Supplementary Information

Indium(III)-catalyzed solvent-free multicomponent [2+2+1+1]-annulation to polycyclic functionalized fused pyridines as potential optical chemosensors

Sana Jamshaid^a, Sonaimuthu Mohandoss^a, and Yong Rok Lee^{a*} ^aSchool of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea *yrlee@yu.ac.kr; Fax: +82-53-810-4631; Tel: +82-53-810-2529

TABLE OF CONTENTS

General remarks	S3
General procedure for the synthesis of 5a-k, 7a-l, 9a-e, 10a-k	S 3
Gram scale synthesis of 5a	S4
Gram scale synthesis of 10a	S4
Control Experiments	S4
a. Procedure for the synthesis of Intermediate 11	S4
b. Procedure for the synthesis of 5a via intermediate 11	S 5
c. Procedure for the synthesis of compound 12	S 5
Characterization data of synthesized compounds	S6
¹ H NMR and ¹³ C NMR spectra of synthesized compounds	S19
Preparation of samples for optical studies	S60
Procedure for Metal sensing measurements	S60
Method of crystal growth for compounds 5d, 7k and 10j and instrumentation	S62
X-ray data of compound 5d, 7k and 10j	S63

General remarks

All experiments were carried out in open-air unless stated otherwise. Merck precoated silica gel plates (Art. 5554) treated with a fluorescent indicator were used for analytical thin-layer chromatography (TLC). Column chromatography was performed using silica gel 9385 (Merck). Melting points are uncorrected and were determined using Fisher-Johns Melting Point Apparatus. ¹H NMR and ¹³C NMR spectra were recorded on VNS (600 and 150 MHz or 300 and 75 MHz) spectrometers at the core research support center for natural products and medical materials of Yeungnam University. The NMR spectra recorded in CDCl₃ using $\delta = 7.24$ and 77.00 ppm as the residual solvent chemical shifts. All chemical shifts (δ) are expressed in units of ppm and J values are given in Hz. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet or overlap of nonequivalent resonances, and dd = doublet of doublets. Infrared (IR) spectra were recorded on a PerkinElmer Spectrum TwoTM IR spectrometer with frequencies expressed in cm⁻¹, and high-resolution mass spectrometry (HRMS) was carried out using a JEOL JMS-700 spectrometer (Magnetic sector-Electric sector double focusing mass analyzer) at the Korea Basic Science Institute. The compound 10a-k, 11, and 12 was analyzed for HRMS using Thermo Fisher Q exactive orbitrap mass spectrometer. The crystal structures were determined by single-crystal diffraction methods at the Korea Basic Science Institute (KBSI, Western Seoul Center, Korea).

For UV absorption studies an OPTIZEN 3220UV UV-Visible spectrophotometer was used, and for fluorescence measurements, a Hitachi-7000 F fluorescence spectrometer with Quartz cells (10 mm) was used to acquiring the absorption and emission spectral data. All the fluorescence (Hitachi-7000 F) measurements were carried out after 5 min of incubation at room temperature at 260 nm (excitation wavelength) with 5 nm of slit width, 250 V of photomultiplier tube voltage, and a scan speed of 240 nm/min. The absorption spectra of samples in solution were obtained in the range of 220-500 nm at 1 nm interval in triplicates. All solutions were prepared using spectroscopic grade solvents without further purification.

General procedure for the synthesis of 5a-k, 7a-l, 9a-e, and 10a-k

In an oven-dried schlenk flask, all the staring material in calculated amount including α -tetralone **1a** (0.5mmol), *N*,*N*-dimethylformamide dimethyl acetal **2** (1 mmol, 2 eq), dimedone **3a** (0.5mmol,

leq), and NH₄OAc **4** (1.5 mmol, 3 eq) with 5 mol% of $In(OTf)_3$ was stirred and heated on an oil bath at 100 °C temperature. Whereas, for dimerization starting Indanones or tetralones were used as 2 mmol (2 eq) in the absence of 1,3-cyhexanediones with *N*,*N*-dimethylformamide dimethyl acetal **2** (1 mmol, 2 eq), and NH₄OAc (1.5 mmol, 3 eq) and 5 mol% of $In(OTf)_3$ and heated at 100 °C temperature. The reaction progress was monitored *via* TLC continuously. After 4 h the reaction was completed as no starting materials remained as shown in TLC analysis. The reaction was cooled to RT and directly run into column chromatography to get the pure product in eluent of EtOAc: Hex (1:9).

Gram scale synthesis of 5a

In an oven-dried schlenk flask, all the staring material in calculated amount including α -tetralone (1a) (1.02g, 7 mmol), *N*,*N*-dimethylformamide dimethyl acetal (2) (1.86 mL, 2 eq), dimedone (3a) (0.98g, 7 mmol, 1 eq), and NH₄OAc (4) (1.6g, 3 eq) with 5 mol% of In(OTf)₃ were stirred and heated on an oil bath at 100 °C temperature. The reaction progress was monitored *via* TLC continuously. After 4 h the reaction was completed as no starting materials remained as shown in TLC analysis. The reaction was cooled to RT and directly run into column chromatography to get the pure product 5a in eluent of EtOAc: Hex (1:9) in 89% (1.7 g) yield.

Gram scale synthesis of 10a

In an oven-dried schlenk flask, all the staring material in calculated amount including α -tetralone (1a) (1.2 g, 8 mmol), *N*,*N*-dimethylformamide dimethyl acetal (2) (2.12 mL, 2 eq) with NH₄OAc (4) (1.8 g, 3 eq) and 5 mol% of In(OTf)₃ were stirred and heated on an oil bath at 100 °C temperature. The reaction progress was monitored *via* TLC continuously. After 4 h the reaction was completed as no starting materials remained as shown in TLC analysis. The reaction was cooled to RT and directly run into column chromatography to get the pure product 10a in eluent of EtOAc: Hex (1:9) with 78% (1.76 g) yield.

Control Experiments

a. **Procedure for the synthesis of Intermediate 11**

In an oven-dried schlenk flask, α -tetralone (1a) (73 mg, 0.5 mmol), *N*,*N*-dimethylformamide dimethyl acetal (2) (0.13 mL, 2 eq) and 5 mol % of In(OTf)₃ are placed together and heated on an

oil bath at 100 °C temperature. The reaction progress was monitored *via* TLC continuously. After 6 h the reaction was completed as maximum starting materials were finished as shown in TLC analysis. The reaction was cooled to RT and directly run into column chromatography to get the pure product **11** in eluent of EtOAc: Hex (4:6).

b. **Procedure for the synthesis of 5a** *via* intermediate 11

In an oven-dried schlenk flask, intermediate **11** (50 mg, 0.25 mmol), dimedone (**3a**) (35 mg, 1 eq), and NH₄OAc (**4**) (58 mg, 3 eq) with 5 mol% of $In(OTf)_3$ was refluxed in toluene (2 mL) on an oil bath. The reaction progress was monitored *via* TLC continuously. After 12 h the reaction was completed as no starting materials remained as shown in TLC analysis. The reaction was cooled to RT and directly run into column chromatography to get the pure product **5a** in eluent of EtOAc: Hex (1:9) in 64% (44 mg) yield.

c. Procedure for the synthesis of compound 12

In an oven-dried schlenk flask, intermediate **11** (50 mg, 0.25 mmol), dimedone (**3a**) (35 mg, 1 eq), and 5 mol% of $In(OTf)_3$ were stirred and heated in DMF (2 mL) on an oil bath at 100 °C temperature. The reaction progress was monitored *via* TLC continuously. After 16 h reaction was completed as no starting materials remained as shown in TLC analysis. The reaction was cooled to RT and directly run into column chromatography to get the pure product **12** in eluent of EtOAc: Hex (2:8).

Characterization data of synthesized compounds

10,10-Dimethyl-6,9,10,11-tetrahydrobenzo[c]acridin-8(5H)-one (5a)

Pale yellow solid; EtOAc:Hex (1:9); Yield: 94% (130 mg); mp 180-182 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, *J* = 7.2 Hz, 1H), 8.02 (s, 1H), 7.36-7.29 (m, 2H), 7.20 (d, *J* = 6.6 Hz, 1H), 3.04 (s, 2H), 2.93-2.89 (m, 4H), 2.50 (s, 2H), 1.10 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 198.0, 160.4, 156.2, 139.0, 133.6, 133.4, 130.1, 130.1, 127.8, 127.1, 125.9, 125.5, 52.0, 46.2, 32.9, 28.2, 27.7, 27.4; IR (ATR) 2953, 2867, 1676, 1589, 1452, 1417, 1326, 1313, 1280, 1119, 944, 764, 742, 669, 579, 485, 454 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₉H₁₉NO: 277.1467. Found: 277.1467.

2,4,10,10-Tetramethyl-6,9,10,11-tetrahydrobenzo[*c*]acridin-8(5*H*)-one (5b)

Pale solid; EtOAc:Hex (1:9); Yield: 94% (143 mg); mp 190-192 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (s, 1H), 7.90 (s, 1H), 6.69 (s, 1H), 3.98 (s, 3H), 3.90 (s, 3H), 3.03 (s, 2H), 2.91-2.88 (m, 2H), 2.85-2.82 (m, 2H), 2.49 (s, 2H), 1.09 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 198.0, 160.5, 156.3, 150.8, 148.2, 133.1, 132.8, 129.2, 126.3, 124.8, 110.5, 108.5,

56.0, 55.8, 52.0, 46.3, 32.9, 28.2, 27.6, 27.5; IR (ATR) 2943, 2889, 1672, 1584, 1557, 1417, 1408, 1317, 1278, 1172, 1095, 938, 868, 780, 697, 583cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₂₁H₂₃NO: 305.1780. Found: 305.1783.

4-Methoxy-10,10-dimethyl-6,9,10,11-tetrahydrobenzo[c]acridin-8(5H)-one (5c)

Pale yellow solid; EtOAc:Hex (1:9); Yield: 93% (143 mg); mp 138-140 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 11.4 Hz, 2H), 7.28 (t, J = 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 3.82 (s, 3H), 3.01 (s, 2H), 2.90-2.86 (m 4H), 2.49 (s, 2H), 1.08 (s, 6H); ¹³C NMR (150

MHz, CDCl₃) δ 197.9, 160.2, 156.2, 156.1, 134.7, 133.3, 130.0, 127.6, 127.1, 125.4, 118.2, 111.8, 55.4, 51.9, 46.2, 32.8, 28.2, 26.8, 19.7; IR (ATR) 2932, 2838, 1682, 1580, 1552, 1418, 1313, 1253, 1055, 802, 759, 725, 565 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₂₀H₂₁NO₂: 307.1572. Found: 307.1570.

3-Methoxy-10,10-dimethyl-6,9,10,11-tetrahydrobenzo[c]acridin-8(5H)-one (5d)

Pale yellow solid; EtOAc:Hex (1:9); Yield: 95% (146 mg); mp 168-170 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (d, J = 9.0 Hz, 1H), 7.94 (s, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.70 (s, 1H), 3.80 (s, 3H), 2.98 (s, 2H), 2.92-2.81 (m, 4H), 2.47 (s, 2H), 1.07 (s, 6H); ¹³C NMR (150

MHz, CDCl₃) δ 197.9, 161.4, 160.4, 156.3, 141.2, 133.5, 129.3, 128.0, 124.9, 113.1, 112.8, 55.3, 52.0, 46.1, 28.2, 28.2, 27.5; IR (ATR) 2927, 1668, 1584, 1415, 1332, 1263, 1151, 1115, 1035, 862, 772, 648, 491 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₂₀H₂₁NO₃: 307.1572. Found: 307.1574.

2,3-Dimethoxy-10,10-dimethyl-6,9,10,11-tetrahydrobenzo[*c*]acridin-8(5*H*)-one (5e)

Pale yellow solid; EtOAc:Hex (2:8); Yield: 90% (152 mg); mp 180-180 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 1H), 8.02 (s, 1H), 7.05 (s, 1H), 3.05 (s, 2H), 2.91-2.89 (m, 2H), 2.82-2.80 (m, 2H), 2.51 (s, 2H), 2.36 (s, 3H), 2.29 (s, 3H), 1.11 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1, 160.3, 156.8, 136.0, 135.0, 134.7, 133.4,

133.2, 133.0, 129.9, 125.3, 124.3, 52.0, 46.3, 32.9, 28.2, 27.2, 23.4, 21.0, 19.5; IR (ATR) 2924, 2853, 1739, 1670, 1582, 1509, 1449, 1336, 1256, 1218, 1189, 1124, 1010, 980 cm⁻¹; HRMS m/z [M⁺] calcd for C₂₁H₂₃NO₃: 337.1678. Found: 337.1680.

2-Bromo-10,10-dimethyl-6,9,10,11-tetrahydrobenzo[c]acridin-8(5H)-one (5f)

Pale yellow solid; EtOAc:Hex (2:8); Yield: 88% (156 mg); mp 168-170 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.47 (s, 1H), 8.02 (s, 1H), 7.41 (d, *J* = 6.6 Hz, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 3.03 (s, 2H), 2.93-2.90 (m, 2H), 2.87-2.84 (m, 2H), 2.51 (s, 2H), 1.10 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 197.9, 160.6, 154.8, 137.7, 135.5, 133.7, 132.7, 130.1, 129.5, 128.8, 125.9,

121.1, 52.0, 46.2, 32.9, 28.2, 27.3, 27.1; IR (ATR) 2949, 2930, 1677, 1585, 1574, 1479, 1427, 1306, 1259, 1200, 1135, 1077, 819, 732, 688, 580 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₉H₁₈BrNO: 355.0572. Found: 355.0573.

