Supporting information

Photothermal CO₂ hydrogenation to hydrocarbons over trimetallic

Co-Cu-Mn catalysts

Zhen-Hong He,^{a,*} Zhu-Hui Li,^a Zhong-Yu Wang,^a Kuan Wang,^a Yong-Chang Sun,^a Sen-Wang Wang,^b Weitao Wang,^a Yang Yang,^a Zhao-Tie Liu^{a,b,*}

^aShaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, 710021 Xi'an, China

^bSchool of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China

*Corresponding author: <u>hezhenhong@sust.edu.cn</u> (Zhen-Hong He), <u>ztliu@snnu.edu.cn</u> (Zhao-Tie Liu)

Experimental section

Materials

 $Co(NO_3)_2 \cdot 6H_2O$ (99%) was obtained from Aladdin, $Cu(NO_3)_2 \cdot 3H_2O$ (99%) was obtained from Adamas-Beta, and $Mn(NO_3)_2 \cdot 4H_2O$ (98%) was provided by Alfa Aesar, respectively. Na₂CO₃ (\geq 99.5%) was purchased from Macklin. CO₂ (99.999%) and H₂ (99.999%) were provided by Jining Xieli Special Gas Co., Ltd. All the other chemicals were obtained from commercial resources and used without purification.

Catalyst preparation

The trimetallic catalysts were prepared by a simple co-precipitation method followed by a partial reduction in H₂. Taking the Co₇Cu₁Mn₁O_x(200) catalyst as an example, the prepared procedures are as follows. Co(NO₃)₂·6H₂O (1.02 g, 3.5 mmol), Cu(NO₃)₂·3H₂O (0.12 g, 0.5 mmol), and Mn(NO₃)₂·4H₂O (0.126 g, 0.5 mmol) were dissolved in 20 mL of deionized water under continuous stirring for 1 h, and the obtained solution was dropped slowly (about 1 drop per second) into 100 mL of Na₂CO₃ solvent (0.5 M). Meanwhile, the precipitate was formed and the mixture was stirred for another 10 h at ambient temperature. After stirring for 10 h, the solid was centrifuged (7000 r/min, 5 min) and washed with deionized water until the pH of the filtrate became neutral. Following that, the solid was calcined in a muffle furnace in air at 500 °C (5 °C/min) and maintained at 500 °C for 3 h. The catalyst was further reduced at 200 °C for 2 h with a heating rate of 5 °C/min in a pure H₂ flow (40 mL/min). Upon completion of reduction, the catalyst was passivated at ambient temperature in the flow of 1% O₂/N₂ for 30 min. Finally, the solid catalyst was obtained and denoted as Co₇Cu₁Mn₁O_x(200), in which 200 means the reduction temperature. The other monometallic, bimetallic, and trimetallic catalysts with different molar ratios were prepared by the similar procedures but of different feed amounts and reduction temperatures.

Catalyst characterization

The obtained catalysts were characterized by inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) techniques, N₂ adsorption/desorption tests, X-ray diffraction (XRD), (high-resolution) transmission electron microscopy (HR)TEM, X-ray photoelectron spectroscopy (XPS), *etc.* X-ray diffraction (XRD) patterns were recorded on a Rigaku D/max 2500 with nickel filtered Cu K α (λ =0.154 nm) at 40 kV and 20 mA with a scanning rate of 10 °/min. The TEM images of the samples were obtained using Talos F200x transmission electron microscopy (Thermo Fisher). The N₂ adsorption/desorption tests were carried out on a Micromeritics ASAP 2460. Prior to the tests, the samples were degassed at 200 °C for 15 h under vacuum (lower than 0.1 mbar). The surface areas of samples were obtained from the Brunauer-Emmett-Teller (BET) model, and the pore sizes were analyzed by the Barrett-Joyner-Halenda (BJH) method based on the N₂ adsorption/desorption isotherms. The XPS measurements were carried out on a K-Alpha XPS spectrometer (Thermo Fisher Scientific) using Al K α as the excitation source (hv = 1486.6 eV) and operated at 15 kV and 20 mA.

