## **Green Chemistry**

Electronic Supporting Information for

Synthesis of Task-specific Imidazolium-based Porous Triazine Polymer

Decorated with Ultrafine Pd Nanoparticles toward Alcohol Oxidation

Yannan Mao,<sup>a</sup> Yongqing Shi,<sup>a</sup> Yatao Su,<sup>a</sup> Qi Shen,<sup>a</sup> Yuangong Zhang,<sup>b</sup> Xianling Wang,<sup>a</sup> Xin Wen,<sup>a,\*</sup>

 <sup>a</sup>Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
 <sup>b</sup>College of Basic Medical Sciences, Hebei University, Baoding 071002, China.

\* Phone: +86-312-5079359; Fax: +86-312-5937102; E-mail address:

wenxin767@hotmail.com



Fig. S1 Molecular formulas for the synthesis of porous organic polymers.

| Table S  | <b>S1</b> | Porous | polymers | prepared | under | different | conditions | and | their | physicochemical |
|----------|-----------|--------|----------|----------|-------|-----------|------------|-----|-------|-----------------|
| properti | ies.      |        |          |          |       |           |            |     |       |                 |

| Entry          | ★   | U  | Solvent                        | V(mL) | SSA<br>BET (m <sup>2</sup> g <sup>-1</sup> ) | SSA<br>Langmuir<br>(m <sup>2</sup> g <sup>-1</sup> ) | V <sub>total</sub> <sup>a</sup><br>(cm <sup>3</sup> g <sup>-1</sup> ) | $V_{\rm micro}^{\rm b}$<br>(cm <sup>3</sup> g <sup>-1</sup> ) |
|----------------|-----|----|--------------------------------|-------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|
| 1              | APA | 2b | HOAc                           | 24    | 0                                            | 0                                                    | 0                                                                     | 0                                                             |
| 2              | APB | 2b | HOAc                           | 24    | 0                                            | 0                                                    | 0                                                                     | 0                                                             |
| 3              | АРТ | 2b | НОАс                           | 12    | 234                                          | 329                                                  | 0.11                                                                  | 0.096                                                         |
|                |     |    | DMSO                           | 12    |                                              |                                                      |                                                                       |                                                               |
| 4              | APT | 2b | HCl                            | 24    | 12.0                                         | 16                                                   | 0.018                                                                 | 0.004                                                         |
| 5              | APT | 2b | H <sub>3</sub> PO <sub>4</sub> | 24    | 0                                            | 0                                                    | 0                                                                     | 0                                                             |
| 6              | APT | 2b | HOAc                           | 24    | 177.0                                        | 251                                                  | 0.33                                                                  | 0.068                                                         |
| 7              | АРТ | 2b | HOAc                           | 24    | 147.0                                        | 203                                                  | 0.32                                                                  | 0.059                                                         |
| 8ª             | APT | 2b | HOAc                           | 24    | 10                                           | 14                                                   | 0.02                                                                  | 0.004                                                         |
| 9 <sup>b</sup> | APT | 2b | НОАс                           | 24    | 147                                          | 203                                                  | 0.32                                                                  | 0.059                                                         |

<sup>*a*</sup>The preparation of IPTP was conducted under a microwave condition. <sup>*b*</sup>IPTP was collected by centrifugation and dried under vacuum, instead of dialysis and freeze drying.



Fig. S2 TEM images of (a) IPTP-4, (b) IPTP-5, (c) IPTP-6, and (d) IPTP-7.



Fig. S3 TEM images of (a) 0.25Pd/IPTP-2, (b) 4Pd/IPTP-2, and (c) 8Pd/IPTP-2.



**Fig. S4** Relationship of the Pd loading with (a) particle size and (b) TOF values in the oxidation of BA to BzH.



Fig. S5 TGA traces of IPTP-2 and 1Pd/IPTP-2 from 20 °C to 800 °C.



Fig. S6 Isothermal TGA traces of IPTP-2 and 1Pd/IPTP-2 at 110 °C.