6,9,10,11-Tetrahydrobenzo[c]acridin-8(5H)-one (5g)

Brown solid; EtOAc:Hex (1:9); Yield: 76% (95 mg); mp 200-202 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 7.2 Hz, 1H), 8.04 (s, 1H), 7.35-7.31 (m, 2H), 7.22 (d, J = 6.6 Hz, 1H), 3.15 (t, J = 6.0 Hz, 2H), 2.95-2.89 (m, 4H), 2.67 (t, J = 6.0 Hz, 2H), 2.18 (p, J = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃)

δ 198.0, 161.9, 155.9, 139.1, 133.9, 133.7, 130.3, 130.2, 127.9, 127.2, 126.5, 126.0, 38.5, 32.5, 27.8, 27.5, 22.0; IR (ATR) 2938, 2851, 1670, 1585, 1459, 1416, 1282, 1101, 1030, 927, 755, 735, 655, 577, 446 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₇H₁₅NO: 249.1154. Found: 249.1152.

10-Methyl-6,9,10,11-tetrahydrobenzo[c]acridin-8(5H)-one (5h)

Brown solid; EtOAc:Hex (2:8); Yield: 81% (106 mg); mp 143-145 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, J = 7.2 Hz, 1H), 8.05 (s, 1H), 7.37-7.32 (m, 2H), 7.23 (d, J = 6.6 Hz, 1H), 3.27 (d, J = 15.6 Hz, 1H), 2.98-2.90 (m, 4H), 2.84 (dd, J = 9.6, 6.6 Hz, 1H), 2.74 (d, J = 13.2 Hz, 1H), 2.42-

2.31 (m, 2H), 1.18 (d, J = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.0, 161.3, 156.1, 139.2, 133.9, 130.3, 127.9, 127.2, 126.0, 46.6, 40.8, 29.4, 27.9, 27.5, 21.2; IR (ATR) 2922, 2949, 1674, 1583, 1412, 1310, 1277, 1202, 1030, 930, 745, 578 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₈H₁₇NO: 263.1310. Found: 263.1312.

10-Phenyl-6,9,10,11-tetrahydrobenzo[c]acridin-8(5H)-one (5i)

Brown solid; EtOAc:Hex (2:8); Yield: 84% (137 mg); mp 168-170 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, J = 6.6 Hz, 1H), 8.09 (s, 1H), 7.38-7.33 (m, 4H), 7.31 (d, J = 7.8 Hz, 2H), 7.27 (t, J = 7.2 Hz, 1H), 7.23 (d, J = 6.0 Hz, 1H), 3.50 (t, J = 13.2 Hz, 2H), 3.37-3.30 (m, 1H),

3.01-2.92 (m, 5H), 2.89-2.82 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.2, 160.9, 156.4, 142.9, 139.2, 133.9, 133.6, 130.5, 130.3, 128.7, 127.9, 127.2, 126.9, 126.6, 126.0, 125.9, 45.5, 40.2, 39.8, 27.8, 27.5; IR (ATR) 2923, 2852, 1676, 1589, 1456, 1415, 1311, 1275, 1017, 747, 696, 563, 499 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₂₃H₁₉NO: 325.1467. Found: 325.1465.

10-(Furan-2-yl)-6,9,10,11-tetrahydrobenzo[c]acridin-8(5H)-one (5j)

Brown solid; EtOAc:Hex (2:8); Yield: 86% (135 mg); mp 198-200 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, J = 6.6 Hz, 1H), 8.06 (s, 1H), 7.39-7.30 (m, 3H), 7.23 (d, J = 6.0 Hz, 1H), 6.28 (dd, J = 3.0, 1.8 Hz, 1H), 6.08 (d, J = 3.0 Hz, 1H), 3.66-3.61 (m, 1H), 3.56 (dd, J = 16.8,

4.2 Hz, 1H), 3.38 (dd, J = 16.8, 9.6 Hz, 1H), 3.05 (dd, J = 16.8, 4.0 Hz, 1H), 2.97-2.91 (m, 4H), 2.86 (dd, J = 16.8, 10.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.4, 160.0, 156.4, 156.0, 141.6, 139.2, 133.9, 133.4, 130.6, 130.4, 127.9, 127.2, 126.1, 126.0, 110.1, 104.9, 42.6, 37.0, 33.2, 27.8, 27.5; IR (ATR) 2941, 2851, 1676, 1588, 1415, 1313, 1154, 1008, 929, 808, 750, 732, 599, 585, 464 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₂₁H₁₇NO₂: 315.1259. Found: 315.1261.

9,9-Dimethyl-6,9,10,11-tetrahydrobenzo[*c*]acridin-8(5*H*)-one (5k)

Yellow solid; EtOAc:Hex (1:9); Yield: 92% (127 mg); mp 160-162 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, J = 6.6 Hz, 1H), 8.08 (s, 1H), 7.38-7.31 (m, 2H), 7.22 (d, J = 7.2 Hz, 1H), 3.19 (t, J = 6.6 Hz, 2H), 2.97-2.90 (m, 4H), 2.02 (t, J = 6.0 Hz, 2H), 1.23 (s, 6H); ¹³C NMR (150 MHz, CDCl₃)

 δ 202.5, 160.8, 155.8, 139.2, 134.9, 130.3, 130.2, 127.9, 127.2, 126.0, 125.3, 41.4, 35.5, 28.8, 27.9, 27.5, 24.2; IR (ATR) 2930, 2860, 1671, 1588, 1451, 1422, 1380, 1254, 1135, 1047, 939, 772, 743, 621 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₉H₁₉NO: 277.1467. Found: 277.1468.

7,7-Dimethyl-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7a)

Pale yellow solid; EtOAc:Hex (1:9); Yield: 93% (122 mg); mp 128-130 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.35 (s, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.48-7.43 (m, 2H), 3.88 (s, 2H), 3.13 (s, 2H), 2.55 (s, 2H), 1.12 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1,

164.4, 161.9, 145.5, 139.7, 135.1, 130.4, 130.0, 127.5, 125.4, 125.0, 122.0, 52.1, 46.6, 34.2, 33.0, 28.2; IR (ATR) 2920, 2851, 1672, 1598, 1467, 1391, 1331, 1225, 1202, 1123, 1002, 963, 755, 730, 572, 485 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₈H₁₇NO: 263.1310. Found: 263.1312.

2,7,7-Trimethyl-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7b)

Yellow solid; EtOAc:Hex (1:9); Yield: 86% (119 mg); mp 179-181 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.29 (s, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.36 (s, 1H), 7.26 (d, *J* = 7.8 Hz, 1H), 3.81 (s, 2H), 3.10 (s, 2H), 2.53 (s, 2H), 2.43 (s, 3H), 1.11 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ

198.0, 164.5, 161.8, 145.9, 140.5, 137.1, 134.9, 130.2, 128.5, 126.0, 124.5, 121.7, 52.1, 46.5, 34.0, 33.0, 28.2, 21.8; IR (ATR) 2957, 2834, 1673, 1608, 1558, 1389, 1279, 1244, 1137, 1093, 1027, 820, 779, 511, 415 cm⁻¹; HRMS m/z [M⁺] calcd for C₁₉H₁₉NO: 277.1467. Found: 277.1463.

2-Methoxy-7,7-dimethyl-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7c)

Yellow solid; EtOAc:Hex (1:9); Yield: 81% (119 mg); mp 173-175 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.25 (s, 1H), 8.08 (s, 1H), 7.05 (d, J = 2.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 2H), 3.10 (s, 2H), 2.52 (s, 2H), 1.10 (s, 6H); ¹³C NMR (150

MHz, CDCl₃) δ 197.8, 162.0, 147.9, 134.6, 130.0, 124.0, 123.4, 114.3, 110.3, 55.5, 55.4, 52.0, 46.3, 34.2, 33.0, 28.2; IR (ATR) 2959, 2838, 1673, 1592, 1386, 1312, 1276, 1094, 1027, 834, 777, 611, 524, 415 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₉H₁₉NO₂: 293.1416. Found: 293.1418.

2-Chloro-7,7-dimethyl-6,7,8,11-tetrahydro-9H-indeno[1,2-b]quinolin-9-one (7d)

White solid; EtOAc:Hex (2:8); Yield: 88% (131 mg); mp 215-217 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.54 (s, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 3.85 (s, 2H), 3.11 (s, 2H), 2.55 (s, 2H), 1.11 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 197.9,

163.3, 162.1, 157.7, 146.9, 138.3, 136.0, 134.8, 130.5, 128.0, 125.7, 125.1, 122.9, 52.1, 46.6, 34.1, 33.0, 28.2; IR (ATR) 2956, 2867, 1676, 1595, 1469, 1384, 1344, 1279, 1165, 1070, 867, 836, 775, 608, 587cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₈H₁₆ClNO: 297.0920. Found: 297.0919.

6,7,8,11-Tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7e)

White solid; EtOAc:Hex (1:9); Yield: 76% (89 mg); mp 125-127 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.36 (s, 1H), 8.13 (d, *J* = 6.0 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.48-7.43 (m, 2H), 3.87 (s, 2H), 3.23 (t, *J* = 6.0 Hz, 2H), 2.69

(t, J = 6.0 Hz, 2H), 2.23-2.17 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.1, 163.3, 145.5, 135.1, 130.7, 130.0, 127.5, 125.9, 125.4, 122.0, 38.6, 34.2, 32.8, 22.1; IR (ATR) 2953, 2920, 2851, 1671, 1598, 1552, 1467, 1391, 1201, 755, 730 cm⁻¹; HRMS m/z [M⁺] calcd for C₁₆H₁₃NO: 235.0997. Found: 235.0999.

7-Methyl-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7f)

White solid; EtOAc:Hex (2:8);Yield: 86% (107 mg); mp 168-170 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.46-7.41 (m, 2H), 3.83 (s, 2H), 3.28 (d, *J* = 16.8 Hz, 1H), 2.87 (dd, *J* = 16.8, 9.6 Hz, 1H), 2.74 (d, *J* = 14.4 Hz, 1H), 2.41-2.30

(m, 2H), 1.17 (d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.0, 164.2, 162.7, 145.5, 139.7, 135.0, 130.5, 129.9, 127.4, 125.3, 125.3 121.9, 46.6, 41.0, 34.1, 29.4, 21.1; IR (ATR) 2922, 2860, 1669, 1596, 1553, 1388, 1291, 968, 754, 742, 581, 492 cm⁻¹; HRMS m/z [M⁺] calcd for C₁₇H₁₅NO: 249.1154. Found: 249.1156.

7-Isopropyl-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7g)

White solid; EtOAc:Hex (2:8); Yield: 81% (112 mg); mp 190-192 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.33 (s, 1H), 8.15 (s, 1H), 7.60-7.54 (m, 1H), 7.49-7.42 (m, 2H), 3.87 (s, 2H), 3.33 (d, *J* = 16.8 Hz, 1H), 2.96 (dd, *J* = 16.8, 12.0 Hz, 1H), 2.79 (d, *J* = 16.8 Hz, 1H), 2.40 (dd, *J* =

16.8, 13.2 Hz, 1H), 2.09-2.01 (m, 1H), 1.75-1.69 (m, 1H), 1.01 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 198.5, 163.2, 145.5, 135.1, 130.6, 130.1, 127.5, 125.5, 125.4, 122.0, 42.6, 40.6, 36.6, 34.2, 32.0, 19.6, 19.4; IR (ATR) 2960, 2923, 2868, 1673, 1595, 1464, 1395, 1348, 1287, 1187, 1015, 961, 801, 750, 738 cm⁻¹; HRMS m/z [M⁺] calcd for C₁₉H₁₉NO: 277.1467. Found: 277.1468.

7-Phenyl-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7h)

White solid; EtOAc:Hex (2:8); Yield: 79% (123 mg); mp 220-222 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (s, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 7.2 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 1H),

3.92 (s, 2H), 3.56 (t, J = 12.0 Hz, 2H), 3.43 (dd, J = 15.6, 13.2 Hz, 1H), 3.03 (d, J = 15.7 Hz, 1H), 2.90 (dd, J = 16.8, 10.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.3, 164.5, 162.3, 145.6, 142.8, 139.6, 135.4, 130.8, 130.2, 128.8, 127.6, 127.0, 126.7, 125.4, 122.2, 45.6, 40.4, 39.8, 34.3; IR (ATR) 3028, 2922, 2852, 1662, 1592, 1555, 1389, 1282, 1182, 1015, 747, 692, 500, 478 cm⁻¹; HRMS m/z [M⁺] calcd for C₂₂H₁₇NO: 311.1310. Found: 311.1313.

7-(Benzo[d][1,3]dioxol-5-yl)-6,7,8,11-tetrahydro-9H-indeno[1,2-b]quinolin-9-one (7i)

Whit solid; EtOAc:Hex (2:8); Yield: 68% (121 mg); mp 238-240 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.40 (s, 1H), 8.18 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.51-7.45 (m, 2H), 6.80 (s, 1H), 6.77 (q, *J* = 7.8 Hz, 2H), 5.95 (s, 2H), 3.92 (s, 2H), 3.54 (d, *J* = 16.2

Hz, 1H), 3.48 (t, J = 11.4 Hz, 1H), 3.37 (dd, J = 16.2, 11.4 Hz, 1H), 3.00-2.96 (m, 1H), 2.87-2.80 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.2, 147.9, 146.4, 145.6, 136.8, 130.8, 130.3, 127.6, 125.4, 122.2, 119.7, 108.4, 107.1, 101.0, 45.9, 40.6, 39.6, 34.3; IR (ATR) 2921, 2854, 1662, 1599, 1488, 1388, 1281, 1242, 1134, 1036, 923, 805, 744, 575, 427 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₂₃H₁₇NO₃: 355.1208. Found: 355.1212.