H₂-TPR and CO₂-TPD tests were analyzed on an Autochem II 2920 instrument. In the H₂-TPR tests, the unreduced samples (20 mg) were preheated to 300 °C in Ar flow (30 mL/min) and maintained at this temperature for 1 h to remove the adsorbed impurities. After the temperature was cooled to 50 °C, the gas was switched to 10 vol% H₂/Ar (30 mL/min) and maintained for 60 min. Then the catalyst was heated to 700 °C with a heating rate of 10 °C/min, and the consumed H₂ was detected on a TCD detector. In the CO₂-TPD and H₂-TPD tests, the samples were also pretreated at 300 °C in He (30 mL/min) for 60 min, and then cooled to 50 °C. The gas was changed to 10 vol% CO₂/He for CO₂-TPD or 10 vol% H₂/He for H₂-TPD tests with a flow rate of 30 mL/min. After 60 min, the remaining CO₂ and H₂ was purged by He gas (30 mL/min) for 60 min, and then was heated to 700 °C at a rate of 10 °C/min, and the desorbed CO₂ and H₂ were detected by a TCD detector.

The light intensity was measured by a photoradiometer (PL-MW200, Perfect Light, Beijing, China).

Photoelectrochemical measurements

The photoelectrochemical properties of the samples including EIS Nyquist and Mott-Schottky spectra curves were conducted on a CS2350H electrochemical workstation (Corrtest Instrument Co., Wuhan, China). The three-electrode system contained a working electrode, a Pt foil as the counter electrode, and a standard calomel electrode as the referenced electrode. The working electrode comprised of a conductive glass (15.08 mm×15.08 mm) evenly coated with the catalyst slurry (5 mg of sample and 0.02 mL of Nafion and 0.8 mL of isopropanol), which was dried under vacuum prior to tests.

The photocurrent-time curves were tested at an open circuit test and irradiated by a 300 W Xe lamp in 0.5 mol/L KHCO₃ solution. In a typical test, the sample was uniformly covered on an FTO (15.08 mm×15.08 mm).

Photothermal CO₂ reduction

The photothermal CO₂ reduction was carried out in a fixed-bed quartz tube reactor with an internal diameter of about 5 cm and a length of 110 cm, which was equipped with a top-irradiation lamp (300 W, λ = 300-1100 nm, CEL-HXF300, Beijing China Education Au-light Co., Ltd). In the reaction tube, the top of the reaction zone was pressed to a flat plate, and the distance between the lamp with the flat plate is 21 cm (Fig. S1). In a type reaction, 50 mg of catalyst was spread uniformly on a rectangle quartz substrate (4.2 cm × 7.2 cm), which was flatly placed in the reactor tube. After the reactor tube was sealed, the air was evacuated by using a mechanical pump and then the mixed gas of CO₂/H₂/N₂ with the molar ratio of 10%/30%/60% was charged to atmosphere pressure. Prior to heating, the Xe lamp light was turned on to heating the catalyst level. Once the temperature maintained stable, the electric heater started to work to enhance the temperature to the set value. Upon the reaction completion, the hydrocarbons in effluent gas were analyzed by a GC (GC9790II, Zhejiang Fuli Analytical Instrument Co., Ltd) with FID and TCD detectors, and the produced CO was detected by a GC (GC9790II) with a methanator with an FID detector. The obtained products were identified by the standard chemicals.

To detect whether the liquids products were obtained, a flowing reaction was conducted for 9 h. The reaction conditions were the same as those of entry 8 in Table 1. The reaction gas passed through the catalyst with a flow rate of 30 ml/min, and was then collected by a condenser with a mixture of cold water and cyclohexane. After reaction, the water and cyclohexane were analyzed on GC to detect whether alcohols and C₅₊ hydrocarbons were produced.

The reusability study of Co₇Cu₁Mn₁O_x

The reusability study of the $Co_7Cu_1Mn_1O_x(200)$ catalyst was carried out as follows. Upon completion of each photothermal reaction, the reaction gas was analyzed by GC and was then removed under vacuum. After that, the fresh $CO_2/H_2/N_2$ reaction gas was introduced into the reaction, and the following procedures were similar to the above mentioned. For comparison, upon completion of each photothermal reaction, the photothermal conditions were changed to thermal conditions by turning off the light for the subsequent reactions.

Temporal stability study in continuous-flow reactor

The study for the temporal stability of the $Co_7Cu_1Mn_1O_x(200)$ catalyst was conducted in the same fixed-bed quartz tube reactor. The catalyst (50 mg) was flatly tiled on the quartz substrate, which was placed into the reactor tube. The gas mixture of CO_2 , H_2 , and N_2 was introduced to the reactor with a ratio of 10%/30%/60%, and the total gas flow rate was 20 mL/min. The effluent gas was analyzed by the GC mentioned above.

