Ru Single Atoms for Efficient Chemoselective

Hydrogenation of Nitrobenzene to Azoxybenzene

Bo Wu, Tiejun Lin, Ruoou Yang, Min Huang, Huan Zhang, Ji Li, Fanfei Sun, Fei Song, Zheng Jiang, Liangshu Zhong,* Yuhan Sun*

The supporting information including

Scheme S1-S2

Table S1

Figure S1-S7

Scheme S1. Schematic illustrations of reaction pathway for nitrobenzene hydrogenation reaction, with C in gray, O in red, N in blue and H in white.

Scheme S2. Schematic illustrations of the preparation of Ru-SAs/CeO₂ catalyst, with C in gray, O in red, N in blue, H in white, Ru in teal, Ce in yellow, Cl in green.

Entry	Catalysts	Ru loading [wt%]	S_{BET}^{b} [m ² /g]	V_p^b [cm ³ /g]	Pore size ^b [nm]
1	CeO ₂	0	53.9	0.08	6.2
2	Ru-SAs/CeO ₂	1.6	88.2	0.09	3.9
3	Ru-NPs/CeO ₂	1.7	51.8	0.06	4.3

 Table S1. Element analysis and texture properties of various samples.

^aThe concentration of Ru was measured by ICP-OES.

 b Determined by N₂ adsorption/desorption isotherms.

Figure S1. (a, b) SEM images. (c) TEM image, (d) Representative HRTEM image of the Ru-NPs/CeO₂.

Figure S2. GC-MS spectrum of Ru-SAs/CeO₂ for the selective hydrogenation of nitrobenzene. Azoxybenzene was the main product, partial of aniline and trace azobenzene were also detected.

Figure S3. GC-MS spectrum of Ru-NPs/CeO₂ for the selective hydrogenation of nitrobenzene.

Aniline was the main product, and trace cyclohexylamine was also detected.

Figure S4. GC spectrum of Ru-SAs/CeO₂ for the selective hydrogenation of nitrobenzene. Azoxybenzene was the main product, and small proportion of aniline and azobenzene were also detected.

Figure S5. GC spectrum of Ru-NPs/CeO₂ for the selective hydrogenation of nitrobenzene. Aniline was the main product, small part of azobenzene and azoxybenzene were also detected.

Figure S6. Coordinated structure of Ru₃ on the Ru-SCs/CeO₂ (111) surface. Top (a) and side (b) view of the detailed structure of Ru-SCs/CeO₂.

For the Ru-SCs/CeO₂ (111) structure, each Ru atom from the Ru₃ cluster was bonded with a surface lattice oxygen, with the Ru-O length was calculated to be $1.86 \sim 1.90$ Å, with O in red, Ce in yellow and Ru in teal.

Figure S7. Top (a) and side (b) view of the detailed structure of metallic Ru (100) structure, with Ru in teal.