7-(Furan-2-yl)-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7j)

Pale yellow solid; EtOAc:Hex (2:8); Yield: 82% (123 mg); mp 235-237 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.35 (s, 1H), 8.15 (d, *J* = 7.2 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 8.7 Hz, 2H), 7.33 (s, 1H), 6.27 (s, 1H), 6.09 (s, 1H), 3.87 (s, 2H), 3.69-3.60 (m, 2H), 3.45

(dd, J = 16.8, 8.4 Hz, 1H), 3.08 (dd, J = 16.8, 9.6 Hz, 1H), 2.89 (dd, J = 16.8, 10.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.4, 164.5, 161.4, 155.9, 145.5, 141.6, 139.6, 135.4, 130.6, 130.2, 127.5, 125.4, 125.4, 122.1, 110.1, 105.0, 42.7, 37.3, 34.2, 33.3; IR (ATR) 2891, 2660, 1671, 1599,

1464, 1390, 1291, 1186, 1011, 928, 752, 732, 705, 597 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₂₀H₁₅NO₂: 301.1103. Found: 301.1102.

8,8-Dimethyl-6,7,8,11-tetrahydro-9*H*-indeno[1,2-*b*]quinolin-9-one (7k)

White solid; EtOAc:Hex (1:9); Yield: 92% (121 mg); mp 140-142 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 8.13 (d, *J* = 7.2 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.45 (dd, *J* = 7.4, 3.1 Hz, 2H), 3.87 (s, 2H), 3.25 (t, *J* = 6.0 Hz, 2H), 2.05 (t, *J* = 6.6 Hz, 2H), 1.24 (s, 6H); ¹³C NMR (150 MHz,

CDCl₃) δ 202.6, 163.9, 162.1, 145.5, 139.8, 135.1, 131.6, 129.9, 127.4, 125.3, 124.6, 121.9, 41.4, 35.5, 34.2, 29.1, 24.2; IR (ATR) 2933, 2857, 1608, 1600, 1552, 1381, 1247, 1126, 1042, 769, 741, 502 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₈H₁₇NO: 263.1310. Found: 263.1307.

11,11-Dimethyl-5,6,7,10,11,12-hexahydro-9*H*-benzo[6,7]cyclohepta[1,2-*b*]quinolin-9-one (7l)

Pale yellow solid; EtOAc:Hex (1:9); Yield: 89% (129 mg); mp 176-178 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.72 (d, *J* = 7.2 Hz, 1H), 7.39-7.32 (m, 2H), 7.22 (d, *J* = 7.2 Hz, 1H), 3.08 (s, 2H), 2.54 (s, 2H), 2.51 (td, *J* = 7.2, 3.0 Hz, 4H), 2.20 (p, *J* = 7.2 Hz, 2H), 1.11 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 198.3, 163.0, 160.1, 139.6, 139.1, 134.4, 133.6, 129.5,

128.9, 128.6, 126.9, 125.4, 52.0, 46.1, 33.0, 32.6, 30.9, 29.8, 28.2; IR (ATR) 2953, 2870, 1676, 1589, 1452, 1417, 1312, 1230, 1076, 944, 764, 669, 579, 485 cm⁻¹; HRMS m/z [M⁺] calcd for C₂₀H₂₁NO: 291.1623. Found: 291.1620.

10,10-Dimethyl-10,11-dihydro-6*H*-chromeno[4,3-*b*]quinoline-6,8(9*H*)-dione (9a)

White solid; EtOAc:Hex (2:8); Yield: 75% (110 mg); mp 164-166 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.11 (s, 1H), 8.58 (d, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 6.6 Hz, 1H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 3.19 (s, 2H), 2.62 (s, 2H), 1.15 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 168.3,

160.3, 154.3, 153.3, 137.7, 133.3, 127.2, 125.6, 124.9, 118.6, 117.3, 116.2, 51.8, 47.1, 32.7, 28.2; IR (ATR) 2963, 2886, 1732, 1687, 1599, 1580, 1406, 1321, 1219, 1138, 1063, 960, 897, 766, 628 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₈H₁₅NO₃: 293.1052. Found: 293.1053.

2,10,10-Trimethyl-10,11-dihydro-6*H*-chromeno[4,3-*b*]quinoline-6,8(9*H*)-dione (9b)

Pale yellow solid; EtOAc:Hex (2:8); Yield: 70% (107 mg); mp 170-172 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.05 (s, 1H), 8.30 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 3.17 (s, 2H), 2.60 (s, 2H), 2.43 (s, 3H), 1.13 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 168.2, 160.4, 154.3, 151.3, 137.6, 134.7, 134.2, 127.0, 125.2, 118.1, 117.0, 116.1, 51.8, 47.1,

32.6, 28.2, 20.8, 14.1; IR (ATR) 2922, 2852, 1737, 1687, 1600, 1577, 1462, 1221, 1184, 812, 798 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₉H₁₇NO₃: 307.1208. Found: 307.1208.

2-Fluoro-10,10-dimethyl-10,11-dihydro-6*H*-chromeno[4,3-*b*]quinoline-6,8(9*H*)-dione (9c)

Pale yellow solid; EtOAc:Hex (2:8); Yield: 68% (106 mg); mp 196-198 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.10 (s, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.34-7.28 (m, 2H), 3.19 (s, 2H), 2.63 (s, 2H), 1.14 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 195.7, 168.5, 160.2 (C-F, ¹*J*_{C-F} = 243.4 Hz), 158.5, 153.5 (C-F, ⁵*J*_{C-F} = 2.8 Hz), 149.3, 137.8, 127.7, 120.7 (C-F, ³*J*_{C-F} = 24.7 Hz), 119.1

(C-F, ${}^{2}J_{C-F} = 84$ Hz), 119.0 (C-F, ${}^{4}J_{C-F} = 8.1$ Hz), 116.2, 111.3 (C-F, ${}^{3}J_{C-F} = 24.9$ Hz), 51.8, 47.1, 32.7, 28.2, 14.1; IR (ATR) 2955, 2929, 1739, 1689, 1587, 1558, 1460, 1225, 1141, 1074, 979, 890, 828, 797, 735, 606, 587, 420 cm⁻¹; HRMS m/z [M⁺] calcd for C₁₈H₁₄FNO₃: 311.0958. Found: 311.0959.

7,7-Dimethyl-7,8-dihydro-6*H*-indeno[1,2-*b*]quinoline-9,11-dione (9d)

Pale orange solid; EtOAc:Hex (2:8); Yield: 92% (127 mg); mp 164-166 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.46 (s, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 6.6 Hz, 1H), 3.13 (s, 2H), 2.58 (s, 2H), 1.14 (s, 6H); ¹³C NMR (150 MHz, CDCl₃)

δ 196.5, 190.4, 168.1, 168.0, 142.4, 135.9, 135.3, 132.1, 129.9, 127.2, 126.9, 124.3, 121.9, 51.8, 47.1, 32.8, 28.2; IR (ATR) 2923, 2852, 1709, 1681, 1592, 1508, 1462, 1386, 1274, 1229, 1107, 983, 746, 574 cm⁻¹; HRMS *m*/*z* [M⁺] calcd for C₁₈H₁₅NO₂: 277.1103. Found: 277.1101.

7-Phenyl-7,8-dihydro-6*H*-indeno[1,2-*b*]quinoline-9,11-dione (9e)

Yellow solid; EtOAc:Hex (2:8); Yield: 74% (120 mg); mp 178-180 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 7.2 Hz, 1H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.32-7.27 (m, 3H), 3.62-3.55

(m, 2H), 3.42 (dd, J = 16.8, 10.8 Hz, 1H), 3.04 (ddd, J = 16.7, 3.8, 2.0 Hz, 1H), 2.91 (dd, J = 16.8, 10.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 195.6, 190.0, 168.1, 167.7, 142.0, 136.0, 135.5, 132.4, 130.5, 128.9, 127.5, 127.5, 127.2, 126.6, 124.4, 122.4, 45.2, 40.5, 39.1; IR (ATR) 2928, 1718, 1680, 1591, 1551, 1390, 1227, 747, 694 cm⁻¹; HRMS ESI m/z [MH⁺] calcd for C₂₂H₁₆NO₂: 326.1175. Found: 326.1171.

5,6,8,9-Tetrahydrodibenzo[*c*,*h*]acridine (10a)

White solid; EtOAc:Hex (1:9); Yield: 90% (127 mg); mp 148-150 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, *J* = 7.8 Hz, 2H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.31 (s, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 2H), 2.94 (s, 8H); ¹³C NMR (150 MHz, CDCl₃) δ 150.3, 137.8, 135.3, 134.8, 130.5, 128.6, 127.6, 127.0, 125.0, 28.2, 27.8; IR (ATR) 2927, 1723, 1415, 1271, 1031, 737, 460 cm⁻¹; HRMS ESI *m/z* [MH⁺] calcd for C₂₁H₁₈N: 284.1434. Found: 284.1432.

1,3,11,13-1,3,11,13-Tetramethyl-5,6,8,9-tetrahydrodibenzo[*c*,*h*]acridine (10b)

Pale orange solid; EtOAc:Hex (1:9); Yield: 96% (162 mg); mp 140-142 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (s, 2H), 7.30 (s, 1H), 7.04 (s, 2H), 2.93-2.82 (m, 8H), 2.46 (s, 6H), 2.33 (s, 6H); ¹³C NMR (150

MHz, CDCl₃) δ 150.6, 135.7, 134.6, 133.3, 131.4, 130.0, 123.3, 27.6, 23.6, 21.2, 19.6; IR (ATR) 2919, 1430, 1258, 1219, 1032, 910, 868, 748, 563 cm⁻¹; HRMS ESI *m*/*z* [MH⁺] calcd for C₂₅H₂₆NO: 340.2060. Found: 340.2058.

4,10-Dimethoxy-5,6,8,9-tetrahydrodibenzo[c,h]acridine (10c)Pale yellow solid; EtOAc:Hex

(2:8); Yield: 93% (159 mg); mp 182-184 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.31 (s, 1H), 6.89 (d, J = 7.8 Hz, 2H), 3.87 (s, 6H), 2.98-S15

2.85 (m, 8H); ¹³C NMR (150 MHz, CDCl₃) δ 156.1, 150.1, 135.9, 135.2, 130.6, 127.0, 126.4, 117.5, 110.6, 55.5, 27.2, 20.1; IR (ATR) 2928, 1414, 1264, 1245, 1144, 1117, 903, 819, 777 cm⁻ HRMS ESI *m*/*z* [MH⁺] calcd for C₂₃H₂₂NO₂: 344.1645. Found: 344.1642.

2,12-Dimethoxy-5,6,8,9-tetrahydrodibenzo[c,h]acridine (10d)

White solid; EtOAc:Hex (1:9); Yield: 90% (154 mg); mp 180-182 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (s, 2H), 7.31 (s, 1H), 7.13 (d, J = 7.2 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 3.91 (s, 6H), 2.94-2.84 (m, 8H); ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3) \delta 158.8, 150.1, 135.8, 135.4, 130.9, 130.2, 128.6,$ **Ó**Me 114.9, 109.4, 55.4, 28.1, 27.3; IR (ATR) 2938, 1493, 1458, 1415, 1215, 1037, 893, 813, 785 cm⁻ ¹; HRMS ESI m/z [MH⁺] calcd for C₂₃H₂₂NO₂: 344.1645. Found: 344.1643.

2,12-Dibromo-5,6,8,9-tetrahydrodibenzo[*c*,*h*]acridine (10e)

Yellow solid; EtOAc:Hex (2:8); Yield: 88% (192 mg); mp 170-172 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.55 (s, 2H), 7.39 (d, J = 7.2 Hz, 2H), 7.30 (s, 1H), 7.07 (d, J = 7.8 Hz, 2H), 2.91-2.89 (m, 8H); ¹³C NMR (150 MHz, $CDCl_3$) δ 149.2, 136.6, 136.5, 135.5, 131.4, 131.2, 129.3, 127.7, 121.0, 121.0, 27.6; IR (ATR) 2934, 1545, 1442, 1385, 1252, 1029, 895, 781, 553 cm⁻¹; HRMS ESI *m/z* [MH⁺] calcd for C₂₁H₁₆NBr₂: 441.9624. Found: 441.9623.

10,12-Dihydrodiindeno[1,2-*b*:2',1'-*e*]pyridine (10f)

Yellow solid; EtOAc:Hex (1:9); Yield: 91% (116 mg); mp 218-220 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (s, 1H), 7.90 (s, 1H), 7.54 (d, J = 7.8 Hz, 2H), 7.47(t, J = 7.8 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 3.87 (s, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 143.9, 135.0, 128.2, 127.1, 125.0, 121.1, 34.5; IR (ATR) 2921, 1388, 1281, 1179, 1010, 728,

410 cm⁻¹; HRMS ESI m/z [MH⁺] calcd for C₁₉H₁₄N: 256.1121. Found: 256.1117.

2,8-Dimethyl-10,12-dihydrodiindeno[1,2-b:2',1'-e]pyridine (10g)

Yellow solid; EtOAc:Hex (1:9); Yield: 89% (125 mg); mp 228-230 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 2H), 7.81 (s, 1H), 7.32 (s, 2H), 7.26 (d, J = 7.8 Hz, 2H), 3.77 (s, 4H), 2.44 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 144.2, 138.2, 134.5, 128.0, 125.6, 120.7, 34.3, 21.7; IR (ATR) 2925, 1393, 1279, 1185, 1105, 819, 703, 412 cm⁻¹; HRMS ESI m/z [MH⁺] calcd for C₂₁H₁₈N: 284.1434. Found: 284.1430.

