An Environmentally Friendly and Economical Strategy to Cyclically

Produce Cellulose Nanocrystals with High Thermal Stability and High

Yield

Feng Tang ^a, Yingzhan Li ^{a, b*}, Junwen Huang^a, Jinhong Tang ^a, Xinyi Chen ^a, Hou-Yong Yu ^{a*}, Ying Zhou ^a, Dongping Tang ^a

^aThe Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China. E-mail <u>yingzhanli@zstu.edu.cn; phdyu@zstu.edu.cn</u>

^bNational Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian, 271000, China.

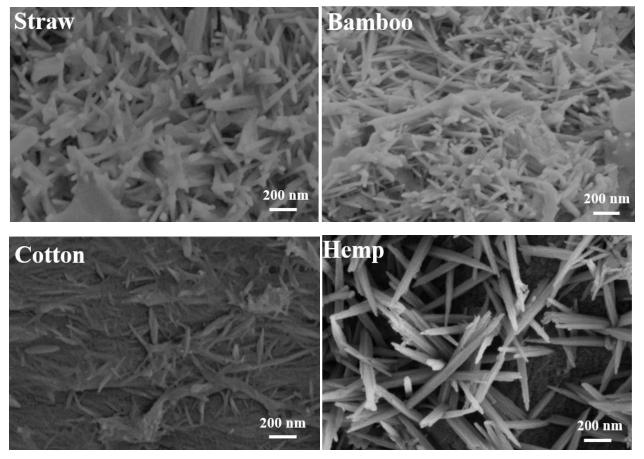


Fig.S1 FE- SEM images of CNC prepared from four kinds of straw, bamboo, cotton and hemp

	Contonto	The role played	Report	Dof
	Contents	of FeCl ₃	time	Ref.
1	Ferric chloride was introduced into hydrochloric acid hydrolysis to extract cellulose nanocrystals (CNCs) from microcrystalline celluloses (MCC) under hydrothermal conditions.	catalyst	2017	1
2	FeCl3-catalyzed deep eutectic solvent system (F- DES) was invented to fabricate cellulose nanocrystals	catalyst	2019	2
3	Preparation of CNC by FeCl3 Catalysed CA Hydrolysis of MCC	catalyst	2020	3
4	Use ferric chloride to dissolve cellulose	dissolving agent	2020	4

Tab. S1. The role of ferric chloride in the development of CNC preparation
--

	Preparation	Yield	Crystallinity (%)	Т _{тах} (°С)		D 4
Raw materials	conditions	(%)	CNC/raw ma	iterials	Disadvantage	Ref.
Commercial microcrystalline cellulose (MCC)	Four inorganic chlorides and HCl	78.6	91.2/83.5	346.3/358.7	Strong acidity of hydrochloric acid requires a lot of water for post-treatment, and hydrochloric acid cannot be recovered.	1
Bleached eucalyptus kraft pulp (BEKP)	FeCl ₃ -catalyzed deep eutectic solvent system (F-DES)	75.8	80.8/75.7	358.2/355.3	The experiment process is complicated.	2
BEKP	FeCl ₃ -catalyzed citric acid	52.0	75.95/67.75	369.3/352.6	Failed to realize the recovery and reuse of experimental solvents.	3
BEKP	Concentrated organic acids	10.3	81.05/76.0	/	Low yield and large environmental pollution caused by organic acids.	5
MCC	2,2,6,6- tetramethylpiperidine- 1-oxyl radical (TEMPO)	37.2	/	/	Low yield and multiple reaction steps and preparation process had a greater impact on the environment.	6
MCC	Sulfuric acid	54.4	76.9/70,5	245.4/357.5	Low yield and thermal stability, strong acidity of hydrochloric acid requires a lot of water for post-treatment.	7
МСС	Hydrochloric acid	93.7	87.3/76.2	354.5/358.7	Strong acidity of hydrochloric acid requires a lot of water for post-treatment, and hydrochloric acid cannot be recovered.	8
MCC	Hydrogen peroxide (H ₂ O ₂)	/	88.7/77.1	325.3/353.7	Failed to realize the recovery and reuse of experimental solvents.	9
MCC	Recyclable Citric/Hydrochloric Acids	87.0	82.8/70.5	347.3/357.5	Post-processing requires a lot of water.	7
МСС	FeCl ₃	93.2	75.8/72.7	354.1/347.1	/	This work

Tab. S2. Comparison of the preparation conditions and properties of cellulose nanocrystals prepa	ıred
by other method with the cellulose nanocrystals reported in this work.	

