# **Supplementary information for:**

A sustainable strategy for fabricating porous carbon supported Sn submicron spheres by self-generated Na<sub>2</sub>CO<sub>3</sub> as templates for lithium-

### ion batteries anode

Kun Liu<sup>a,1</sup>, Jia-ao Wang<sup>b,1</sup>, Hongfei Zheng<sup>c</sup>, Shuhan Guo<sup>a</sup>, Xiaofei Wang<sup>a</sup>, Jianzong Man<sup>a</sup>, Xinyu Wang<sup>a</sup>, Juncai Sun<sup>a,\*</sup>

aInstitute of Materials and Technology, Dalian Maritime University, Dalian 116026,

China

<sup>b</sup>Department of Chemistry and the Oden Institute for Computational Engineering and

Sciences, The University of Texas at Austin, Austin, TX, 78712-0165, USA

<sup>c</sup>Department of Materials, Xiamen University, Xiamen 361005, China

<sup>1</sup> These authors contributed equally to this work.

\*Corresponding author: <u>sunjc@dlmu.edu.cn</u> (J. Sun)

# **Supplementary Figures**



Fig. S1. The basic information of DSSC.



Fig. S2. XRD pattern of unwashed Sn/PC/Na<sub>2</sub>CO<sub>3</sub> after carbonization.



Fig. S3. FE-SEM image of Sn/PC after carbonized at 650 °C.



Fig. S4. FE-SEM image of Sn/PC after carbonized at 850 °C.



Fig. S5. Raman spectra of (a) Sn/PC and (b) Sn/PC-850.



Fig. S6. TGA curves of (a) Sn/PC and (b) Sn/PC-850.



Fig. S7. N<sub>2</sub> adsorption/desorption isotherm of commercial Sn powder (the inset shows

pore size distribution curves).



Fig. S8. O 1s spectra of XPS.



Fig. S9. FE-SEM image of unwashed Sn/PC/Na<sub>2</sub>CO<sub>3</sub> after carbonization.



Fig. S10. FE-SEM image of commercial Sn powder.



Fig. S11. TEM images of (a) Sn/PC and (b) Sn/PC-850.



Fig. S12. CV curves of commercial Sn powder.



Fig. S13. Initial discharge/charge curve of commercial Sn powder at 100 mA/g.



Fig. S14. The Li<sup>+</sup> diffusion coefficient of Sn/PC-850.



**Fig. S15**. (a) CV curves of commercial Sn powder at various scan rates from 0.1 to 1 mV/s. (b) The corresponding log(i) versus log(v) plots at each redox peak. (c) CV curve at 0.1 mV/s with the capacitive contribution to the total current. (d) The ratio of capacitive and diffusion-controlled contribution at various sweep rates.



**Fig. S16.** Morphological characterization after cycling: The SEM images of (a) Sn/PC and (b) commercial Sn powder after 200 cycles at 100 mA/g.



Fig. S17. XRD patterns of Sn/PC after cycling.



**Fig. 18**. Ex-situ XPS spectra of Sn/PC electrode after initial charge to 3 V and after 20 cycles: (a-b) Sn 3d; (c-d) C 1s.



Fig. S19. In-situ XRD patterns of Sn/PC electrode recorded during initial two galvanostatic charge-discharge cycles (100 mA/g).

