang Pan,^{†,‡} Xiao-Long

Qian,§ Chun-Xiu Li, $*,^{\dagger, \dagger}$ and Jian-He Xu $*,^{\dagger, \dagger}$

⁺Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^{*}Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

[§]Suzhou Bioforany EnzyTech Co. Ltd., No. 8 Yanjiuyuan Road, Economic Development Zone, Changshu, Jiangsu 215512, China

*Correspondence should be addressed to C.X.L. and J.H.X.: chunxiuli@ecust.edu.cn; jianhexu@ecust.edu.cn

Contents

1. Experimental Section	S3
General information	S3
Gene sequences	S3
Calculation of E factors	S5
2. Supporting Tables	
Table S1. Primers used for constructing recombinant E. coli strains	
Table S2. Strains and plasmids used in this study	S10
3. Supporting Figures	S12
Figure S1. Synthesis of UDCA from CA by chemical (A) or chemo-enzymatic methods (B and C)	S12
Figure S2. Currently available NAD(P)*-recycling systems for the biocatalytic oxidation of CA	S13
Figure S3. Reaction progress curves of the self-sufficient hydride-shuttling cascade via in vitro biocatalysis	S14
Figure S4. SDS-PAGE analysis of whole-cell proteins expressed in selected <i>E. coli</i> strains	S15
Figure S5. A detailed synthetic roadmap of the smart self-sufficient hydride-shuttling cascade	S16
Figure S6. Calibration curves	S17
4. HPLC spectra	S18
5. ¹ H NMR and ¹³ C NMR spectra	S22
6. References	S24

1. Experimental Section

1.1 General information

cholanoic acid; DCA), and chenodeoxycholic acid (3α , 7α -dihydroxy-5 β -cholanic acid; CDCA) were purchased from Aladdin Reagents Co., Ltd. (Shanghai, China). Trimethylpyruvic acid (TMP) and Ltert-leucine were obtained from Adamas Reagent Co., Ltd. (Shanghai, China). Standards of 7-oxodeoxycholic acid (3a,12a-dihydroxy-7-oxo-5β-cholanic acid; 7-oxo-DCA), 12-oxo-chenodeoxycholic acid (3 α ,7 α -dihydroxy-12-oxo-5 β -cholanic acid; 12-oxo-CDCA), and 7,12-dioxo-lithocholic acid (3 α hydroxy-7,12-dioxo-5β-cholanoic acid; 7,12-dioxo-LCA) were enzymatically synthesized in our previous work.^{S1} Unless otherwise specified, all other chemicals and reagents were obtained commercially and were of reagent grade. PrimeSTAR[™] HS, Taq DNA polymerase, and restriction endonucleases were all purchased from Takara Biotechnology Co., Ltd. (Dalian, China). The Gibson assembly kit was purchased from Vazyme Biotech Co., Ltd. (Nanjing, China). E. coli DH5a and E. coli BL21 (DE3) were used as hosts for gene cloning and protein expression, respectively. Plasmids pET-28a (+), pETDuet-1, and pRSFDuet-1 (Novagen, Shanghai, China) were used for the heterogeneous expression of recombinant protein. The recombinant plasmids pET28a (+)- $Ec7\alpha$ -HSDH, pET28a (+)- $Rr12\alpha$ -HSDH and pET28a (+)-EsLeuDH were previously constructed by our laboratory.^{S1-S3} The molar yield of 7,12-dioxo-LCA were determined by HPLC analysis using a Shimadzu LC-2010A high performance liquid chromatography equipped with an Hypersil ODS2 column (250 mm × 4.6 mm, 5 μm particle size, Elite) and a UV detector. ¹H NMR and ¹³C NMR were measured on a Bruker Ascend spectrometer.

1.2 Gene sequences

Gene sequence of *Rr*12α-HSDH (GenBank: QDC17258.1)

CAGGCACTGCTGGTCGAGCACACCCCGGAGATGTTCGAGCTGTCGTCGGCACGGGGTTCTACCCCACCGTG CACCTCATGCAGGCCTGCTACCCGCAGCTCAAGCAGGCCGGGGGGTTCCGTCGTCAACTTCGGCTCCGGGTCC GCCCTCGACGGCATGCCGACGCAGACGTCGTACGCGGCGGCGAAGGAGGCGATCCGGGCGGTCAGCCGGG TGGCCGCGAACGAATGGGCCGCCGACGGCATCCGCGTCAACGTCGTGTGCCCGTTCGCCGCGACCGAAGGC GTGCAGGCCTGGCAGCAGGCGTTCCCCGACCGGGCGGCGGCGGCGGCGGCGAAGGTGCCGTTGCAGCGCA TCGGCGACCCGGAGACGGACATCGCGCCGGTGGTGGTGTTCCTCGCCTCCGACGACTCGAAGTACATGACG GGGCAGACGCTGATGGCCGACGGGGGCAGCATCAAGCTGCGGTGA

Gene sequence of *Ec*7α-HSDH (GenBank: BAA01384.1)

Gene sequence of EsLeuDH (GenBank: ACB60396.1)

1.3 Calculation of E factors

E factors were calculated as Weight_{waste}/Weight_{product}. The calculations did not take into account the waste generated for the preparation of the catalysts.