3,7-Dimethoxy-10,12-dihydrodiindeno[1,2-*b*:2',1'-*e*]pyridine (10h)

Pale orange solid; EtOAc:Hex (1:9); Yield: 96% (151 mg); mp 108-110 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.85 (s, 1H), 7.75 (s, 2H), 7.42 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz,

2H), 3.96 (s, 6H), 3.79 (s, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 159.5, 159.3, 142.4, 136.1, 136.0, 128.9, 125.7, 116.3, 104.2, 55.6, 33.8; IR (ATR) 2925, 1597, 1463, 1244, 1090, 1028, 823, 793 cm⁻¹; HRMS ESI *m*/*z* [MH⁺] calcd for C₂₁H₁₈NO₂: 316.1332. Found: 316.1328.

2,8-Dichloro-10,12-dihydrodiindeno[1,2-*b*:2',1'-*e*]pyridine (10i)

Yellow solid; EtOAc:Hex (2:8); Yield: 84% (135 mg); mp 268-270 °C. (NMR taken with CDCl₃ and 1 drop of TFA) ¹H NMR (600 MHz, CDCl₃) δ 8.45 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 2H), 7.66

(s, 2H), 7.54 (d, J = 6.6 Hz, 2H), 4.09 (s, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 160.9, 160.6, 150.6, 146.5, 139.4, 138.4, 137.2, 130.9, 129.6, 126.3, 124.2, 115.3, 113.5, 34.8; IR (ATR) 2903, 1393, 1280, 1168, 1058, 875, 822, 773, 428 cm⁻¹; HRMS ESI m/z [MH⁺] calcd for C₁₉H₁₂NCl₂: 324.0341. Found: 324.0338.

5,6,7,9,10,11-Hexahydrobenzo[6,7]cyclohepta[1,2-*b*]benzo[6,7]cyclohepta[2,1-*e*]pyridine (10j)

White solid; EtOAc:Hex (1:9); Yield: 85% (132 mg); mp 240-242 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 7.8 Hz, 2H), 7.39 (s, 1H), 7.37 (d, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 6.6 Hz, 2H), 2.59 (t, *J* = 7.2 Hz, 4H), 2.53 (t, *J* = 7.2 Hz, 4H), 2.26 (p, *J* = 7.2 Hz, 4H); ¹³C NMR

(150 MHz, CDCl₃) δ 156.1, 139.4, 137.0, 133.4, 129.0, 128.3, 126.7, 33.1, 31.2, 30.0; IR (ATR) 2922, 2856, 1726, 1444, 1418, 1272, 766, 634 cm⁻¹; HRMS ESI *m*/*z* [MH⁺] calcd for C₂₃H₂₂N: 312.1747. Found: 312.1745.

Diindeno[1,2-*b*:2',1'-*e*]pyridine-10,12-dione (10k)

Yellow solid; EtOAc:Hex (2:8); Yield: 89% (125 mg); mp 250-252 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 7.66 (s, 2H), 7.54 (d, J = 6.6 Hz, 2H), 4.09 (s, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 190.1, 170.6, 142.3, 135.5, 135.2, 132.0, 127.8, 126.4, 124.1,

121.9; IR (ATR) 2928, 1710, 1565, 1389, 1260, 1098, 991, 748, 498 cm⁻¹; HRMS ESI m/z [MH⁺] calcd for C₁₉H₁₀NO₂: 284.0706. Found: 284.0701.

(E)-2-((Dimethylamino)methylene)-3,4-dihydronaphthalen-1(2H)-one (11)

Light brown solid; EtOAc:Hex (4:6); Yield: 88% (176 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 7.8 Hz, 1H), 7.74 (s, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.18 (s, 1H), 3.13 (s, 6H), 2.94 (t, J = 6.6 Hz,

2H), 2.85 (t, J = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 186.0, 150.1, 141.7, 134.9, 131.0, 127.0, 126.9, 126.3, 103.4, 43.3, 29.1, 24.0; HRMS ESI m/z [MH⁺] calcd for C₁₃H₁₆NO: 202.1226. Found: 202.1221.

10,10-Dimethyl-7,9,10,11-tetrahydro-8*H*-benzo[*c*]xanthen-8-one (12)

Orange solid; EtOAc:Hex (2:8); Yield: 69% (96 mg); mp 90-92 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 3.77 (s, 2H), 2.48 (s, 2H), 2.37 (s, 2H), 1.14

(s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 198.2, 164.6, 146.9, 132.0, 130.7, 128.2, 126.9, 124.9, 123.1, 117.0, 113.5, 108.7, 50.6, 41.3, 32.1, 28.4, 18.8; IR (ATR) 2957, 1644, 1597, 1372, 1224, 1178, 809, 731 cm⁻¹; HRMS ESI *m*/*z* [MH⁺] calcd for C₁₉H₁₉O₂: 279.1379. Found: 279.1375.

¹H NMR and ¹³C NMR spectra of synthesized compounds

110 100 f1 (ppm) -(

3.150 3.150 2.3.139 2.3.139 2.3.139 2.3.139 2.2.946 2.2.933 2.2.933 2.2.934 2.2.934 2.2.915 2.2.915 2.2.917 2.2.917 2.2.917 2.2.917 2.2.917 2.2.917 2.2.917 2.2.917 2.2.917 2.2.917 2.2.917 2.2

3.6613.6543.6543.6543.6373.6373.5523.5523.5523.5753.5253.5753.5253.5253.5553.52

7.576 7.563 7.461 7.455 7.455 7.455 7.240 7.240

 $\begin{array}{c} 3.243\\ \hline 3.223\\ \hline 3.223\\ \hline 2.206\\ \hline 2.206\\ \hline 2.206\\ \hline 2.206\\ \hline 2.216\\ \hline 2.216\\ \hline 2.216\\ \hline 2.216\\ \hline 2.196\\ \hline 2.196\\ \hline 2.196\\ \hline 2.196\\ \hline 2.196\\ \hline 2.196\\ \hline 2.196\end{array}$

8.296 8.116 8.116 8.116 8.103 7.536 7.536 7.440 7.434 7.434 7.434 7.425 7.425 7.240

B 8.151 B 8.151 B 8.151 B 8.151 B 8.151 C 7.555 7.555 7.451 7.455 7.45

-8.411 8.175 8.175 7.606 7.606 7.606 7.606 7.606 7.471 7.375 7.350 7.3516 7.7526 7.7526 7.7526 7.7526 7.7526 7.7526 7.7526 7.7526 7.7526 7.7526 7.7526 7.7526

3.916 3.586 3.545 3.545 3.456 3.456 3.436 3.436 3.438 3.428 3.428 3.428 3.428 3.428 3.428 2.2905 2.2905 2.2905 2.878

600 MHz, CDCl₃

- 197.211

______8.334 _____8.157 _____8.145 _____8.145 _____7.565 _____7.555 ____7.55 ____7.55

8.500 8.500 7.992 7.992 7.992 7.992 7.992 7.7518 7.638 7.5518 7.5518 7.5518 7.5518 7.5518 7.5518 7.5518 7.5518 7.5518 7.5519 7.5519 7.5514 7.5144 <

2.919 2.914 2.914 2.914 2.901 2.885 2.885 2.885 2.885 2.871 2.871 2.866

¹H NMR of **10f** 600 MHz, CDCl₃

--- 2.438

¹H NMR of **10g** 600 MHz, CDCl₃

 8.452
 8.255
 8.241

--- 4.094

CI

¹H NMR of **10i** 600 MHz, CDCl₃ (CDCl₃ + 1drop of TFA(Trifluoroacetic acid))

8.024 7.955 7.943 7.725 7.712 7.712 7.712 7.712 7.742 7.498 7.498 7.498 7.498 7.498

Preparation of samples for optical studies

All solutions were prepared in a standard protocol as 1mM in the solvents. For example for a comparative study of compounds **5d**, **5e**, and **7c** 1 mM solution in CH₃CN of each compound was prepared.

Procedure for Metal sensing measurements

UV-Vis and fluorescence spectra were recorded using a UV 3220 spectrometer (Optizen) and spectrofluorometer (HITACHI) F-2700 equipped with a Xe arc lamp, respectively. A stock solution of **5e** (10 mM) was prepared in ethanol:water (8:2, v/v) mixture solutions. Stock solutions of various cations (10 mM; Ag⁺, Ba²⁺, Ca²⁺, Cd²⁺, Ce³⁺, Cu²⁺, Co²⁺, Fe³⁺, Hg²⁺, Mn²⁺, Na⁺, Ni²⁺, Pb²⁺, Sn²⁺, Sr²⁺, Ti³⁺, and Zn²⁺) were prepared in deionized water. Before spectroscopic measurements, test solutions were prepared in 1.950 μ L of ethanol:water (8:2, v/v) mixture solutions mixing 25 μ L stock solution of **5e** and 25 μ L of each metal ions stock into cuvettes with the final volume of 2.0 mL respectively. Ag⁺ and Fe³⁺ ions were detected by adding different aliquots of stock solution from 0-25 mM with **5e**. All absorption and photoluminescence emission spectra were recorded at room temperature after the addition of samples for a few seconds. The fluorescence spectra were acquired from 400 to 700 nm with the excitation wavelength set as 366 nm.

Fig. S1. Stern-Volmer plot of **5e** (10 mM) at F_0/F versus Ag^+ ions (a) and Fe^{3+} ions (b) concentrations (0-25 mM) in ethanol:water (8:2, v/v) mixture solutions.

Fig. S2. Calibration curve of **5e** in the presence of Ag^+ and Fe^{3+} ions using the monitored emission wavelength at 496 nm; (a) **5e**/Ag⁺ and (b) 5e/Fe³⁺ complex systems. The detection limit (LOD) was determined from the following equation: LOD = K × SD/S, where K = 3; SD is the standard deviation

Method of crystal growth for compounds 5d, 7k and 10j and instrumentation

In a 5 mL vial, 50 mg of the pure isolated compound was dissolved in minimum volume of ethyl acetate at room temperature. Then, 1 mL of hexane was added to the mixture. The mixture was shaken well to obtain a homogenous and clear solution. Then, the solution was covered with a porous cap and allowed to stand undisturbed at room temperature for 2 days until the crystal was formed via slow evaporation method.

The crystal structures of the compounds **5d**, **7k** and **10j** were determined by single crystal diffraction method at the Korea Basic Science Institute (KBSI, Western Seoul Center, Korea). Colorless block crystal (0.262 x 0.187 x 0.174 mm3) was picked up with paraton oil and mounted on a Bruker D8 Venture PHOTON III M14 diffractometer equipped with a graphite-monochromated Mo K α (λ = 0.71073 Å) radiation source and a nitrogen cold stream (-50 °C). Data collection and integration were performed with SMART APEX3 (Bruker, 2016) and SAINT (Bruker, 2016) [1]. Absorption correction was performed by multi-scan method implemented in SADABS [2]. The structure was solved by direct methods and refined by full-matrix least-squares on F2 using SHELXTL [3]. All the nonhydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.

- 1. SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- 2. G. M. Sheldrick, SADABS v 2.03, University of Göttingen, Germany, 2002.

3. SHELXTL v 6.10; Bruker AXS, Inc: Madison, Wisconsin, USA, 2000.

Crystal refinement data for compound 5d

Empirical Formula-C₂₀H₂₁NO₂, M = 307.38, Triclinic, Space group P-1, a = 10.249(3) Å, b = 11.657(4) Å, c = 14.822(4) Å, V = 1608.2(8) Å³, Z = 4, T = 223 (2) K, ρ calcd = 1.270 Mg/m³, 2 Θ _{max.} = 28.417°. Refinement of 656 parameters on 7942 independent reflections out of 33055 collected reflections (R_{int} = 0.0986) led to R1 = 0.0755 [I > 2 σ (I)], wR2 = 0. 2295 (all data) and S = 1.042 with the largest difference peak and hole of 0.658 and -0.598 e.Å⁻³ respectively. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 2077448). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif

Table 1. Crystal data and structure refinement for Lee-A.			
Identification code	Lee-A		
Empirical formula	C20 H21 N O2		
Formula weight	307.38		
Temperature	223(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	$a = 10.249(3) \text{ Å}$ $\alpha = 104.005(8)^{\circ}.$		
	b = 11.657(4) Å	$\beta = 92.306(8)^{\circ}.$	
	c = 14.822(4) Å	$\gamma = 109.243(7)^{\circ}$.	
Volume	1608.2(8) Å ³		
Z	4		
Density (calculated)	1.270 Mg/m ³		
Absorption coefficient	0.082 mm^{-1}		
F(000)	656		
Crystal size	0.450 x 0.270 x 0.160 mm ³		
Theta range for data collection	1.922 to 28.417°.		
Index ranges	-13<=h<=13, -15<=k<=15, -19<=l<=19		
Reflections collected	33055		
Independent reflections	7942 [R(int) = 0.0986]		
Completeness to theta = 25.242°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7457 and 0.6305		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7942 / 1 / 421		
Goodness-of-fit on F2	1.042		
Final R indices [I>2sigma(I)]	R1 = 0.0755, $wR2 = 0.1895$		
R indices (all data)	R1 = 0.1518, wR2 = 0.2295		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.658 and -0.598 e.Å ⁻³		