| Materials       | Current | Cycle  | Capacity | The wastes and hazardous reagents                                                               | Ref.      |
|-----------------|---------|--------|----------|-------------------------------------------------------------------------------------------------|-----------|
|                 | (mA/g)  | Number | (mAh/g)  |                                                                                                 |           |
| Sr/C corr/shall | 40      | 100    | 5467     | DMF, Tin (II) 2-ethylhexanoate, Anhydrous                                                       | [1]       |
| Sn/C core/snell | 40      | 100    | 546./    | ethanol, Acetic acid                                                                            | [1]       |
| C/Sn            | 100     | 500    | 501      | Ethanol, Furfural                                                                               | [2]       |
| Sn/Graphene     | 100     | 100    | ~500     | Hydrazine hydrate, Concentrated H <sub>2</sub> SO <sub>4</sub> ,                                | [3]       |
|                 |         |        |          | Concentrated H <sub>3</sub> PO <sub>4</sub> , H <sub>2</sub> O <sub>2</sub> , KMnO <sub>4</sub> |           |
| Sn/G/GNS        | 100     | 200    | 557      | Concentrated H <sub>2</sub> SO <sub>4</sub> , Concentrated H <sub>3</sub> PO4,                  | [4]       |
|                 |         |        |          | H <sub>2</sub> O <sub>2</sub> , KMnO <sub>4</sub> , HCl, NaBH <sub>4</sub>                      |           |
| Sn@C            | 50      | 100    | 520      | Absolute ethanol, Formaldehyde,                                                                 | [5]       |
|                 |         |        |          | Dimethylformamide (DMF)                                                                         |           |
| Sn–Ni–Cu        | 100     | 50     | 533      | Choline chloride, Ethylene glycol, 1 M HCl                                                      | [6]       |
| Sn-Ni@C/G       | 100     | 100    | 503      | KCl byproduct, Ethanol                                                                          | [7]       |
| Sn@2DLMG        | 100     | 200    | 539      | Tri(propylene glycol) diacrylate, 1-                                                            | [8]       |
|                 |         |        |          | Hydroxycyclohexyl phenyl ketone                                                                 |           |
| Sn@Ti3C2Tx      | 100     | 200    | 586.38   | Hydrochloric acid, Sodium borohydride                                                           | [9]       |
| Porous C/Sn     | 20      | 15     | ~420     | NaOH, DMF, Formaldehyde                                                                         | [10]      |
| Sn-CNF          | 100     | 50     | ~400     | DMF, Ethanol                                                                                    | [11]      |
| Sn/PC           | 100     | 200    | 588      | Na <sub>2</sub> CO <sub>3</sub> template, No hazardous reagents                                 | This work |

## Table S1. Comparison of the obtained results in this work with previously reported

electrochemical performance of Sn-based composite electrodes for LIBs.

#### References

- [1] Z. Yang, Q. Meng, W. Yan, J. Lv, Z. Guo, X. Yu, Z. Chen, T. Guo, R. Zeng, *Energy*, 2015, 82, 960–967.
- [2] Y. Cheng, Z. Yi, C. Wang, Y. Wu, L. Wang, Chem. Eng. J., 2017, 330, 1035–1043.
- [3] F.R. Beck, R. Epur, D. Hong, A. Manivannan, P.N. Kumta, *Electrochim. Acta*, 2014, **127**, 299–306.
- [4] J. Zhu, X. Ding, J. Alloy. Compd., 2019, 809, 151870–151877.
- [5] X. Tao, R. Wu, Y. Xia, H. Huang, W. Chai, T. Feng, Y. Gan, W. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 3696–3702.
- [6] S.C. Rao, X.L. Zou, S.J. Wang, T.Y. Shi, Y. Lu, L. Ji, H.Y. Hsu, Q. Xu, X.G. Lu, J. Electrochem. Soc., 2019, 166, D427–D434.
- [7] H. Zhang, M.R. Zhang, M.L. Zhang, L. Zhang, A.P. Zhang, Y.M. Zhou, P. Wu,
  Y.W. Tang, J. Colloid Interface Sci., 2017, 501, 267–272.
- [8] S. Ding, W. Cheng, L. Zhang, G. Du, X. Hao, G. Nie, B. Xu, M. Zhang, Q. Su, C.A. Serra, J. Colloid Interface Sci., 2021, 589, 308–317.
- [9] Q. Yang, Y. Xia, G. Wu, M. Li, S. Wan, P. Rao, Z. Wang, J. Alloy. Compd. 2021, 859, 157799–157806.
- [10] Y. Xu, Y. Zhu, Y. Liu, C. Wang, Adv. Energy Mater. 2013, 3, 128.
- [11] H. Wang, J. Zhou, J. Sun, Y. Wang, Y. Ma, Z. Bai, Y. Zhao, W. Zhang, Int. J. Electrochem. Sci., 2020, 15, 9849–9863.