	Compound	Weight	Quantity
	Compound	(mg)	(mg per mg products)
Product	7,12-dioxo-LCA + L- <i>tert</i> -leucine	1600 + 850	
	СА	400	0.16
	Trimethylpyruvic acid	750	0.31
Waste	Cells	1000	0.41
	Ammonium chloride	2650	1.08
	H ₂ O	50000	20.4
	1 M HCl	1200	0.49
	Ethanol	39500	16.1
E factor	Including water		38.9
	Excluding water		18.5

(1) 12α-HSDH/7α-HSDH/LeuDH system, 100 mM CA, 250 mM TMP, 50 mL (this work).

(2) O₂/NOX system, 10 mM CA, 75 mL, flow reactor (ref. 43).

	Compound	Weight	Quantity	
--	----------	--------	----------	--

		(mg)	(mg per mg product)
Product	12-oxo-CDCA	297	
	СА	3	0.01
	NAD ⁺	35.5	0.12
	12a-HSDH	0.26	0.001
Waste	NOX	37.5	0.13
	MeOH	5925	19.9
	50 mM KPi pH 8.0	640	2.15
	H ₂ O	67500	227.3
E factor ^a	Including water		249.6
	Excluding water		22.3

^a The calculations did not take into account the downstream processes.

(3) Syringaldazine/MtLac system, 120 mM CA, 410 mL (ref. 44).

	Compound	Weight	Quantity
		(mg)	(mg per mg product)
Product	12-oxo-CDCA	18400	
	СА	1600	0.09
	NAD ⁺	136	0.007
	Syringaldazine	21	0.001
	12a-HSDH	5.33	0.0003
Waste	<i>Mt</i> Lac	139	0.008
	DMSO	45100	2.45
	100 mM KPi pH 7.2	6700	0.36
	H ₂ O	369000	20.1
	Diethyl ether	710000	38.9
E factor	Including water		61.6
	Excluding water		41.5

	Compound	Weight	Quantity
		(mg)	(mg per mg product)
Product	12-oxo-CDCA	6800	
	СА	1200	0.18
	Pyruvate	2640	0.39
	NAD ⁺	35.5	0.005
	Cells	1000	0.15
waste	100 mM KPi pH 8.0	1720	0.25
	H ₂ O	100000	14.7
	1 M HCl	4800	0.71
	Ethanol	79000	11.6
E factor	Including water		28.0
	Excluding water		13.3

(4) Pyruvate/LDH system, 200 mM CA, 100 mL (ref. 36).

(5) Acetone/Alcohol Dehydrogenase (ADH) system, 100 mM CA, 10 mL (ref. 42).

	Compound	Weight	Quantity
	Compound	(mg)	(mg per mg product)
Product	12-oxo-CDCA	170	
	СА	230	1.35
	Acetone	1970	11.6
	NADP ⁺	0.75	0.004
	12a-HSDH	16.7	0.1
Waste	Dithiothreitol	1.6	0.01
	Bovine serumalbumin	60	0.35
	100 mM KPi pH 8.0	172	1.01
	H ₂ O	10000	58.8
	Ethyl acetate	9000	52.9

E factor	Including water	126.2
	Excluding water	67.4

	Compound	Weight	Quantity
	Compound	(mg)	(mg per mg products)
Product	12-oxo-CDCA	2464	
	CA	336	0.14
	a-Ketoglutarate	1691	0.69
	NADP ⁺	3.5	0.001
	12a-HSDH	10.8	0.004
	GLuDH	0.58	0.0002
Wasto.	Dithiothreitol	11	0.004
Waste	Sodium azide	14	0.006
	Ammonium acetate	1348	0.55
	100 mM KPi pH 8.0	1207	0.49
	H ₂ O	70000	28.4
	Acetone	276500	112.2
	Ethanolamine	427	0.17
E factor	Including water		142.7
	Excluding water		114.3

(6) α-Ketoglutarate/Glutamate Dehydrogenase (GluDH) system, 100 mM CA, 70 mL (ref. 39).

