Supporting Information

Efficient visible light mediated synthesis of Quinolin-2(1H)ones from Quinoline N-oxides

Susanta Mandal,^[a] Samuzal Bhuyan,^[a] Saibal Jana,^[b] Jagir Hossain,^[a] Karan Chhetri^[a] and Biswajit G. Roy^{*a} ^[a]Department of Chemistry, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim – 737102, India

^[b]Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom

Table of Content

General experimental details	S2
Experimental section	S2
DFT calculation of reaction pathway	S5
Characterization Data of Compounds	S 9
¹ H and ¹³ C NMR spectra of products	S21

General experimental details:

All commercially available compounds were purchased from Sigma-aldrich, TCI and other commercial suppliers and used as received. NMR spectra were recorded on BRUKER AVANCE III 400 (400 MHz for ¹H; 100 MHz for ¹³C) spectrometer. The chemical shifts are given in parts per million (ppm) relative to CDCl₃ (7.28 ppm for ¹H and 77.00 for ¹³C) and DMSO-d₆ (2.49 for ¹H and 40.09 for ¹³C). High resolution mass spectra were recorded on Agilent Technologies, Accurate Mass Q-TOF LC/MS G65208. Normal column chromatography was performed on silica gel (60-120 mesh) purchased from SRL and eluted with petroleum ether and ethyl acetate mixture.

Experimental Section:

(a) General procedure for the synthesis of substituted quinoline N-oxides.

To a 100 mL round bottom flask, corresponding quinoline substrates (5 mmol) and mchloroperbenzoic acid (7.5 mmol, 1.5 equiv.) were added in 50 mL CH₂Cl₂. The reaction mixture was stirred at room temperature for 10 hours. Upon completion the reaction, the mixture was extracted with CH₂Cl₂ (30 mL x 3), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluted with methanol/chloroform: 0 to 10 % methanol in chloroform) on silica gel to obtained quinoline N-oxides.

(b) General procedure for the synthesis of quinoline-2(1H)-one:

A 4 mL screw cap vial with a small magnetic bar was charged with quinoline N-oxide (0.4 mmol, 58 mg), 1,8-dimethoxy-10-phenyl-9-(o-tolyl)acridin-10-ium chloride (PC 4, 0.002 mmol, 0.9 mg)

and DMSO (3 mL). The vial was then sealed with plastic screw cap and placed on stirring plate and irradiated for 8 hours with a 40 W blue LED at room temperature. Upon completion of the reaction as monitored by TLC, the reaction mixture was concentrated under reduced pressure on speedvac. The reduced residue was purified by column chromatography (gradient eluent of EtOAc/petroleum ether: 1/2 to 3/1) on silica gel to afford quinolone as a white solid.

(c) Kinetic studies of different concentrated solutions:

Three different type of quinoline N-oxide solutions, 150 mM, 300 mM and 450 mM were taken in three different vials, V1, V2 and V3 respectively and 1 mg of **PC5** is added to each solution. Then all three solution mixtures were irradiated with blue LED with stirring at room temperature. With different time interval 400 μ L of solution is taken in an NMR tube and 200 μ L CDCl₃ is added to it and checked the NMR spectra. The stack plots for the progress of the reaction with respect to concentration are as follows:

Figure S1 C: Stack plot of 450 mM solution

DFT calculations of reaction pathways:

Computational Details:

We have used M06-2X functional and 6-311G(d,p) basis set for all calculations.¹ Solvation Model based on Density (SMD) is considered to create an implicit solvation model taking acetonitrile as solvent implemented in Gaussian 16 software.²⁻³ All the geometries were fully optimized and confirmed the stationary points by computing no imaginary mode of vibration for substrate, product and intermediates. The transition state geometries having one imaginary mode of vibration associated with the reaction coordinate. The excited state reduction potential of the photocatalyst computed using TD-DFT formalism.

References

1. Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* **2008**, *120*, 215–241.

2. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378-6396.

3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, **2016**.

Cartesian Coordinate

PC 55			
С	-2.802254	-0.000020	-1.563098
С	-2.333317	0.000010	-0.257575
С	-3.211285	-0.000006	0.832036
С	-4.574410	-0.000021	0.568547
С	-5.058799	-0.000035	-0.739516
С	-4.173373	-0.000039	-1.806818
С	-0.851593	0.000035	-0.053074
С	-0.142505	-1.223194	0.000239
С	1.288397	-1.206393	-0.000322
Ν	1.937784	-0.000060	-0.014669

С	1.288478	1.206317	-0.000468
С	-0.142429	1.223239	0.000173
С	-0.783234	-2.527354	0.038049
С	-0.026645	-3.677940	0.014536
С	1.372314	-3.598678	-0.014726
С	2.036452	-2.400192	-0.012964
С	2.036645	2.400041	-0.013315
С	1.372625	3.598590	-0.015143
С	-0.026320	3.677989	0.014310
С	-0.783020	2.527483	0.038027
С	3.388933	-0.000096	-0.043380
С	4.083830	0.000030	1.157257
С	5.473990	-0.000003	1.125002