		Temp. (°C)	Reaction gases		Activity (mmol $g_{cat}^{-1} \cdot h^{-1}$)			
Entry	Catalysts			Light	СО	CH ₄	C ₂₊	Ref.
1	Ru/Mg-Al LDHs matrix	350	CO ₂ /H ₂ (5.0/20.5 mL/min)	300 W Xe lamp		277 (in a flow-type		[1]
	(Ru@FL-LDHs)					reaction system)		
2	RuO ₂ /SrTiO ₃	150	CO ₂ /H ₂ (0.25 bar/1.05 bar)	300 W Xe lamp		14.6		[2]
3	RuO ₂ /3D silicon photonic	Ambient	CO ₂ /H ₂			4.4		[3]
	crystals	temperature	(1/4)					
4	Ru/TiO ₂	300	CO ₂ /H ₂ (1/3) 10 mL/min	1.5 G sunlight		69.49		[4]
		150				1.72		
5	Ru/silicon nanowire	150	CO ₂ /H ₂ (1/4, 45 psi)			about 1.0	0	[5]
6	Ru/Al ₂ O ₃	370	CO ₂ /H ₂ (CO ₂ , 2-2.05 mmol; H ₂		0.14	18.0		[6]
			8.2-8.5 mmol)					
7	Pd@Nb2O5 (large Pd)			300 W Xe lamp	$0.75 \ (mol \cdot g_{Pd}^{-1} \cdot h^{-1})$	$0.11 \ (mol \cdot g_{Pd}^{-1} \cdot h^{-1})$		[7]
8	Pd@Nb2O5 (small Pd)			300 W Xe lamp	18.8			[7]
					$(mol \cdot g_{Pd}^{-1} \cdot h^{-1})$			
9	Ni/SiO ₂ .Al ₂ O ₃	<150	CO ₂ /H ₂ /N ₂ (15/70/15)	solar simulator	1.4	48.6	0	[8]
11	Cu ₂ O/Graphene	250	CO ₂ /H ₂ (0.25 bar/1.05 bar) 1.3 bar	300 W Xe lamp	-	14.93	-	[9]
						$mmol \cdot g_{Cu2O}^{-1} \cdot h^{-1}$		
12	Cu ₂ O/Zn-MOFs	215	CO ₂ /H ₂ (0.25 bar/ 1.05 bar)	Xe lamp (300 W)		0.01		[10]
13	1.0%NiO-3%In ₂ O ₃ -TiO ₂	Ambient	CO ₂ /H ₂ /Ar (15/60/25 mL/min)	300 W Xe lamp	0.243	0.208		[11]
		temperature						
14	CoFeAl-LDH nanosheets	about 300	CO ₂ /H ₂ /Ar (15/60/25) 0.18 MPa	300 W Xe light	5% (Sel.)	60% (Sel.)	35% (Sel.)	[12]
15	Ni-Al ₂ O ₃ /SiO ₂	225	CO ₂ /H ₂ (4.41/17.82 ml/min)	UV-Vis 300 W Xe lamp		about 55 uL/min		[13]
						(initial 4 h)		
16	$Co_7Cu_1Mn_1O_x(200)$	200	CO ₂ /H ₂ /N ₂ (10%/30%/60%)	UV-Vis 300 W Xe lamp	1.1 (6.5%)	14.5 (85.3)	1.4 (8.2%)	This work
17	$Co_7Cu_1Mn_1O_x(200)$	200	CO ₂ /H ₂ (25%/75%)	UV-Vis 300 W Xe lamp	0.9 (3.7%)	15.9 (65.4%)	7.5	This work
							(30.9%)	

Table S1. Photothemal CO₂ reduction over different developed catalysts.

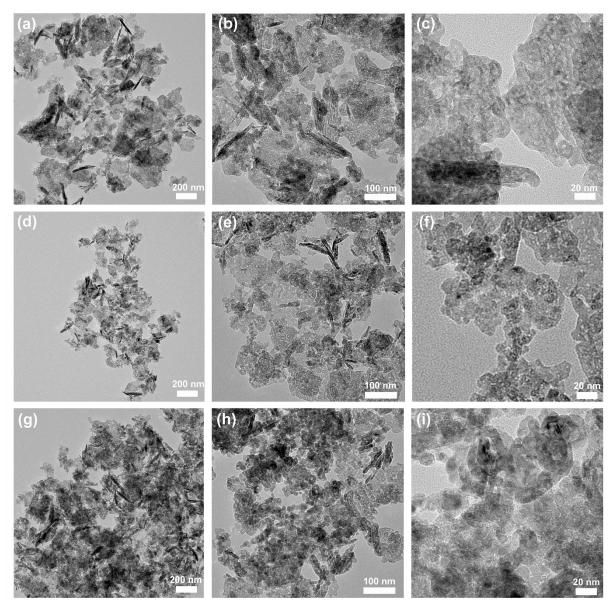


Fig. S1 TEM images of (a-c) $Co_3Cu_1Mn_1O_x(200)$, (d-f) $Co_5Cu_1Mn_1O_x(200)$, and (g-i) $Co_9Cu_1Mn_1O_x(200)$.