2. Supporting Tables

Primer	Sequence (5'-3')
mcs1-12α-FP	TCATCACCACAGCCAGGATCCGATGAAACTGCGCGGGAAGA
(BamHI)	TTAAGCATTATGCGGCCCCAAGCTTTCACCGCAGCTTGATGCTGC
mcs1-12α-RP (Hind Ⅲ)	TAACATTATOCOCCOC <u>AACETT</u> TCACCOCAGCTTGATGCTGC
mcs1-7 α -FP (BamH I)	TCATCACCACAGCCAGGATCCGATGTTTAATTCTGACAACC
mcs1-7α-RP (HindⅢ)	TTAAGCATTATGCGGCCGCAAGCTTTTAATTGAGCTCCTGTAC
mcs1-Es-FP (BamH I)	TCATCACCACAGCCA <u>GGATCC</u> GATGGTTGAAACAAACG
Mcs1-Es-RP (HindⅢ)	TTAAGCATTATGCGGCCGCAAGCTTTTAACCGCGTGATCCT
mcs2-12 α -FP (Nde I)	GTATAAGAAGGAGATATACATATGATGAAACTGCGCGGGAAGACCGC
mcs2-12α-RP (Kpn I)	TTTCTTTACCAGACTCGAGGGTACCTCACCGCAGCTTGATGCT
mcs2-7 α -FP (Nde I)	GTATAAGAAGGAGATATACATATGATGTTTAATTCTGACAACCTGAGACTCG
mcs2-7α-RP (Kpn I)	TTTCTTTACCAGACTCGAGGGTACCTTAATTGAGCTCCTGTA
mcs2-Es-FP(Nde I)	GTATAAGAAGGAGATATA <u>CATATG</u> ATGGTTGAAACAAACGTAGAAGCACG
mcs2-RP(Kpn I)	TTTCTTTACCAGACTCGAG <u>GGTACC</u> TTAACCGCGTGATCCTAAAATGTT
pETDuet-MCS1-FP	ATCGGTGATGTCGGCGATAT
pRSFDuet-MCS1-FP	GTTTTGCGCCATTCGATGGT
Duet-MCS1-RP	GATTATGCGGCCGTGTACAA
Duet-MCS2-FP	TTGTACACGGCCGCATAATC
Duet-MCS2-RP	TGCTAGTTATTGCTCAGCGG

Table S1. Primers used for constructing recombinant *E. coli* strains.

Strain and plasmids	Relevant characteristics	Source
pRSFDuet-1	double T7 promoters, RSF ori, Kan ^R	Novagen
pETDuet-1	double T7 promoters, pBR322 ori, Amp ^R	Novagen
pET28a (+)	T7 promoter, pBR322 ori, Kan ^R	Novagen
pET28a (+)- <i>Rr</i> 12α-HSDH	pET28a (+) carrying 12α-hsdh	laboratory stock
pET28a (+)- <i>Ec</i> 7α-HSDH	pET28a (+) carrying 7α -hsdh	laboratory stock
pET28a (+)- <i>Es</i> LeuDH	pET28a (+) carrying <i>leudh</i>	laboratory stock
pRSFDuet- <i>Rr</i> 12α-HSDH- <i>Es</i> LeuDH	pRSFDuet carrying 12α -hsdh and leudh	this study
pRSFDuet- <i>Rr</i> 12α-HSDH	pRSFDuet carrying 12α -hsdh	this study
pRSFDuet- <i>Rr</i> 12α-HSDH- <i>Ec</i> 7α-	pRSFDuet carrying 12α -hsdh and 7α -hsdh	this study
nsDH pRSFDuet- <i>Es</i> LeuDH- <i>Rr</i> 12α-HSDH	pRSFDuet carrying <i>leudh</i> and 12α-hsdh	this study
pRSFDuet- <i>Es</i> LeuDH	pRSFDuet carrying leudh	this study
pRSFDuet <i>-Es</i> LeuDH- <i>Ec</i> 7α-HSDH	pRSFDuet carrying <i>leudh</i> and 7α -hsdh	this study
pETDuet- <i>Ec</i> 7α-HSDH	pETDuet carrying 7α -hsdh	this study
pETDuet- <i>Ec</i> 7α-HSDH- <i>Es</i> LeuDH	pETDuet carrying 7α -hsdh and leudh	this study
pETDuet- <i>Rr</i> 12α-HSDH	pETDuet carrying 12α -hsdh	this study
pETDuet- <i>Rr</i> 12α-HSDH- <i>Ec</i> 7α-HSDH	pETDuet carrying 12α -hsdh and 7α -hsdh	this study
pETDuet- <i>Es</i> LeuDH	pETDuet carrying leudh	this study
Strain 1	<i>E. coli</i> BL21(DE3)/(pRSFDuet- <i>Rr</i> 12α-HSDH- <i>Es</i> LeuDH and	this study
Strain 2	perDuet-EC7α-HSDH-EsLeuDH) E. coli BL21(DE3)/(pRSFDuet-Rr12α-HSDH and pETDuet- Ec7α-HSDH-EsLeuDH)	this study

Table S2. Strains and plasmids used in this study.