	Х	у	Z	U(eq)
C(1)	6605(3)	6734(3)	-173(2)	39(1)
C(2)	5188(3)	6304(3)	-463(2)	43(1)
C(3)	4413(3)	7064(3)	-170(2)	38(1)
C(4)	5060(3)	8278(2)	434(2)	33(1)
C(5)	6485(3)	8681(3)	725(2)	36(1)
C(6)	7261(3)	7926(3)	424(2)	39(1)
C(7)	2863(3)	6605(3)	-471(3)	51(1)
C(8)	2434(3)	7690(3)	-607(2)	44(1)
C(9)	2897(3)	8770(2)	265(2)	35(1)
C(10)	4232(3)	9089(2)	740(2)	31(1)
N(1)	4797(2)	10107(2)	1478(2)	33(1)
C(11)	4041(3)	10839(2)	1774(2)	32(1)
C(12)	2682(3)	10559(2)	1371(2)	34(1)
C(13)	2130(3)	9514(3)	597(2)	38(1)
C(14)	1878(3)	11378(3)	1733(2)	38(1)
C(15)	2635(3)	12583(3)	2463(2)	42(1)
C(16)	3736(3)	12492(2)	3144(2)	36(1)
C(17)	4738(3)	12001(3)	2572(2)	39(1)
O(1)	7266(2)	5902(2)	-528(2)	51(1)
C(18)	8738(3)	6329(3)	-310(3)	57(1)
O(2)	655(2)	11086(2)	1427(2)	54(1)
C(19)	4538(3)	13797(3)	3802(2)	49(1)
C(20)	3040(3)	11589(3)	3727(2)	47(1)
C(21)	9613(3)	8177(3)	3958(2)	43(1)
C(22)	10498(3)	8549(3)	4776(2)	51(1)
C(23)	10358(3)	7772(3)	5369(2)	44(1)
C(24)	9294(3)	6602(2)	5138(2)	32(1)
C(25)	8391(3)	6256(3)	4324(2)	40(1)
C(26)	8538(3)	7022(3)	3726(2)	43(1)
C(27)	11237(4)	8238(3)	6293(3)	83(2)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Lee-A. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	11468(3)	7179(3)	6630(3)	73(1)
C(29)	10159(3)	6098(3)	6528(2)	41(1)
C(30)	9138(3)	5781(2)	5771(2)	31(1)
N(2)	7978(2)	4741(2)	5589(2)	32(1)
C(31)	7801(3)	3997(2)	6167(2)	34(1)
C(32)	8753(3)	4247(2)	6945(2)	35(1)
C(33)	9947(3)	5326(3)	7114(2)	41(1)
C(34)	8536(3)	3403(3)	7566(2)	41(1)
C(35)	7279(3)	2218(3)	7282(2)	49(1)
C(36)	6024(3)	2361(3)	6781(2)	43(1)
C(37)	6500(3)	2844(3)	5936(2)	46(1)
O(3)	9881(2)	9010(2)	3419(2)	59(1)
C(38)	9041(4)	8632(3)	2541(3)	61(1)
O(4)	9349(2)	3653(2)	8267(2)	58(1)
C(39)	4860(4)	1080(3)	6446(3)	67(1)
C(40)	5510(4)	3285(3)	7453(3)	59(1)

C(1)-O(1)	1.375(3)
C(1)-C(6)	1.381(4)
C(1)-C(2)	1.382(4)
C(2)-C(3)	1.382(4)
C(2)-H(2)	0.9400
C(3)-C(4)	1.402(4)
C(3)-C(7)	1.509(4)
C(4)-C(5)	1.392(4)
C(4)-C(10)	1.473(4)
C(5)-C(6)	1.381(4)
C(5)-H(5)	0.9400
C(6)-H(6)	0.9400
C(7)-C(8)	1.521(4)
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(8)-C(9)	1.499(4)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(9)-C(13)	1.374(4)
C(9)-C(10)	1.402(4)
C(10)-N(1)	1.345(3)
N(1)-C(11)	1.342(3)
C(11)-C(12)	1.394(4)
C(11)-C(17)	1.504(4)
C(12)-C(13)	1.392(4)
C(12)-C(14)	1.477(4)
C(13)-H(13)	0.9400
C(14)-O(2)	1.222(3)
C(14)-C(15)	1.491(4)
C(15)-C(16)	1.530(4)
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(16)-C(17)	1.524(4)

Table 3. Bond lengths [Å] and angles [°] for Lee-A.

C(16)-C(19)	1.528(4)
C(16)-C(20)	1.535(4)
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
O(1)-C(18)	1.420(4)
C(18)-H(18A)	0.9700
C(18)-H(18B)	0.9700
C(18)-H(18C)	0.9700
C(19)-H(19A)	0.9700
C(19)-H(19B)	0.9700
C(19)-H(19C)	0.9700
C(20)-H(20A)	0.9700
C(20)-H(20B)	0.9700
C(20)-H(20C)	0.9700
C(21)-O(3)	1.369(3)
C(21)-C(22)	1.370(4)
C(21)-C(26)	1.383(4)
C(22)-C(23)	1.387(4)
C(22)-H(22)	0.9400
C(23)-C(24)	1.389(4)
C(23)-C(27)	1.484(4)
C(24)-C(25)	1.380(4)
C(24)-C(30)	1.472(3)
C(25)-C(26)	1.382(4)
C(25)-H(25)	0.9400
C(26)-H(26)	0.9400
C(27)-C(28)	1.5217(19)
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(28)-C(29)	1.478(4)
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(29)-C(33)	1.370(4)
C(29)-C(30)	1.393(4)
C(30)-N(2)	1.350(3)

N(2)-C(31)	1.337(3)
C(31)-C(32)	1.389(4)
C(31)-C(37)	1.504(4)
C(32)-C(33)	1.397(4)
C(32)-C(34)	1.476(4)
C(33)-H(33)	0.9400
C(34)-O(4)	1.217(3)
C(34)-C(35)	1.499(4)
C(35)-C(36)	1.535(4)
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(36)-C(39)	1.523(4)
C(36)-C(40)	1.525(5)
C(36)-C(37)	1.528(4)
C(37)-H(37A)	0.9800
C(37)-H(37B)	0.9800
O(3)-C(38)	1.418(4)
C(38)-H(38A)	0.9700
C(38)-H(38B)	0.9700
C(38)-H(38C)	0.9700
C(39)-H(39A)	0.9700
C(39)-H(39B)	0.9700
C(39)-H(39C)	0.9700
C(40)-H(40A)	0.9700
C(40)-H(40B)	0.9700
C(40)-H(40C)	0.9700
O(1)-C(1)-C(6)	124.6(3)
O(1)-C(1)-C(2)	115.1(3)
C(6)-C(1)-C(2)	120.3(3)
C(3)-C(2)-C(1)	120.6(3)
C(3)-C(2)-H(2)	119.7
C(1)-C(2)-H(2)	119.7
C(2)-C(3)-C(4)	120.1(3)
C(2)-C(3)-C(7)	121.3(3)

C(4)-C(3)-C(7)	118.6(3)
C(5)-C(4)-C(3)	118.1(3)
C(5)-C(4)-C(10)	122.0(2)
C(3)-C(4)-C(10)	119.9(2)
C(6)-C(5)-C(4)	121.8(3)
C(6)-C(5)-H(5)	119.1
C(4)-C(5)-H(5)	119.1
C(5)-C(6)-C(1)	119.2(3)
C(5)-C(6)-H(6)	120.4
C(1)-C(6)-H(6)	120.4
C(3)-C(7)-C(8)	110.0(2)
C(3)-C(7)-H(7A)	109.7
C(8)-C(7)-H(7A)	109.7
C(3)-C(7)-H(7B)	109.7
C(8)-C(7)-H(7B)	109.7
H(7A)-C(7)-H(7B)	108.2
C(9)-C(8)-C(7)	110.6(2)
C(9)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8A)	109.5
C(9)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	108.1
C(13)-C(9)-C(10)	117.8(3)
C(13)-C(9)-C(8)	124.2(3)
C(10)-C(9)-C(8)	118.0(3)
N(1)-C(10)-C(9)	122.8(3)
N(1)-C(10)-C(4)	117.8(2)
C(9)-C(10)-C(4)	119.4(2)
C(11)-N(1)-C(10)	118.3(2)
N(1)-C(11)-C(12)	122.7(3)
N(1)-C(11)-C(17)	116.6(2)
C(12)-C(11)-C(17)	120.7(2)
C(13)-C(12)-C(11)	117.8(3)
C(13)-C(12)-C(14)	121.3(2)
C(11)-C(12)-C(14)	120.8(3)

C(9)-C(13)-C(12)	120.5(3)
C(9)-C(13)-H(13)	119.7
С(12)-С(13)-Н(13)	119.7
O(2)-C(14)-C(12)	120.9(3)
O(2)-C(14)-C(15)	121.8(3)
C(12)-C(14)-C(15)	117.2(2)
C(14)-C(15)-C(16)	114.0(2)
C(14)-C(15)-H(15A)	108.8
C(16)-C(15)-H(15A)	108.8
C(14)-C(15)-H(15B)	108.8
C(16)-C(15)-H(15B)	108.8
H(15A)-C(15)-H(15B)	107.7
C(17)-C(16)-C(19)	109.5(2)
C(17)-C(16)-C(15)	108.2(2)
C(19)-C(16)-C(15)	109.7(2)
C(17)-C(16)-C(20)	109.9(2)
C(19)-C(16)-C(20)	109.2(3)
C(15)-C(16)-C(20)	110.3(2)
C(11)-C(17)-C(16)	114.5(2)
С(11)-С(17)-Н(17А)	108.6
C(16)-C(17)-H(17A)	108.6
С(11)-С(17)-Н(17В)	108.6
C(16)-C(17)-H(17B)	108.6
H(17A)-C(17)-H(17B)	107.6
C(1)-O(1)-C(18)	117.5(2)
O(1)-C(18)-H(18A)	109.5
O(1)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(1)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(16)-C(19)-H(19A)	109.5
C(16)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(16)-C(19)-H(19C)	109.5

H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(16)-C(20)-H(20A)	109.5
C(16)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(16)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
O(3)-C(21)-C(22)	115.7(3)
O(3)-C(21)-C(26)	124.5(3)
C(22)-C(21)-C(26)	119.8(3)
C(21)-C(22)-C(23)	121.1(3)
C(21)-C(22)-H(22)	119.4
C(23)-C(22)-H(22)	119.4
C(22)-C(23)-C(24)	119.7(3)
C(22)-C(23)-C(27)	120.3(3)
C(24)-C(23)-C(27)	119.7(3)
C(25)-C(24)-C(23)	118.4(2)
C(25)-C(24)-C(30)	121.9(2)
C(23)-C(24)-C(30)	119.7(2)
C(24)-C(25)-C(26)	122.0(3)
C(24)-C(25)-H(25)	119.0
C(26)-C(25)-H(25)	119.0
C(25)-C(26)-C(21)	118.9(3)
C(25)-C(26)-H(26)	120.5
C(21)-C(26)-H(26)	120.5
C(23)-C(27)-C(28)	112.5(3)
C(23)-C(27)-H(27A)	109.1
C(28)-C(27)-H(27A)	109.1
C(23)-C(27)-H(27B)	109.1
C(28)-C(27)-H(27B)	109.1
H(27A)-C(27)-H(27B)	107.8
C(29)-C(28)-C(27)	112.2(3)
C(29)-C(28)-H(28A)	109.2
C(27)-C(28)-H(28A)	109.2
C(29)-C(28)-H(28B)	109.2
---------------------	----------
C(27)-C(28)-H(28B)	109.2
H(28A)-C(28)-H(28B)	107.9
C(33)-C(29)-C(30)	117.8(2)
C(33)-C(29)-C(28)	122.3(3)
C(30)-C(29)-C(28)	119.7(3)
N(2)-C(30)-C(29)	122.7(2)
N(2)-C(30)-C(24)	117.4(2)
C(29)-C(30)-C(24)	120.0(2)
C(31)-N(2)-C(30)	118.4(2)
N(2)-C(31)-C(32)	123.0(2)
N(2)-C(31)-C(37)	116.7(2)
C(32)-C(31)-C(37)	120.3(2)
C(31)-C(32)-C(33)	117.4(2)
C(31)-C(32)-C(34)	121.8(2)
C(33)-C(32)-C(34)	120.7(3)
C(29)-C(33)-C(32)	120.7(3)
C(29)-C(33)-H(33)	119.6
C(32)-C(33)-H(33)	119.6
O(4)-C(34)-C(32)	121.4(3)
O(4)-C(34)-C(35)	122.0(3)
C(32)-C(34)-C(35)	116.6(3)
C(34)-C(35)-C(36)	114.0(2)
C(34)-C(35)-H(35A)	108.8
C(36)-C(35)-H(35A)	108.8
C(34)-C(35)-H(35B)	108.8
C(36)-C(35)-H(35B)	108.8
H(35A)-C(35)-H(35B)	107.7
C(39)-C(36)-C(40)	109.7(3)
C(39)-C(36)-C(37)	109.4(3)
C(40)-C(36)-C(37)	110.8(2)
C(39)-C(36)-C(35)	109.4(2)
C(40)-C(36)-C(35)	109.8(3)
C(37)-C(36)-C(35)	107.6(3)
C(31)-C(37)-C(36)	114.1(2)