<u>32. ICF-OES results of different officiality and ternary catalysis.</u>								
Entry Catalysts		Theoretical value ^a	ICP-OES tested					
1	Co7Mn1Ox	Co7Mn1Ox	Co _{6.8} Mn ₁ O _x					
2	Co7Cu1Ox	Co7Cu1Ox	Co6.91Cu1Ox					
4	$Co_3Cu_1Mn_1O_x$	$Co_3Cu_1Mn_1O_x$	$Co_{2.71}Cu_{0.91}Mn_1O_x$					
5	$Co_5Cu_1Mn_1O_x$	$Co_5Cu_1Mn_1O_x$	$Co_{5.13}Cu_{0.93}Mn_1O_x$					
6	Co7Cu1Mn1Ox	Co7Cu1Mn1Ox	$Co_{6.87}Cu_{0.92}Mn_1O_x$					
7	$Co_1Cu_3Mn_1O_x$	Co1Cu3Mn1Ox	C00.93Cu3.12Mn1Ox					

Table S2. ICP-OES results of different bimetallic and ternary catalysts.

^{*a*} Calculated from the feed amount of precursor salts.

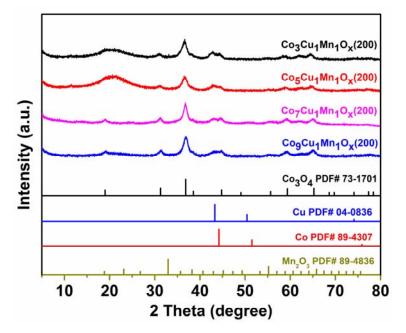


Fig. S2 XRD of the Co-Cu-Mn trimetallic catalysts with different metal molar ratios.

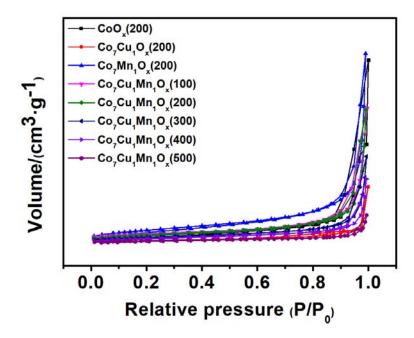


Fig. S3 $N_{\rm 2}$ adsorption/desorption isotherms for diverse catalysts.

		BET surface	Pore diameter	Pore volume	
Entry	Catalyst	DET surface	Pore diameter	Pore volume	
5		area (m ² /g)	(nm)	(cm^3/g)	
1	CoO _x (200)	64	16.6	0.34	
2	$Co_7Cu_1O_x(200)$	23	15.6	0.16	
3	Co7Mn1Ox(200)	107	22.5	0.65	
4	$Co_7Cu_1Mn_1O_x(100)$	72	22.9	0.44	
5	$Co_7Cu_1Mn_1O_x(200)$	66	25.7	0.46	
6	$Co_7Cu_1Mn_1O_x(300)$	49	23.6	0.30	
7	$Co_7Cu_1Mn_1O_x(400)$	39	20.0	0.22	
8	Co7Cu1Mn1Ox(500)	21	9.8	0.09	

Table S3. The analysis results of N2 adsorption/desorption isotherms for catalysts.

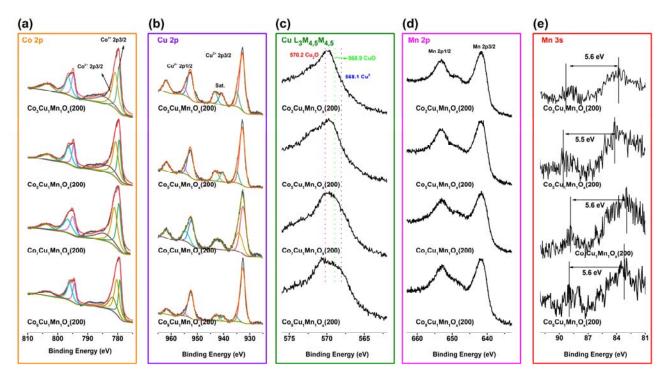


Fig. S4 XPS of the Co-Cu-Mn trimetallic catalysts with different metal molar ratios .