Sample	^a Dimensio	ons (nm) diameter	Zeta Potential (mV)	Carboxyl contents (mmol/g)	Conductometric DS	^b T _{max} (°C)
MCC	/	/	/	/		347.1 ± 3.8
CNC _{Fe1}	435 ± 6.2	38 ± 2.6	-21.5 ± 1.3	0.231 ± 0.013	0.038 ± 0.0021	354.3 ± 2.8
CNC _{Fe2}	442 ± 8.9	35 ± 3.8	-20.7 ± 3.5	0.248 ± 0.025	0.040 ± 0.0041	351.1 ± 3.9
CNC _{Fe3}	439 ± 7.6	41 ± 4.8	-20.5 ± 1.2	0.206 ± 0.057	0.033 ± 0.0092	354.3 ± 2.2
CNC _{Fe4}	441 ± 8.3	39 ± 3.3	-22.3 ± 2.8	0.251 ± 0.018	0.041 ± 0.0029	354.1 ± 3.8
CNC _{Fe5}	455 ± 5.1	35 ± 1.8	-20.8 ± 0.9	0.236 ± 0.033	0.038 ± 0.0053	356.7 ± 4.1

Tab.S3 Average Dimensions, Zeta Potential, Carboxyl Contents, Conductometric, T_{max} of CNC_{Fex} and MCC

^a Average length and diameter were obtained by statistics 200 CNC.

^{*b*} T_{max} was calculated from TGA curves.

(a)	Anova: Single Factor	length					
	SUMMARY						
	Groups	Count	Sum	Average	Variance		
	Column 1	200	87000	435	132.46231		
	Column 2	200	88400	442	154.64322		
	Column 3	200	87800	439	342.32161		
	Column 4	200	88200	441	388.07035		
	Column 5	200	91000	455	642.39196		
	ANOVA						
	Source of Variation	SS	df	MS	F	F _{0.05} (dfA , dfe)	Significance
	Between Groups	45440	4	11360	34.219146	2.380875807	*
	witin Groups	330318	995	331.97789			
	Total	375758	999				

Tab. S4 Analysis of variance (ANOVA) of the length and diameter of prepared CNCs

(b)	Anova: Single Factor	diameter					
	CID B (ADM						
	SUMMARY						
	Groups	Count	Sum	Average	Variance		
	Column 1	200	7600	38	106.84422		
	Column 2	200	7000	35	117.05528		
	Column 3	200	8200	41	128.13065		
	Column 4	200	7800	39	116.46231		
	Column 5	200	6993	34.965	145.75254		
	ANOVA			1.000			
	Source of Variation	SS	df	MS	F	$F_{0.05}(dfA, dfe)$	Significance
	Between Groups	3494.921	4	873.73025	7.1122292	2.380875807	*
	witin Groups	122234.76	995	122.849			
	Total	125729.68	999				

If F> F0.05(*dfA*, *dfe*), then factor A has a significant influence on the test result, which is indicated by "*";

If F<F0.05(*dfA*, *dfe*), then the influence of factor A on the test results is not significant, so the "*" sign is not used

Anova: Single Factor	yield					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	3	282.2	94.066667	1.9033333		
Column 2	3	277.6	92.533333	0.2633333		
Column 3	3	276.3	92.1	0.37		
Column 4	3	282.2	94.066667	0.4433333		
Column 5	3	279.9	93.3	1.27		
ANOVA						
Source of Variation	SS	df	MS	F	F _{0.05} (dfA , dfe)	Significance
Between Groups	9.4973333	4	2.3743333	2.7933333	3.478049691	
witin Groups	8.5	10	0.85			
Total	17.997333	14				

Tab. S5 ANVOA of the yield of CNC_{Fex}

If F> F0.05(*dfA*, *dfe*), then factor A has a significant influence on the test result, which is indicated by "*";

If F<F0.05(*dfA*, *dfe*), then the influence of factor A on the test results is not significant, so the "*" sign is not used.