Catalyst **Reaction conditions** TOF  $(h^{-1})$ Ref. Au-Pd<sub>1.2</sub> $(a)\gamma$ -Al<sub>2</sub>O<sub>3</sub> 80 °C, H<sub>2</sub>O, air 22.3 1 Pd@Cu(II)-MOF 130 °C, xylene, air 0.76 2 Au-Pd@PANI 100 °C, toluene, NaOH, O<sub>2</sub> 16 3 90 °C, H<sub>2</sub>O, K<sub>2</sub>CO<sub>3</sub>, 1 atm O<sub>2</sub> Pd@U-E15 10.8 4 Pd@E10A20 80 °C, toluene, K<sub>2</sub>CO<sub>3</sub>, 5 bar air 15.6 5 Pd@MNP 90 °C, toluene, K<sub>2</sub>CO<sub>3</sub>, air 6 10.7 Pd@pol 100 °C, H<sub>2</sub>O, K<sub>2</sub>CO<sub>3</sub>, 1 atm O<sub>2</sub> 5.5 7 8 LDH/Pd(II) 65 °C, H<sub>2</sub>O, pyridine, O<sub>2</sub> 30 mL/min 31 1Pd/IPTP-2 88.7 This work 110 °C, toluene, 1 atm O<sub>2</sub> 9 100 °C, solvent free, O<sub>2</sub> 3 mL/min Pd/NaX zeolite 626 Au-Pd/TiO<sub>2</sub> 90 °C, solvent free,  $O_2 1$  atm 589 10 Pd/MagSBA 85 °C, solvent free, O<sub>2</sub> 1 atm 633 11 Pd(2wt%)/NaTNT 120 °C, solvent free, air 1atm 205 12 100 °C, solvent free, O<sub>2</sub> 20 mL/min  $Pd/Fe_3O_4(a)CeO_2$ 443.5 13 70 °C, solvent free, O<sub>2</sub> 3 mL/min 26 14  $Pd/SiO_2$ 1Pd/IPTP-2 solvent free, 110 °C 751.8 This work

**Table S2** Comparison of the catalytic performance of 1Pd/IPTP-2 in benzyl alcohol oxidation

 with that of different reported catalysts

## References

- 1 W. Zhang, Z. Xiao, J. Wang, W. Fu, R. Tan, D. Yin, *ChemCatChem.*, 2019, 11, 1779-1788.
- 2 G. Chen, J. Wang, F. Jin, M. Liu, C. Zhao, Y. Li, Y. Dong, *Inorg. Chem.*, 2016, 55, 3058-3064.

- 3 S. Marx, A. Baiker, J. Phys. Chem. C., 2009, 113, 6191-6201.
- 4 B. Karimi, M. Khorasani, H. Vali, C. Vargas, R. Luque, ACS Catal., 2015, 5, 4189-4200.
- 5 A. Benyounes, S. Louisia, R. Axet, Z. Mahfoud, M. Kacimi, P. Serp, Catal. Today., 2015, 249, 137-144.
- D. Wang, C. Deraedt, L. Salmon, C. Labrugère, L. Etienne, J. Ruiz, D. Astruc, *Chem. Eur. J.*, 2015, 21, 6501-6510.
- M. M. Dell'Anna, M. Mali, P. Mastrorilli, P. Cotugno, A. Monopoil, *J. Mol. Catal. A: Chem.*, 2014, 386, 114-119.
- 8 M. Sahoo, K. M. Parida, Appl. Catal. A: Gen., 2013, 460, 36-45.
- 9 F. Li, Q. Zhang, Y. Wang, Appl. Catal. A: Gen., 2008, 334, 217-226.
- Y. Hong, X. Jing, J. Huang, D. Sun, T. Wubah, F. Yang, M. Du, Q. Li, ACS Sustain. Chem. & Eng., 2014, 2, 1752-1759.
- 11 Y. Li, J. Huang, X. Hu, F. Lam, W. Wang, R. luque, J. Mol. Catal. A: Chem., 2016, 425, 61-67.
- 12 D. Nepak, S. Darbha, Catal. Commun., 2015, 58, 149-153.
- 13 L. Kong, C. Wang, F. Gong, W. Zhu, Y. Zhong, X. Ye, F. Li, Catal. Lett., 2016, 146, 1321-1330.
- 14 J. Chen, Q. Zhang, Y. Wang, H. Wan, Adv. Synth. & Catal., 2008, 350, 453-464.



Fig. S7 (a) TEM image and (b) the Pd particle size distribution of used 1Pd/IPTP-2.



Fig. S8 (a)  $N_2$  adsorption-desorption isotherm and (b) the pore size distribution of used 1Pd/IPTP-2.