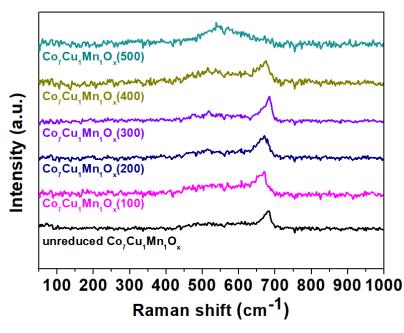


Fig. S5 Raman spectra of different catalysts.

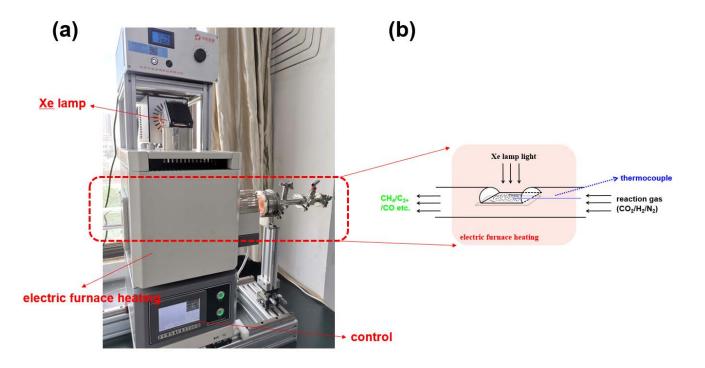


Fig. S6 (a) Digital image of equipment for the photothermal CO₂ hydrogenation, and (b) the reaction zone.

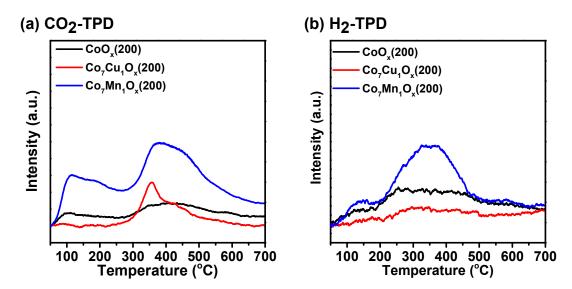


Fig. S7 CO₂-TPD and H₂-TPD results for CoO_x(200), Co₇Mn₁O_x(200), and Co₇Cu₁O_x(200).

Entry	Catalyst	CO ₂ conv. (%)	Activit	CH4 Sele. (%)		
			CH4	C ₂₊	СО	_
1	Co7Mn1Ox	3.6	0.1±0.1	0.0	2.1±0.1	4.5
2	$Co_7Mn_1O_x(100)$	0.8	0.1±0.1	0.0	$0.4{\pm}0.1$	20.0
3	Co7Mn1Ox(200)	0.8	0.2±0.1	0.0	0.3±0.1	40.0
4	Co7Mn1Ox(300)	11.8	5.4±0.2	0.8±0.1	1.1 ± 0.1	74.0
5	Co7Mn1Ox(400)	16.0	8.1±0.2	0.8±0.1	$1.0{\pm}0.1$	81.8
6	Co7Mn1Ox(500)	11.8	5.9±0.1	0.6±0.1	0.8±0.1	80.8
7	$Co_7Cu_1O_x$	25.3	9.6±0.2	4.3±0.1	1.8±0.1	61.1
8	Co7Cu1Ox(100)	17.9	7.1±0.2	3.0±0.1	$1.0{\pm}0.1$	64.0
9	$Co_7Cu_1O_x(200)$	14.0	5.9±0.2	2.4±0.1	$0.4{\pm}0.1$	67.8
10	Co7Cu1Ox(300)	19.4	7.6±0.1	3.1±0.1	1.3±0.1	63.3
11	Co7Cu1Ox(400)	18.2	6.7±0.3	3.4±0.1	1.2±0.1	59.3
12	$Co_7Cu_1O_x(500)$	5.3	1.5±0.2	0.0±0.1	1.8±0.1	45.5

Table S4. Catalytic performances of Co-Cu and Co-Mn bimetallic catalysts.

 aReaction conditions: catalyst 50 mg, CO_2/H_2/N_2 10%/30%/60%, full irradiation, 200 °C, 3 h.