C(31)-C(37)-H(37A)	108.7
C(36)-C(37)-H(37A)	108.7
C(31)-C(37)-H(37B)	108.7
C(36)-C(37)-H(37B)	108.7
H(37A)-C(37)-H(37B)	107.6
C(21)-O(3)-C(38)	117.5(2)
O(3)-C(38)-H(38A)	109.5
O(3)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38B)	109.5
O(3)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5
C(36)-C(39)-H(39A)	109.5
C(36)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39B)	109.5
C(36)-C(39)-H(39C)	109.5
H(39A)-C(39)-H(39C)	109.5
H(39B)-C(39)-H(39C)	109.5
C(36)-C(40)-H(40A)	109.5
C(36)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
C(36)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	46(2)	38(2)	41(2)	16(1)	12(1)	20(1)
C(2)	45(2)	36(2)	44(2)	7(1)	5(2)	14(1)
C(3)	40(2)	36(2)	38(2)	10(1)	6(1)	12(1)
C(4)	36(2)	34(1)	30(2)	12(1)	7(1)	12(1)
C(5)	38(2)	38(2)	31(2)	6(1)	2(1)	14(1)
C(6)	37(2)	43(2)	39(2)	11(1)	4(1)	18(1)
C(7)	40(2)	37(2)	65(2)	2(2)	2(2)	6(1)
C(8)	36(2)	49(2)	41(2)	2(1)	0(1)	15(1)
C(9)	31(1)	38(2)	34(2)	8(1)	5(1)	9(1)
C(10)	33(1)	33(1)	29(2)	12(1)	7(1)	10(1)
N(1)	32(1)	35(1)	33(1)	10(1)	6(1)	12(1)
C(11)	32(1)	36(1)	31(2)	11(1)	7(1)	12(1)
C(12)	32(1)	36(1)	33(2)	10(1)	5(1)	11(1)
C(13)	30(1)	42(2)	40(2)	10(1)	2(1)	9(1)
C(14)	34(2)	44(2)	39(2)	12(1)	6(1)	17(1)
C(15)	41(2)	41(2)	47(2)	10(1)	7(2)	21(1)
C(16)	35(2)	34(1)	37(2)	5(1)	5(1)	14(1)
C(17)	34(2)	40(2)	40(2)	6(1)	5(1)	12(1)
O(1)	48(1)	43(1)	64(2)	6(1)	10(1)	23(1)
C(18)	49(2)	53(2)	73(3)	9(2)	12(2)	29(2)
O(2)	36(1)	64(1)	58(2)	4(1)	-2(1)	24(1)
C(19)	46(2)	38(2)	54(2)	-2(1)	0(2)	16(1)
C(20)	54(2)	49(2)	41(2)	13(2)	14(2)	20(2)
C(21)	49(2)	39(2)	43(2)	18(1)	10(2)	15(1)
C(22)	53(2)	40(2)	50(2)	17(2)	1(2)	-1(1)
C(23)	47(2)	37(2)	38(2)	8(1)	-1(1)	4(1)
C(24)	30(1)	35(1)	32(2)	9(1)	9(1)	12(1)
C(25)	32(2)	42(2)	46(2)	18(1)	2(1)	7(1)
C(26)	38(2)	50(2)	45(2)	22(2)	3(1)	14(1)
C(27)	87(3)	60(2)	67(3)	24(2)	-27(2)	-22(2)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for Lee-A. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

C(28)	45(2)	81(3)	70(3)	37(2)	-18(2)	-14(2)
C(29)	32(2)	47(2)	40(2)	13(1)	2(1)	10(1)
C(30)	28(1)	35(1)	29(2)	7(1)	7(1)	12(1)
N(2)	34(1)	32(1)	30(1)	9(1)	4(1)	10(1)
C(31)	34(1)	35(1)	32(2)	9(1)	5(1)	13(1)
C(32)	36(2)	39(2)	32(2)	10(1)	5(1)	17(1)
C(33)	34(2)	55(2)	36(2)	15(1)	-1(1)	15(1)
C(34)	47(2)	51(2)	36(2)	17(1)	8(2)	26(1)
C(35)	58(2)	44(2)	49(2)	23(2)	7(2)	16(2)
C(36)	44(2)	39(2)	45(2)	20(1)	4(2)	7(1)
C(37)	49(2)	42(2)	40(2)	15(1)	-2(2)	5(1)
O(3)	73(2)	46(1)	54(2)	26(1)	4(1)	8(1)
C(38)	72(2)	61(2)	55(2)	31(2)	4(2)	19(2)
O(4)	64(2)	66(2)	47(2)	25(1)	-5(1)	21(1)
C(39)	62(2)	55(2)	71(3)	35(2)	-5(2)	-6(2)
C(40)	52(2)	67(2)	65(3)	28(2)	19(2)	20(2)

	X	У	Z	U(eq)
H(2)	4748	5487	-864	51
H(5)	6930	9489	1137	43
H(6)	8224	8220	623	47
H(7A)	2363	6258	8	62
H(7B)	2616	5932	-1059	62
H(8A)	2854	7972	-1133	53
H(8B)	1419	7399	-757	53
H(13)	1226	9316	299	46
H(15A)	1955	12852	2822	50
H(15B)	3089	13234	2151	50
H(17A)	5319	12671	2317	47
H(17B)	5355	11814	2991	47
H(18A)	9155	7095	-501	85
H(18B)	9082	5683	-641	85
H(18C)	8982	6499	360	85
H(19A)	4946	14379	3435	73
H(19B)	5272	13744	4206	73
H(19C)	3906	14096	4181	73
H(20A)	3748	11543	4156	70
H(20B)	2542	10756	3312	70
H(20C)	2392	11899	4080	70
H(22)	11212	9345	4938	61
H(25)	7653	5476	4172	48
H(26)	7916	6763	3172	52
H(27A)	10788	8683	6756	100
H(27B)	12142	8844	6247	100
H(28A)	12135	6889	6270	87
H(28B)	11874	7504	7292	87
H(33)	10613	5524	7636	49

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for Lee-A.

H(35A)	7004	1945	7843	58
H(35B)	7531	1554	6865	58
H(37A)	6664	2169	5468	55
H(37B)	5747	3039	5653	55
H(38A)	9088	7841	2171	92
H(38B)	9377	9274	2210	92
H(38C)	8083	8523	2642	92
H(39A)	4568	766	6982	100
H(39B)	5196	492	6027	100
H(39C)	4076	1165	6116	100
H(40A)	6262	4092	7680	89
H(40B)	5202	2955	7979	89
H(40C)	4738	3395	7127	89

Table 6. Torsion angles [°] for Lee-A.

O(1)-C(1)-C(2)-C(3)	-178.7(3)
C(6)-C(1)-C(2)-C(3)	0.8(4)
C(1)-C(2)-C(3)-C(4)	-0.6(4)
C(1)-C(2)-C(3)-C(7)	-179.3(3)
C(2)-C(3)-C(4)-C(5)	-0.2(4)
C(7)-C(3)-C(4)-C(5)	178.5(3)
C(2)-C(3)-C(4)-C(10)	179.5(3)
C(7)-C(3)-C(4)-C(10)	-1.8(4)
C(3)-C(4)-C(5)-C(6)	0.9(4)
C(10)-C(4)-C(5)-C(6)	-178.8(2)
C(4)-C(5)-C(6)-C(1)	-0.7(4)
O(1)-C(1)-C(6)-C(5)	179.3(3)
C(2)-C(1)-C(6)-C(5)	-0.1(4)
C(2)-C(3)-C(7)-C(8)	-144.7(3)
C(4)-C(3)-C(7)-C(8)	36.6(4)
C(3)-C(7)-C(8)-C(9)	-55.2(4)
C(7)-C(8)-C(9)-C(13)	-142.1(3)
C(7)-C(8)-C(9)-C(10)	41.9(4)
C(13)-C(9)-C(10)-N(1)	-2.3(4)
C(8)-C(9)-C(10)-N(1)	174.0(2)
C(13)-C(9)-C(10)-C(4)	176.9(2)
C(8)-C(9)-C(10)-C(4)	-6.8(4)
C(5)-C(4)-C(10)-N(1)	-15.7(4)
C(3)-C(4)-C(10)-N(1)	164.6(2)
C(5)-C(4)-C(10)-C(9)	165.0(2)
C(3)-C(4)-C(10)-C(9)	-14.7(4)
C(9)-C(10)-N(1)-C(11)	0.5(4)
C(4)-C(10)-N(1)-C(11)	-178.7(2)
C(10)-N(1)-C(11)-C(12)	2.5(4)
C(10)-N(1)-C(11)-C(17)	-177.2(2)
N(1)-C(11)-C(12)-C(13)	-3.7(4)
C(17)-C(11)-C(12)-C(13)	176.0(2)
N(1)-C(11)-C(12)-C(14)	178.7(2)

C(17)-C(11)-C(12)-C(14)	-1.6(4)
C(10)-C(9)-C(13)-C(12)	1.0(4)
C(8)-C(9)-C(13)-C(12)	-175.0(3)
C(11)-C(12)-C(13)-C(9)	1.8(4)
C(14)-C(12)-C(13)-C(9)	179.4(2)
C(13)-C(12)-C(14)-O(2)	7.9(4)
C(11)-C(12)-C(14)-O(2)	-174.6(3)
C(13)-C(12)-C(14)-C(15)	-170.5(3)
C(11)-C(12)-C(14)-C(15)	7.0(4)
O(2)-C(14)-C(15)-C(16)	146.5(3)
C(12)-C(14)-C(15)-C(16)	-35.1(4)
C(14)-C(15)-C(16)-C(17)	55.4(3)
C(14)-C(15)-C(16)-C(19)	174.8(3)
C(14)-C(15)-C(16)-C(20)	-64.9(3)
N(1)-C(11)-C(17)-C(16)	-155.8(2)
C(12)-C(11)-C(17)-C(16)	24.5(4)
C(19)-C(16)-C(17)-C(11)	-169.1(2)
C(15)-C(16)-C(17)-C(11)	-49.6(3)
C(20)-C(16)-C(17)-C(11)	70.9(3)
C(6)-C(1)-O(1)-C(18)	-4.0(4)
C(2)-C(1)-O(1)-C(18)	175.4(3)
O(3)-C(21)-C(22)-C(23)	-178.2(3)
C(26)-C(21)-C(22)-C(23)	1.7(5)
C(21)-C(22)-C(23)-C(24)	-0.8(5)
C(21)-C(22)-C(23)-C(27)	-174.1(4)
C(22)-C(23)-C(24)-C(25)	-0.8(5)
C(27)-C(23)-C(24)-C(25)	172.4(3)
C(22)-C(23)-C(24)-C(30)	-179.5(3)
C(27)-C(23)-C(24)-C(30)	-6.2(5)
C(23)-C(24)-C(25)-C(26)	1.7(5)
C(30)-C(24)-C(25)-C(26)	-179.7(3)
C(24)-C(25)-C(26)-C(21)	-0.8(5)
O(3)-C(21)-C(26)-C(25)	179.0(3)
C(22)-C(21)-C(26)-C(25)	-0.9(5)
C(22)-C(23)-C(27)-C(28)	-152.8(4)

C(24)-C(23)-C(27)-C(28)	34.0(5)
C(23)-C(27)-C(28)-C(29)	-46.7(5)
C(27)-C(28)-C(29)-C(33)	-150.6(4)
C(27)-C(28)-C(29)-C(30)	34.5(5)
C(33)-C(29)-C(30)-N(2)	-1.3(4)
C(28)-C(29)-C(30)-N(2)	173.8(3)
C(33)-C(29)-C(30)-C(24)	178.0(3)
C(28)-C(29)-C(30)-C(24)	-6.8(4)
C(25)-C(24)-C(30)-N(2)	-7.9(4)
C(23)-C(24)-C(30)-N(2)	170.7(3)
C(25)-C(24)-C(30)-C(29)	172.7(3)
C(23)-C(24)-C(30)-C(29)	-8.7(4)
C(29)-C(30)-N(2)-C(31)	0.8(4)
C(24)-C(30)-N(2)-C(31)	-178.5(2)
C(30)-N(2)-C(31)-C(32)	0.1(4)
C(30)-N(2)-C(31)-C(37)	-179.6(3)
N(2)-C(31)-C(32)-C(33)	-0.4(4)
C(37)-C(31)-C(32)-C(33)	179.3(3)
N(2)-C(31)-C(32)-C(34)	-179.4(3)
C(37)-C(31)-C(32)-C(34)	0.3(4)
C(30)-C(29)-C(33)-C(32)	1.0(5)
C(28)-C(29)-C(33)-C(32)	-174.0(3)
C(31)-C(32)-C(33)-C(29)	-0.2(4)
C(34)-C(32)-C(33)-C(29)	178.9(3)
C(31)-C(32)-C(34)-O(4)	-177.2(3)
C(33)-C(32)-C(34)-O(4)	3.8(5)
C(31)-C(32)-C(34)-C(35)	3.7(4)
C(33)-C(32)-C(34)-C(35)	-175.3(3)
O(4)-C(34)-C(35)-C(36)	147.7(3)
C(32)-C(34)-C(35)-C(36)	-33.1(4)
C(34)-C(35)-C(36)-C(39)	174.8(3)
C(34)-C(35)-C(36)-C(40)	-64.7(3)
C(34)-C(35)-C(36)-C(37)	56.0(4)
N(2)-C(31)-C(37)-C(36)	-154.9(3)
C(32)-C(31)-C(37)-C(36)	25.4(4)

C(39)-C(36)-C(37)-C(31)	-170.4(3)
C(40)-C(36)-C(37)-C(31)	68.5(3)
C(35)-C(36)-C(37)-C(31)	-51.6(3)
C(22)-C(21)-O(3)-C(38)	176.5(3)
C(26)-C(21)-O(3)-C(38)	-3.4(5)

Crystal refinement data for compound 7k

Empirical Formula-C₁₈H₁₇NO, M = 263.32, Monoclinic, Space group P2₁/n, a = 5.8897(12) Å, b = 19.960(4) Å, c = 11.987(3) Å, V = 1372.6(5) Å³, Z = 4, T = 223 (2) K, pcalcd = 1.274 Mg/m³, $2\Theta_{max.} = 28.576^{\circ}$. Refinement of 560 parameters on 3456 independent reflections out of 22261 collected reflections (R_{int} = 0.1023) led to R1 = 0.0567 [I > 2 σ (I)], wR2 = 0. 1594 (all data) and S = 1.042 with the largest difference peak and hole of 0.249 and -0.298 e.Å⁻³ respectively. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 2077449). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif

Table 1. Crystal data and structure refinement for E	C.	
Identification code	Lee-C	
Empirical formula	C18 H17 N O	
Formula weight	263.32	
Temperature	223(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 5.8897(12) Å	<i>α</i> = 90°.
	b = 19.960(4) Å	$\beta = 103.094(7)^{\circ}.$
	c = 11.987(3) Å	$\gamma = 90^{\circ}.$
Volume	1372.6(5) Å ³	
Z	4	
Density (calculated)	1.274 Mg/m ³	
Absorption coefficient	0.079 mm ⁻¹	
F(000)	560	
Crystal size	$0.230 \ge 0.210 \ge 0.160 \text{ mm}^3$	
Theta range for data collection	2.685 to 28.576°.	
Index ranges	-7<=h<=7, -26<=k<=26, -15<=	=l<=16
Reflections collected	22261	
Independent reflections	3456 [R(int) = 0.1023]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivaler	its
Max. and min. transmission	0.6934 and 0.6175	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3456 / 4 / 213	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0567, wR2 = 0.1367	
R indices (all data)	R1 = 0.0915, wR2 = 0.1594	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.249 and -0.298 e.Å ⁻³	

	X	у	Z	U(eq)
 O(1)	5653(2)	3856(1)	1604(1)	47(1)
C(1)	4464(3)	3550(1)	2141(2)	34(1)
C(2)	2867(3)	2982(1)	1621(1)	41(1)
C(3A)	718(4)	2979(1)	2121(2)	44(1)
C(3B)	1900(20)	2598(6)	2434(9)	53(3)
C(4)	1237(3)	2947(1)	3411(2)	46(1)
C(5)	3107(3)	3428(1)	3984(2)	35(1)
C(6)	4645(3)	3704(1)	3375(1)	32(1)
C(7)	6430(3)	4128(1)	3940(1)	34(1)
C(8)	6618(3)	4253(1)	5082(1)	32(1)
C(9)	4966(3)	3963(1)	5614(1)	33(1)
N(1)	3227(2)	3563(1)	5099(1)	37(1)
C(10)	5498(3)	4162(1)	6820(1)	36(1)
C(11)	7502(3)	4560(1)	7021(2)	37(1)
C(12)	8366(3)	4648(1)	5944(1)	38(1)
C(13)	8426(4)	4809(1)	8109(2)	49(1)
C(14)	7302(4)	4659(1)	8975(2)	58(1)
C(15)	5319(4)	4266(1)	8775(2)	55(1)
C(16)	4385(4)	4013(1)	7696(2)	46(1)
C(17A)	4322(4)	2336(1)	1946(2)	50(1)
C(18A)	2193(5)	3034(2)	313(2)	59(1)
C(17B)	3850(20)	2592(6)	729(9)	71(4)
C(18B)	812(16)	3369(6)	870(11)	88(5)
C(17B) C(18B)	812(16)	2392(6) 3369(6)	870(11)	71(4) 88(5)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Lee-C. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.216(2)
C(1)-C(6)	1.491(2)
C(1)-C(2)	1.515(2)
C(2)-C(3B)	1.454(11)
C(2)-C(3A)	1.518(3)
C(2)-C(18A)	1.5311(18)
C(2)-C(17B)	1.538(2)
C(2)-C(18B)	1.543(2)
C(2)-C(17A)	1.5482(17)
C(3A)-C(4)	1.509(3)
C(3A)-H(3A)	0.9800
C(3A)-H(3B)	0.9800
C(3B)-C(4)	1.489(10)
C(3B)-H(3B1)	0.9800
C(3B)-H(3B2)	0.9800
C(4)-C(5)	1.504(2)
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(5)-N(1)	1.349(2)
C(5)-C(6)	1.400(2)
C(6)-C(7)	1.400(2)
C(7)-C(8)	1.370(2)
C(7)-H(7)	0.9400
C(8)-C(9)	1.403(2)
C(8)-C(12)	1.506(2)
C(9)-N(1)	1.335(2)
C(9)-C(10)	1.463(2)
C(10)-C(16)	1.390(2)
C(10)-C(11)	1.398(2)
C(11)-C(13)	1.386(3)
C(11)-C(12)	1.501(2)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800

Table 3. Bond lengths [Å] and angles $[\circ]$ for Lee-C.

C(13)-C(14)	1.384(3)
C(13)-H(13)	0.9400
C(14)-C(15)	1.382(3)
C(14)-H(14)	0.9400
C(15)-C(16)	1.382(3)
C(15)-H(15)	0.9400
C(16)-H(16)	0.9400
C(17A)-H(17A)	0.9700
C(17A)-H(17B)	0.9700
C(17A)-H(17C)	0.9700
C(18A)-H(18A)	0.9700
C(18A)-H(18B)	0.9700
C(18A)-H(18C)	0.9700
C(17B)-H(17D)	0.9700
C(17B)-H(17E)	0.9700
C(17B)-H(17F)	0.9700
C(18B)-H(18D)	0.9700
C(18B)-H(18E)	0.9700
C(18B)-H(18F)	0.9700
O(1)-C(1)-C(6)	120.05(15)
O(1)-C(1)-C(2)	122.42(15)
C(6)-C(1)-C(2)	117.43(14)
C(3B)-C(2)-C(1)	114.8(4)
C(1)-C(2)-C(3A)	109.59(15)
C(1)-C(2)-C(18A)	111.26(16)
C(3A)-C(2)-C(18A)	111.01(18)
C(3B)-C(2)-C(17B)	117.9(7)
C(1)-C(2)-C(17B)	111.5(5)
C(3B)-C(2)-C(18B)	106.3(7)
C(1)-C(2)-C(18B)	101.3(5)
C(17B)-C(2)-C(18B)	102.6(8)
C(1)-C(2)-C(17A)	105.28(15)
C(3A)-C(2)-C(17A)	111.16(18)
C(18A)-C(2)-C(17A)	108.39(19)

C(4)-C(3A)-C(2)	114.32(18)
C(4)-C(3A)-H(3A)	108.7
C(2)-C(3A)-H(3A)	108.7
C(4)-C(3A)-H(3B)	108.7
C(2)-C(3A)-H(3B)	108.7
H(3A)-C(3A)-H(3B)	107.6
C(2)-C(3B)-C(4)	119.6(7)
C(2)-C(3B)-H(3B1)	107.4
C(4)-C(3B)-H(3B1)	107.4
C(2)-C(3B)-H(3B2)	107.4
C(4)-C(3B)-H(3B2)	107.4
H(3B1)-C(3B)-H(3B2)	107.0
C(3B)-C(4)-C(5)	111.3(4)
C(5)-C(4)-C(3A)	113.50(16)
C(5)-C(4)-H(4A)	108.9
C(3A)-C(4)-H(4A)	108.9
C(5)-C(4)-H(4B)	108.9
C(3A)-C(4)-H(4B)	108.9
H(4A)-C(4)-H(4B)	107.7
N(1)-C(5)-C(6)	122.92(15)
N(1)-C(5)-C(4)	116.66(15)
C(6)-C(5)-C(4)	120.41(15)
C(7)-C(6)-C(5)	119.32(15)
C(7)-C(6)-C(1)	118.82(14)
C(5)-C(6)-C(1)	121.85(15)
C(8)-C(7)-C(6)	118.36(15)
C(8)-C(7)-H(7)	120.8
C(6)-C(7)-H(7)	120.8
C(7)-C(8)-C(9)	118.12(15)
C(7)-C(8)-C(12)	131.93(15)
C(9)-C(8)-C(12)	109.93(15)
N(1)-C(9)-C(8)	125.12(15)
N(1)-C(9)-C(10)	126.13(15)
C(8)-C(9)-C(10)	108.74(14)
C(9)-N(1)-C(5)	116.11(14)

C(16)-C(10)-C(11)	121.03(17)
C(16)-C(10)-C(9)	131.00(17)
C(11)-C(10)-C(9)	107.96(15)
C(13)-C(11)-C(10)	120.10(17)
C(13)-C(11)-C(12)	129.08(17)
C(10)-C(11)-C(12)	110.82(15)
C(11)-C(12)-C(8)	102.53(14)
C(11)-C(12)-H(12A)	111.3
C(8)-C(12)-H(12A)	111.3
C(11)-C(12)-H(12B)	111.3
C(8)-C(12)-H(12B)	111.3
H(12A)-C(12)-H(12B)	109.2
C(14)-C(13)-C(11)	118.5(2)
C(14)-C(13)-H(13)	120.8
C(11)-C(13)-H(13)	120.8
C(15)-C(14)-C(13)	121.40(19)
C(15)-C(14)-H(14)	119.3
C(13)-C(14)-H(14)	119.3
C(14)-C(15)-C(16)	120.8(2)
C(14)-C(15)-H(15)	119.6
C(16)-C(15)-H(15)	119.6
C(15)-C(16)-C(10)	118.24(19)
C(15)-C(16)-H(16)	120.9
C(10)-C(16)-H(16)	120.9
C(2)-C(17A)-H(17A)	109.5
C(2)-C(17A)-H(17B)	109.5
H(17A)-C(17A)-H(17B)	109.5
C(2)-C(17A)-H(17C)	109.5
H(17A)-C(17A)-H(17C)	109.5
H(17B)-C(17A)-H(17C)	109.5
C(2)-C(18A)-H(18A)	109.5
C(2)-C(18A)-H(18B)	109.5
H(18A)-C(18A)-H(18B)	109.5
C(2)-C(18A)-H(18C)	109.5
H(18A)-C(18A)-H(18C)	109.5

H(18B)-C(18A)-H(18C)	109.5
C(2)-C(17B)-H(17D)	109.5
C(2)-C(17B)-H(17E)	109.5
H(17D)-C(17B)-H(17E)	109.5
C(2)-C(17B)-H(17F)	109.5
H(17D)-C(17B)-H(17F)	109.5
H(17E)-C(17B)-H(17F)	109.5
C(2)-C(18B)-H(18D)	109.5
C(2)-C(18B)-H(18E)	109.5
H(18D)-C(18B)-H(18E)	109.5
C(2)-C(18B)-H(18F)	109.5
H(18D)-C(18B)-H(18F)	109.5
H(18E)-C(18B)-H(18F)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	52(1)	54(1)	38(1)	-3(1)	18(1)	-11(1)
C(1)	33(1)	35(1)	36(1)	0(1)	9(1)	2(1)
C(2)	40(1)	46(1)	38(1)	-9(1)	9(1)	-7(1)
C(3A)	30(1)	49(1)	50(2)	-10(1)	4(1)	-4(1)
C(3B)	62(7)	49(6)	48(6)	-15(5)	16(5)	-16(5)
C(4)	40(1)	53(1)	50(1)	-11(1)	18(1)	-15(1)
C(5)	33(1)	35(1)	37(1)	-2(1)	10(1)	-2(1)
C(6)	32(1)	31(1)	32(1)	0(1)	7(1)	0(1)
C(7)	33(1)	35(1)	35(1)	1(1)	10(1)	-3(1)
C(8)	32(1)	32(1)	33(1)	1(1)	7(1)	-1(1)
C(9)	34(1)	30(1)	33(1)	2(1)	8(1)	1(1)
N(1)	39(1)	38(1)	38(1)	-1(1)	14(1)	-5(1)
C(10)	42(1)	33(1)	33(1)	2(1)	9(1)	4(1)
C(11)	40(1)	38(1)	32(1)	0(1)	4(1)	4(1)
C(12)	38(1)	42(1)	34(1)	0(1)	5(1)	-4(1)
C(13)	52(1)	56(1)	37(1)	-6(1)	4(1)	-3(1)
C(14)	67(2)	72(1)	34(1)	-9(1)	6(1)	-1(1)
C(15)	70(1)	64(1)	36(1)	1(1)	20(1)	2(1)
C(16)	54(1)	49(1)	39(1)	2(1)	17(1)	0(1)
C(17A)	48(1)	38(1)	65(2)	-10(1)	18(1)	-3(1)
C(18A)	64(2)	74(2)	37(2)	-11(1)	7(1)	-18(2)
C(17B)	77(8)	74(8)	67(8)	-28(7)	30(7)	-13(7)
C(18B)	89(10)	107(11)	63(9)	-8(8)	6(7)	-40(9)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Lee-C. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	х	У	Z	U(eq)
H(3A)	-188	3385	1869	52
H(3B)	-253	2594	1811	52
H(3B1)	3034	2250	2755	63
H(3B2)	505	2368	2000	63
H(4A)	-195	3045	3667	56
H(4B)	1721	2490	3656	56
H(7)	7473	4323	3546	41
H(12A)	9942	4466	6030	46
H(12B)	8365	5121	5725	46
H(13)	9783	5072	8255	59
H(14)	7900	4829	9715	70
H(15)	4598	4170	9380	66
H(16)	3032	3748	7557	56
H(17A)	3343	1947	1707	74
H(17B)	4923	2322	2769	74
H(17C)	5612	2333	1566	74
H(18A)	1314	3443	94	89
H(18B)	1246	2651	1	89
H(18C)	3593	3042	15	89
H(17D)	5204	2335	1115	106
H(17E)	4311	2905	200	106
H(17F)	2673	2290	310	106
H(18D)	-261	3056	406	132
H(18E)	1398	3677	374	132
H(18F)	6	3620	1357	132

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for Lee-C.

Table 6. Torsion angles [°] for Lee-C.