Strain 3	<i>E. coli</i> BL21(DE3)/(pRSFDuet- <i>Es</i> LeuDH- <i>Rr</i> 12α-HSDH and	this study
	pETDuet- <i>Ec</i> 7α-HSDH- <i>Es</i> LeuDH)	
Strain 4	<i>E. coli</i> BL21(DE3)/(pRSFDuet- <i>Rr</i> 12α-HSDH- <i>Es</i> LeuDH and	this study
	pETDuet- <i>Ec</i> 7α-HSDH)	
Strain 5	<i>E. coli</i> BL21(DE3)/(pRSFDuet- <i>Es</i> LeuDH- <i>Rr</i> 12α-HSDH and	this study
	pETDuet- <i>Ec</i> 7α-HSDH)	
Strain 6	E. coli BL21(DE3)/(pRSFDuet-EsLeuDH and pETDuet-	this study
	Rr12α-HSDH-Ec7α-HSDH)	
Strain 7	E. coli BL21(DE3)/(pRSFDuet-EsLeuDH-Ec7α-HSDH and	this study
	pETDuet- <i>Rr</i> 12α-HSDH)	
Strain 8	<i>E. coli</i> BL21(DE3)/(pRSFDuet- <i>Rr</i> 12α-HSDH- <i>Ec</i> 7α-HSDH and	this study
	pETDuet- <i>Es</i> LeuDH)	

3. Supporting Figures

(A)

но

Figure S1. Synthesis of UDCA from CA by chemical (A) or chemo-enzymatic methods (B and C).

Figure S2. Currently available NAD(P)⁺-recycling systems for the biocatalytic oxidation of CA.

Figure S3. Reaction progress curves of the self-sufficient hydride-shuttling cascade via *in vitro* biocatalysis. Reaction conditions: 10 mL reaction mixture, containing 25 mM CA, 75 mM TMP, 0.1 mM NAD⁺, lyophilized cell-free extracts of *Rr*12 α -HSDH, *Ec*7 α -HSDH and *Es*LeuDH (5 U mL⁻¹ each), and NH₄Cl/NH₄OH buffer (1 M, pH 9.5), was incubated at 30°C and 200 rpm, the samples were withdrawn at regular intervals for HPLC analysis.

Figure S4. SDS-PAGE analysis of whole-cell proteins expressed in selected E. coli strains. Lane M: protein marker (kDa);

Lanes 1–4 represent strain 2, strain 4, strain 6 and strain 8, respectively.

Figure S5. A detailed synthetic roadmap of the smart self-sufficient hydride-shuttling cascade for concurrently biosynthesis of 7,12-dioxo-LCA and L-*tert*-leucine.

Figure S6. Calibration curves of CA (A), 12-oxo-CDCA (B), 7-oxo-DCA (C), 7,12-dioxo-LCA (D), L-tert-leucine (E), and NAD⁺

(F).

4. HPLC spectra

Standard 12-oxo-CDCA.

Standard 7-oxo-DCA.

Standard 7,12-dioxo-LCA.

The 7,12-dioxo-LCA prepared by enzymatic cascade reaction.

The L-*tert*-Leucine prepared by enzymatic cascade reaction.

5. ¹H NMR and ¹³C NMR spectra

5.1 NMR of product 7,12-dioxo-LCA prepared by enzymatic cascade reaction

5.2 NMR of product L-tert-Leucine prepared by enzymatic cascade reaction

6. References

(S1) S. C. Shi, Z. N. You, K. Zhou, Q. Chen, J. Pan, X. L. Qian, J. H. Xu and C. X. Li, *Adv. Synth. Catal.*, 2019, **361**, 4661–4668.

(S2) M. M. Zheng, K. C. Chen, R. F. Wang, H. Li, C. X. Li and J. H. Xu, *J. Agric. Food. Chem.*, 2017, **65**, 1178–1185.

(S3) J. Li, J. Pan, J. Zhang and J. H. Xu, J. Mol. Catal. B: Enzym., 2014, 105, 11–17.