¹³CO₂ isotope labeling experiment

To detect the methane was obtained from the photothermal CO₂ reduction reaction, the ¹³CO₂ isotope labeling experiment was carried out under the conditions of entry 8 in Table 1, but added 20 ml of ¹³CO₂ gas into the reaction tube. Upon completion of reaction, the reaction gas was analyzed by a mass spectroscopy (HPR20, Hiden Analytical), and the result is given in Fig. S8.

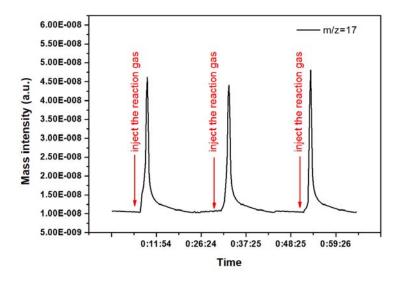


Fig. S8 The signal variation of ${}^{13}CH_4$ (m/z=17) after injecting the reaction gas obtained from ${}^{13}CO_2$ isotope labeling experiment.

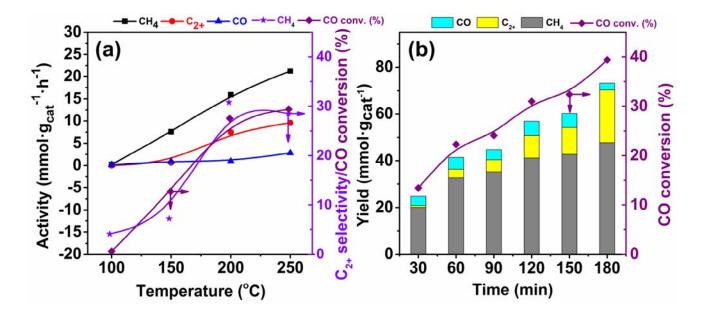


Fig. S9 Effects of reaction temperature (a) and reaction time (b) on the catalytic performances on photothermal CO₂ reduction to C₂₊ hydrocarbons over the Co₇Cu₁Mn₁O_x(200) catalyst. Reaction conditions: (a) catalyst 50 mg, 300 W Xe lamp full irradiation, CO₂/H₂ 25%/75%, 3 h, and (b) catalyst 50 mg, 300 W Xe lamp full irradiation, CO₂/H₂ 25%/75%, 200 °C.

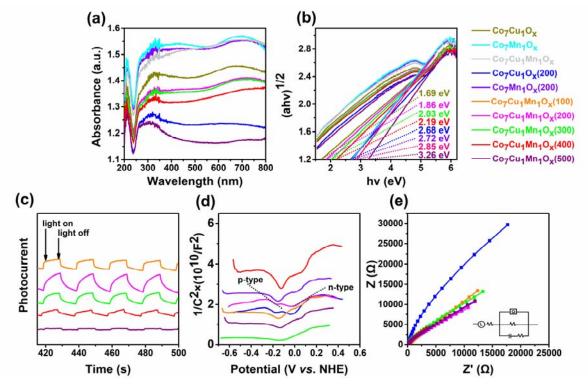


Fig. S10 (a) UV-vis diffuse reflectance spectra for diverse catalysts, (b) corresponding plots for the determination of band gap energy(eV) values. Photo-electrochemical characterizations of (c) photocurrent-time curves, (d) Mott-Schottky curves, and (e) EIS Nyquist plots for various catalysts.

Entry	Light sources	Light powder	CO2 Con. (%)	Activity (mmol·g _{cat} ⁻¹ ·h ⁻¹)			CH4
		(mW/cm ²)		CH4	C_{2^+}	СО	- Sele. (%)
1	Full irradiation	234	27.4	14.5	1.4	1.1	85.3
1	(300-1100 nm)	234				1.1	
2	Visible light	72	24.9	13.1	1.3	1.0	85.1
2	(>420 nm)	12	24.9		1.5	1.0	05.1
3	UV light	171	26.1	13.8	3.8 1.8	0.6	85.2
3	(300-420 nm)	1/1				0.0	03.2

Table S5. Effect of excitation wavelength on photothermal CO_2 hydrogenation over the $Co_7Cu_1Mn_1O_x(200)$ catalyst.^{*a*}

^aReaction conditions: catalyst 50 mg, CO₂/H₂/N₂ 10%/30%/60%, 200 °C, 3 h.