Anova: Single Factor	X _c					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	3	228.9	76.3	1.71		
Column 2	3	227.2	75.733333	0.9433333		
Column 3	3	229.7	76.566667	0.2533333		
Column 4	3	224.4	74.8	0.07		
Column 5	3	230.7	76.9	0.43		
ANOVA						
Source of Variation	SS	df	MS	F	F _{0.05} (dfA , dfe)	Significance
Between Groups	8.1426667	4	2.0356667	2.9877691	3.478049691	
witin Groups	6.8133333	10	0.6813333			
Total	14.956	14				

Tab. S6 ANVOA of Xc of CNC_{Fex}

If F> F0.05(*dfA*, *dfe*), then factor A has a significant influence on the test result, which is indicated by "*";

If F<F0.05(*dfA*, *dfe*), then the influence of factor A on the test results is not significant, so the "*" sign is not used.

Anova: Single Factor	T _{max}					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	3	1062.9	354.3	1.48		
Column 2	3	1053.3	351.1	7.87		
Column 3	3	1062.9	354.3	8.68		
Column 4	3	1062.2	354.06667	4.6633333		
Column 5	3	1070	356.66667	3.4233333		
ANOVA						
Source of Variation	SS	df	MS	F	F _{0.05} (dfA , dfe)	Significance
Between Groups	47.004	4	11.751	2.2497128	3.478049691	
witin Groups	52.233333	10	5.2233333			
Total	99.237333	14				

Tab. S7 ANVOA of T_{max} of CNC_{Fex}

If F> F0.05(*dfA*, *dfe*), then factor A has a significant influence on the test result, which is indicated by "*";

If F<F0.05(*dfA*, *dfe*), then the influence of factor A on the test results is not significant, so the "*" sign is not used.

References

- M. Cheng, Z. Qin, Y. Chen, S. Hu, Z. Ren and M. Zhu, ACS Sustain. Chem. Eng., 2017, 5, 4656–4664.
- 2 X. Yang, H. Xie, H. Du, X. Zhang, Z. Zou, Y. Zou, W. Liu, H. Lan, X. Zhang and C. Si, ACS Sustain. Chem. Eng., 2019, 7, 7200–7208.
- 3 W. Liu, H. Du, H. Liu, H. Xie, T. Xu, X. Zhao, Y. Liu, X. Zhang and C. Si, ACS Sustain. Chem. Eng., 2020, 8, 16691–16700.
- 4 Y. Chen, H. Y. Yu and Y. Li, ACS Sustain. Chem. Eng., 2020, 8, 18446–18454.
- 5 L. Chen, J. Y. Zhu, C. Baez, P. Kitin and T. Elder, *Green Chem.*, 2016, **18**, 3835–3843.
- 6 R. S. Mehedi, R. Timo, P. Jessie and P. E. Kontturi, *Cellulose*, 2017, 24, 1657–1667.
- H. Yu, S. Y. H. Abdalkarim, H. Zhang, C. Wang and K. C. Tam, *ACS Sustain. Chem. Eng.*, 2019, 7, 4912–4923.
- 8 H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou and L. Chen, J. Mater. Chem. A, 2013, 1, 3938–3944.
- X. M. Fan, H. Y. Yu, D. C. Wang, Z. H. Mao, J. Yao and K. C. Tam, ACS Sustain. Chem. Eng., 2019, 7, 18067–18075.