O(1)-C(1)-C(2)-C(3B)	169.6(6)
C(6)-C(1)-C(2)-C(3B)	-6.9(6)
O(1)-C(1)-C(2)-C(3A)	-146.32(19)
C(6)-C(1)-C(2)-C(3A)	37.1(2)
O(1)-C(1)-C(2)-C(18A)	-23.2(3)
C(6)-C(1)-C(2)-C(18A)	160.25(18)
O(1)-C(1)-C(2)-C(17B)	32.2(6)
C(6)-C(1)-C(2)-C(17B)	-144.4(6)
O(1)-C(1)-C(2)-C(18B)	-76.3(6)
C(6)-C(1)-C(2)-C(18B)	107.1(6)
O(1)-C(1)-C(2)-C(17A)	94.0(2)
C(6)-C(1)-C(2)-C(17A)	-82.54(19)
C(1)-C(2)-C(3A)-C(4)	-55.1(2)
C(18A)-C(2)-C(3A)-C(4)	-178.42(19)
C(17A)-C(2)-C(3A)-C(4)	60.8(2)
C(1)-C(2)-C(3B)-C(4)	36.7(11)
C(17B)-C(2)-C(3B)-C(4)	171.3(8)
C(18B)-C(2)-C(3B)-C(4)	-74.4(10)
C(2)-C(3B)-C(4)-C(5)	-45.6(10)
C(2)-C(3A)-C(4)-C(5)	46.5(3)
C(3B)-C(4)-C(5)-N(1)	-153.6(6)
C(3A)-C(4)-C(5)-N(1)	162.38(17)
C(3B)-C(4)-C(5)-C(6)	25.4(6)
C(3A)-C(4)-C(5)-C(6)	-18.7(3)
N(1)-C(5)-C(6)-C(7)	1.4(2)
C(4)-C(5)-C(6)-C(7)	-177.41(16)
N(1)-C(5)-C(6)-C(1)	-179.57(15)
C(4)-C(5)-C(6)-C(1)	1.6(2)
O(1)-C(1)-C(6)-C(7)	-9.3(2)
C(2)-C(1)-C(6)-C(7)	167.32(14)
O(1)-C(1)-C(6)-C(5)	171.65(15)
C(2)-C(1)-C(6)-C(5)	-11.7(2)
C(5)-C(6)-C(7)-C(8)	0.7(2)

C(1)-C(6)-C(7)-C(8)	-178.33(14)
C(6)-C(7)-C(8)-C(9)	-1.9(2)
C(6)-C(7)-C(8)-C(12)	176.53(16)
C(7)-C(8)-C(9)-N(1)	1.1(2)
C(12)-C(8)-C(9)-N(1)	-177.62(15)
C(7)-C(8)-C(9)-C(10)	-179.88(14)
C(12)-C(8)-C(9)-C(10)	1.40(18)
C(8)-C(9)-N(1)-C(5)	0.9(2)
C(10)-C(9)-N(1)-C(5)	-177.91(15)
C(6)-C(5)-N(1)-C(9)	-2.2(2)
C(4)-C(5)-N(1)-C(9)	176.70(15)
N(1)-C(9)-C(10)-C(16)	-1.6(3)
C(8)-C(9)-C(10)-C(16)	179.40(17)
N(1)-C(9)-C(10)-C(11)	177.66(15)
C(8)-C(9)-C(10)-C(11)	-1.34(18)
C(16)-C(10)-C(11)-C(13)	0.6(3)
C(9)-C(10)-C(11)-C(13)	-178.75(16)
C(16)-C(10)-C(11)-C(12)	-179.89(16)
C(9)-C(10)-C(11)-C(12)	0.76(19)
C(13)-C(11)-C(12)-C(8)	179.52(18)
C(10)-C(11)-C(12)-C(8)	0.06(18)
C(7)-C(8)-C(12)-C(11)	-179.38(17)
C(9)-C(8)-C(12)-C(11)	-0.90(18)
C(10)-C(11)-C(13)-C(14)	-0.7(3)
C(12)-C(11)-C(13)-C(14)	179.84(18)
C(11)-C(13)-C(14)-C(15)	0.7(3)
C(13)-C(14)-C(15)-C(16)	-0.5(3)
C(14)-C(15)-C(16)-C(10)	0.3(3)
C(11)-C(10)-C(16)-C(15)	-0.4(3)
C(9)-C(10)-C(16)-C(15)	178.81(17)

Crystal refinement data for compound 10j

Empirical Formula-C₂₃H₂₁N, M = 311.41, Orthorhombic, Space group Pbcn, a = 11.1052(10) Å, b = 16.1802(15) Å, c = 9.2208(9) Å, V = 1656.8(3) Å³, Z = 4, T = 223 (2) K, pcalcd = 1.248 Mg/m³, $2\Theta_{max.} = 28.339^{\circ}$. Refinement of 664 parameters on 2066 independent reflections out of 21473 collected reflections (R_{int} = 0.0563) led to R1 = 0.0412 [I >2 σ (I)], wR2 = 0. 1118 (all data) and S = 1.061 with the largest difference peak and hole of 0.223 and -0.183 e.Å⁻³ respectively. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 2077450). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif

Table 1. Crystal data and structure refinement for E	сс-Б.	
Identification code	Lee-B	
Empirical formula	C23 H21 N	
Formula weight	311.41	
Temperature	223(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbcn	
Unit cell dimensions	a = 11.1052(10) Å	$\alpha = 90^{\circ}$.
	b = 16.1802(15) Å	$\beta = 90^{\circ}$.
	c = 9.2208(9) Å	$\gamma = 90^{\circ}.$
Volume	1656.8(3) Å ³	
Z	4	
Density (calculated)	1.248 Mg/m ³	
Absorption coefficient	0.072 mm ⁻¹	
F(000)	664	
Crystal size	0.420 x 0.230 x 0.130 mm ³	
Theta range for data collection	3.135 to 28.339°.	
Index ranges	-14<=h<=14, -21<=k<=20, -11<=l<=12	
Reflections collected	21473	
Independent reflections	2066 [R(int) = 0.0563]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.6458	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2066 / 0 / 110	
Goodness-of-fit on F ²	1.061	
Final R indices [I>2sigma(I)]	R1 = 0.0412, $wR2 = 0.1000$	
R indices (all data)	R1 = 0.0577, wR2 = 0.1118	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.223 and -0.183 e.Å ⁻³	

	Х	У	Z	U(eq)
N(1)	5000	6211(1)	7500	26(1)
C(1)	4208(1)	5788(1)	6683(1)	25(1)
C(2)	3388(1)	6288(1)	5757(1)	28(1)
C(3)	3847(1)	6950(1)	4968(1)	35(1)
C(4)	3118(1)	7403(1)	4044(2)	44(1)
C(5)	1915(1)	7205(1)	3912(2)	47(1)
C(6)	1446(1)	6560(1)	4716(2)	42(1)
C(7)	2160(1)	6092(1)	5645(1)	33(1)
C(8)	1633(1)	5409(1)	6553(2)	40(1)
C(9)	1991(1)	4540(1)	6072(2)	40(1)
C(10)	3320(1)	4473(1)	5648(1)	32(1)
C(11)	4175(1)	4920(1)	6642(1)	26(1)
C(12)	5000	4503(1)	7500	27(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Lee-B. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(1)	1.3448(13)
N(1)-C(1)#1	1.3448(13)
C(1)-C(11)	1.4049(16)
C(1)-C(2)	1.4871(16)
C(2)-C(3)	1.3920(17)
C(2)-C(7)	1.4044(17)
C(3)-C(4)	1.3853(18)
C(3)-H(3)	0.9400
C(4)-C(5)	1.379(2)
C(4)-H(4)	0.9400
C(5)-C(6)	1.382(2)
C(5)-H(5)	0.9400
C(6)-C(7)	1.3914(18)
C(6)-H(6)	0.9400
C(7)-C(8)	1.5044(19)
C(8)-C(9)	1.5273(19)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(9)-C(10)	1.5303(18)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(10)-C(11)	1.5053(16)
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(11)-C(12)	1.3868(14)
C(12)-C(11)#1	1.3868(14)
C(12)-H(12)	0.9400
C(1)-N(1)-C(1)#1	118.88(14)
N(1)-C(1)-C(11)	122.72(11)
N(1)-C(1)-C(2)	116.48(10)
C(11)-C(1)-C(2)	120.75(10)
C(3)-C(2)-C(7)	119.43(11)

Table 3. Bond lengths [Å] and angles $[\circ]$ for Lee-B.

C(3)-C(2)-C(1)	119.62(11)
C(7)-C(2)-C(1)	120.95(11)
C(4)-C(3)-C(2)	120.99(13)
C(4)-C(3)-H(3)	119.5
C(2)-C(3)-H(3)	119.5
C(5)-C(4)-C(3)	119.81(14)
C(5)-C(4)-H(4)	120.1
C(3)-C(4)-H(4)	120.1
C(4)-C(5)-C(6)	119.59(13)
C(4)-C(5)-H(5)	120.2
C(6)-C(5)-H(5)	120.2
C(5)-C(6)-C(7)	121.77(13)
C(5)-C(6)-H(6)	119.1
C(7)-C(6)-H(6)	119.1
C(6)-C(7)-C(2)	118.40(12)
C(6)-C(7)-C(8)	121.37(12)
C(2)-C(7)-C(8)	120.20(11)
C(7)-C(8)-C(9)	114.41(11)
C(7)-C(8)-H(8A)	108.7
C(9)-C(8)-H(8A)	108.7
C(7)-C(8)-H(8B)	108.7
C(9)-C(8)-H(8B)	108.7
H(8A)-C(8)-H(8B)	107.6
C(8)-C(9)-C(10)	113.00(11)
C(8)-C(9)-H(9A)	109.0
C(10)-C(9)-H(9A)	109.0
C(8)-C(9)-H(9B)	109.0
C(10)-C(9)-H(9B)	109.0
H(9A)-C(9)-H(9B)	107.8
C(11)-C(10)-C(9)	114.73(11)
C(11)-C(10)-H(10A)	108.6
C(9)-C(10)-H(10A)	108.6
C(11)-C(10)-H(10B)	108.6
C(9)-C(10)-H(10B)	108.6
H(10A)-C(10)-H(10B)	107.6

C(12)-C(11)-C(1)	117.02(11)
C(12)-C(11)-C(10)	121.98(11)
C(1)-C(11)-C(10)	120.92(11)
C(11)#1-C(12)-C(11)	121.65(15)
C(11)#1-C(12)-H(12)	119.2
C(11)-C(12)-H(12)	119.2

#1 -x+1,y,-z+3/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	25(1)	28(1)	25(1)	0	0(1)	0
C(1)	24(1)	30(1)	23(1)	-1(1)	2(1)	1(1)
C(2)	30(1)	30(1)	24(1)	-3(1)	-1(1)	5(1)
C(3)	39(1)	28(1)	38(1)	0(1)	-3(1)	3(1)
C(4)	58(1)	32(1)	43(1)	5(1)	-4(1)	9(1)
C(5)	53(1)	44(1)	43(1)	0(1)	-13(1)	21(1)
C(6)	33(1)	51(1)	43(1)	-5(1)	-7(1)	13(1)
C(7)	29(1)	41(1)	29(1)	-6(1)	0(1)	7(1)
C(8)	26(1)	61(1)	34(1)	1(1)	6(1)	0(1)
C(9)	32(1)	49(1)	38(1)	5(1)	0(1)	-11(1)
C(10)	33(1)	33(1)	29(1)	-3(1)	-2(1)	-5(1)
C(11)	26(1)	29(1)	23(1)	-2(1)	3(1)	-2(1)
C(12)	31(1)	25(1)	26(1)	0	4(1)	0

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Lee-B. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	Х	У	Z	U(eq)
H(3)	4664	7092	5064	42
H(4)	3442	7844	3508	53
H(5)	1418	7506	3280	56
H(6)	622	6434	4633	51
H(8A)	753	5453	6525	49
H(8B)	1887	5488	7561	49
H(9A)	1494	4378	5241	48
H(9B)	1826	4151	6863	48
H(10A)	3544	3887	5624	38
H(10B)	3419	4692	4664	38
H(12)	5000	3922	7500	33

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for Lee-B.

Table 6. Torsion angles [°] for Lee-B.

C(1)#1-N(1)-C(1)-C(11)	-0.22(8)
C(1)#1-N(1)-C(1)-C(2)	-177.60(11)
N(1)-C(1)-C(2)-C(3)	44.12(15)
C(11)-C(1)-C(2)-C(3)	-133.31(12)
N(1)-C(1)-C(2)-C(7)	-137.02(11)
C(11)-C(1)-C(2)-C(7)	45.55(16)
C(7)-C(2)-C(3)-C(4)	-1.92(19)
C(1)-C(2)-C(3)-C(4)	176.96(12)
C(2)-C(3)-C(4)-C(5)	0.9(2)
C(3)-C(4)-C(5)-C(6)	0.6(2)
C(4)-C(5)-C(6)-C(7)	-1.0(2)
C(5)-C(6)-C(7)-C(2)	0.0(2)
C(5)-C(6)-C(7)-C(8)	177.97(13)
C(3)-C(2)-C(7)-C(6)	1.47(18)
C(1)-C(2)-C(7)-C(6)	-177.39(11)
C(3)-C(2)-C(7)-C(8)	-176.53(11)
C(1)-C(2)-C(7)-C(8)	4.61(18)
C(6)-C(7)-C(8)-C(9)	109.22(14)
C(2)-C(7)-C(8)-C(9)	-72.84(16)
C(7)-C(8)-C(9)-C(10)	41.60(16)
C(8)-C(9)-C(10)-C(11)	42.25(16)
N(1)-C(1)-C(11)-C(12)	0.43(15)
C(2)-C(1)-C(11)-C(12)	177.70(9)
N(1)-C(1)-C(11)-C(10)	-176.52(9)
C(2)-C(1)-C(11)-C(10)	0.76(17)
C(9)-C(10)-C(11)-C(12)	113.26(12)
C(9)-C(10)-C(11)-C(1)	-69.96(15)
C(1)-C(11)-C(12)-C(11)#1	-0.20(7)
C(10)-C(11)-C(12)-C(11)#1	176.71(12)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2