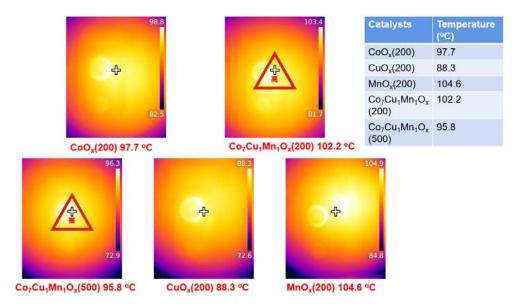


Fig. S11 The photothermal effect over different samples under vacuum using an infrared thermal camera.

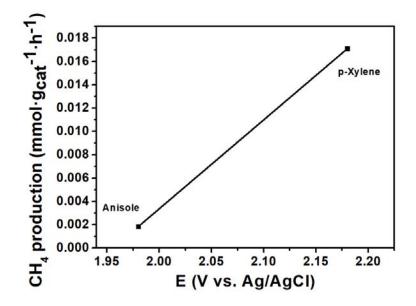


Fig. S12 Results of control experiments by adding anisole and *p*-xylene as sacrificial electron donors.

Enter	Departies and	CO ₂	Activity (mmol \cdot g _{cat} ⁻¹ ·h ⁻¹)			Selectivity (%)		
Entry	Reaction gas	Con. (%)	CH ₄	C_{2^+}	СО	CH4	C_{2^+}	
1^b	10%CO ₂ /30%H ₂ /60%N ₂	27.4	14.5	1.4	1.1	85.3	8.2	
2	10%CO/30%H2/60%N2	19.7	4.9	7.3	-	40.2	59.8	
3 ^c	2%CO /8%CO ₂ /30%H ₂ /60%N ₂	16.1	7.2	2.8	-	72.0	28.0	

Table S6. Control experiments of using different reaction gases.^a

^{*a*}Other reaction conditions are similar to those of Table 1, entry 8. ^{*b*}Copied from entry 8 in Table 1. ^{*c*}The selectivity did not contain the CO generated from CO₂.

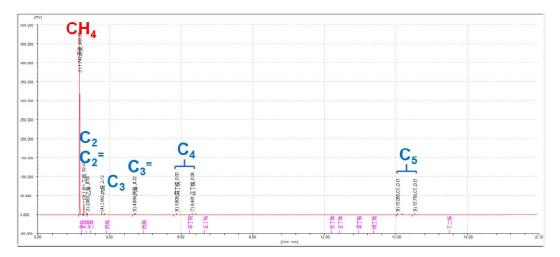


Fig. S13 GC spectrum of CH₄ and C_{2+} hydrocarbons obtained from the conditions of entry 8 in Table 1.

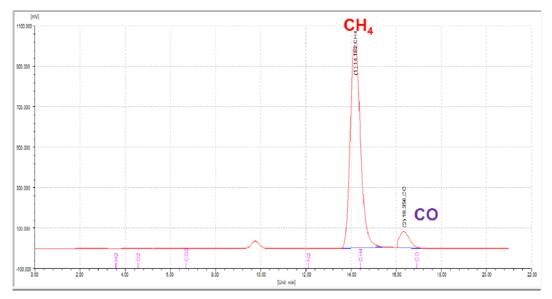


Fig. S14 GC spectrum of CO obtained from the conditions of entry 8 in Table 1.

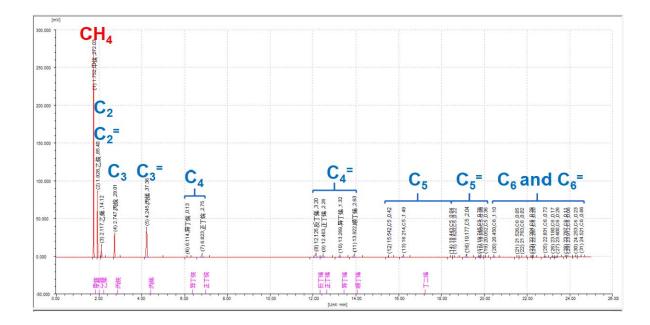


Fig. S15 GC spectrum of hydrocarbons obtained from the conditions of entry 2 in Table S6.

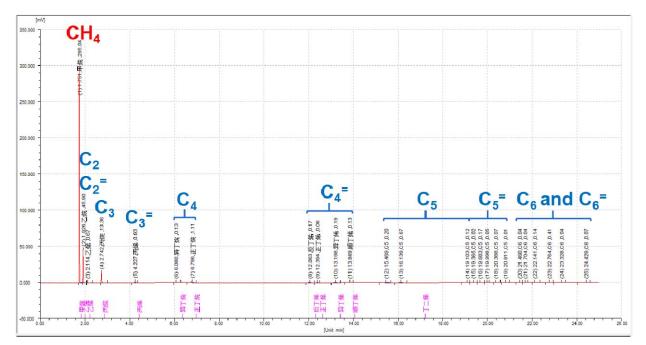


Fig. S16 GC spectrum of hydrocarbons obtained from the conditions of entry 3 in Table S6.

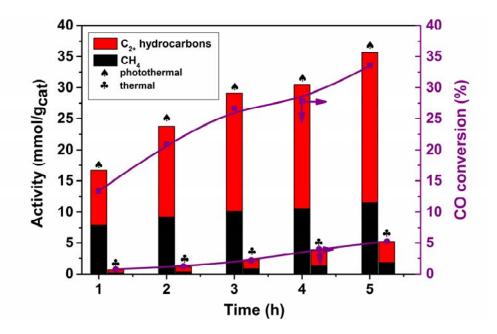


Fig. S17 Photothermal and thermal F-T synthesis over the $Co_7Cu_1Mn_1O_x(200)$ catalyst. Reaction conditions: catalyst 50 mg, 200 °C, CO/H₂/N₂ 10%/30%/60%, 300 W Xe lamp full irradiation.

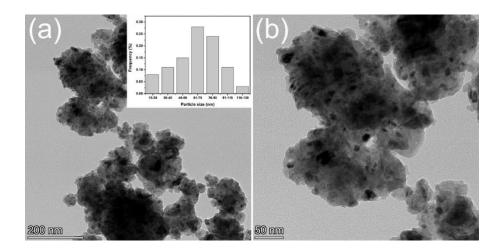


Fig. S18 The TEM image of the catalyst after 18 uses.

References

- [1] J. Ren, S. Ouyang, H. Xu, X. Meng, T. Wang, D. Wang, J. Ye, Adv. Energy Mater., 2016, 1601657.
- [2] D. Mateo, J. Albero, H. García, *Joule*, 2019, 3, 1-14.
- [3] A.A. Jelle, K.K. Ghuman, P.G. O'Brien, M. Hmadeh, A. Sandhel, D.D. Perovic, C.V. Singh, C.A. Mims, G.A. Ozin, Adv. Energy Mater., 2018, 8, 1702277.
- [4] C. Wang, S. Fang, S. Xie, Y. Zheng, Y.H. Hu, J. Mater. Chem. A, 2020, 8, 7990-7394.
- [5] P.G. O'Brien, A. Sandhel, T.E. Wood, A.A. Jelle, L.B. Hoch, D.D. Perovic, C.A. Mims, G.A. Ozin, Adv. Sci., 2014, 1, 1400001.
- [6] X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, Angew. Chem. Int. Ed., 2014, 53, 11478–11482
- [7] J. Jia, H. Wang, Z. Lu, P.G. O'Brien, M. Ghoussoub, P. Duchesne, Z. Zheng, P. Li, Q. Qiao, L. Wang, A. Gu, A.A. Jelle, Y. Dong, Q. Wang, K.K. Ghuman, T. Wood, C. Qian, Y. Shao, C. Qiu, M. Ye, Y. Zhu, Z.-H. Lu, P. Zhang, A.S. Helmy, C.V. Singh, N.P. Kherani, D.D. Perovic, G.A. Ozin, *Adv. Sci.*, 2017, 1700252.
- [8] F. Sastre, A.V. Puga, L. Liu, A. Corma, H. García, J. Am. Chem. Soc., 2014, 136, 6798–6801.
- [9] D. Mateo, J. Albero, H. García, *Energy Enviorn. Sci.*, 2017, 10, 2392–2400.
- [10] M. Cabrero-Antonino, S. Remiro-Buenamañana, M. Souto, A.A. García-Valdivia, D. Choquesillo-Lazarte, S. Navalón, A. Rodríguez-Diéguez, G.M. Espallargas, H. García, *Chem. Commun.*, 2019, 55, 10932–10935.
- [11] M. Tahir, B. Tahir, N.A.S. Amin, A. Muhammad, *Energy Convers. Manag.*, 2016, 119, 368–378.
- [12] G. Chen, R. Gao, Y. Zhao, Z. Li, G.I.N. Waterhouse, R. Shi, J. Zhao, M. Zhang, L. Shang, G. Sheng, X. Zhang, X. Wen, L.-Z. Wu, C.-H. Tung, T. Zhang, *Adv. Mater.*, 2017, 1734663.
- [13] J. Albero, E. Dominguez, A. Corma, H. García, *Sustain. Energ. Fuels*, 2017, 1, 1303–1307.