С	6.143184	-0.000157	-0.095096
С	5.428465	-0.000278	-1.289141
С	4.038064	-0.000246	-1.269366
Н	1.945932	-4.517580	-0.028487
0	-2.108793	-2.535103	0.124379
С	-2.809935	-3.772766	0.130880
0	-2.108553	2.535440	0.124676
С	-2.809484	3.773222	0.131187
Н	1.946331	4.517435	-0.029056
Н	-0.501902	-4.647024	0.035580
Н	-0.501481	4.647121	0.035379
Н	3.114657	-2.371087	-0.023472
Н	3.114847	2.370828	-0.023912
Н	3.461366	-0.000340	-2.187055
Н	5.951524	-0.000396	-2.237025
Н	7.225775	-0.000182	-0.115448
Η	6.032322	0.000092	2.052548
Н	3.541907	0.000150	2.095929
Н	-2.100452	-0.000021	-2.389982
Н	-4.540694	-0.000058	-2.825509
Н	-5.271169	-0.000020	1.399894
Η	-3.860588	3.503021	0.181051
Η	-2.534073	4.368503	1.005089
Η	-2.611532	4.332109	-0.786262
Η	-3.861003	-3.502381	0.180506
Η	-2.611898	-4.331785	-0.786470
Н	-2.534799	-4.368001	1.004900
Η	-6.127129	-0.000048	-0.918507
С	-2.674637	0.000016	2.236021
Η	-3.482616	0.000047	2.966897
Η	-2.054945	-0.884065	2.415061
Н	-2.054912	0.884081	2.415025

1a

18

-0.022490	0.000000	-0.03/100
-0.039972	0.000000	1.370872
1.150466	-0.000000	2.052655
2.380873	-0.000000	1.355584
2.401591	-0.000000	-0.014571
1.192744	-0.000000	-0.756923
-0.996114	0.000000	1.874222
1.149005	-0.000000	3.136092
	-0.039972 1.150466 2.380873 2.401591 1.192744 -0.996114 1.149005	-0.022490 0.000000 -0.039972 0.000000 1.150466 -0.000000 2.380873 -0.000000 2.401591 -0.000000 1.192744 -0.000000 -0.996114 0.000000 1.149005 -0.000000

Н	3.310190	-0.000000	1.912543
Н	3.339071	-0.000000	-0.559201
С	1.165080	-0.000000	-2.174106
С	-0.047088	0.000000	-2.805292
С	-1.237956	0.000000	-2.062515
Ν	-1.241646	0.000000	-0.726459
Н	2.096212	-0.000000	-2.727532
Н	-0.126211	0.000000	-3.884654
Н	-2.221109	0.000000	-2.511189
0	-2.337522	0.000000	-0.066925

II

18

С	-0.026091	0.000000	-0.005265
С	-0.044969	-0.000000	1.385109
С	1.168121	-0.000000	2.052955
С	2.389158	-0.000000	1.358574
С	2.403758	-0.000000	-0.017091
С	1.186160	-0.000000	-0.735002
Н	-0.984594	0.000000	1.919909
Н	1.170100	-0.000000	3.136157
Н	3.319212	-0.000000	1.912326
Н	3.333117	-0.000000	-0.573705
С	1.146466	-0.000000	-2.141018
С	-0.073164	0.000000	-2.818816
С	-1.242194	0.000000	-2.106636
Ν	-1.229153	0.000000	-0.734708
Н	2.078577	-0.000000	-2.694531
Н	-0.116473	0.000000	-3.899057
Н	-2.233559	0.000000	-2.540181
0	-2.329346	0.000000	-0.123522

TSII_III

18

С	-0.027935	0.087482	0.093121
С	-0.027456	0.102902	1.473547
С	1.206963	0.065640	2.114194
С	2.391943	0.017028	1.377637
С	2.366646	-0.010598	-0.009719
С	1.142878	0.022593	-0.683648
Н	-0.960651	0.147429	2.020945
Н	1.244339	0.076380	3.196303

Н	3.342097	-0.006995	1.896317
Н	3.284166	-0.059629	-0.584415
С	1.041157	-0.080554	-2.122275
С	-0.143535	-0.020440	-2.789168
С	-1.328858	0.189194	-2.036887
Ν	-1.235449	0.100302	-0.646169
Н	1.966915	-0.185508	-2.678316
Н	-0.205507	-0.037156	-3.867856
Н	-2.250324	0.597272	-2.429962
0	-1.892261	-1.005340	-0.948146

III

18

Ν	-1.342314	-0.276644	-0.651114
С	-0.076032	-0.164957	-0.001504
С	1.144819	0.007805	-0.732314
С	1.128573	-0.013897	-2.136565
С	-0.059201	-0.202366	-2.811596
С	-1.338892	-0.226690	-2.086851
С	2.366288	0.157293	-0.016287
С	2.366381	0.123921	1.354602
С	1.156883	-0.067584	2.045918
С	-0.064087	-0.212312	1.367355
0	-1.641522	0.953207	-1.380954
Н	-0.991338	-0.349967	1.908912
Н	1.162590	-0.102161	3.128790
Н	3.288683	0.235538	1.909260
Н	3.282775	0.280745	-0.581304
Н	2.060371	0.079105	-2.682436
Н	-0.077422	-0.328341	-3.886919
Н	-2.176390	-0.716000	-2.570172

IV

18

Ν	-1.331247	-0.265725	-0.641995
С	-0.053034	-0.134039	-0.004276
С	1.139113	0.043978	-0.725064
С	1.110595	-0.025594	-2.183612
С	-0.042365	-0.206085	-2.831970
С	-1.320166	-0.204959	-2.086943
С	2.335036	0.179366	-0.016647
С	2.345328	0.127401	1.372547

С	1.159785	-0.081624	2.072943
С	-0.039775	-0.220198	1.380910
0	-1.650850	0.966312	-1.385735
Н	-0.976419	-0.379252	1.902633
Н	1.167041	-0.131019	3.155191
Н	3.279899	0.239484	1.909368
Н	3.259330	0.316849	-0.567679
Н	2.057940	0.003470	-2.711147
Н	-0.086254	-0.351911	-3.904098
Н	-2.163792	-0.699757	-2.557605

$\text{TS}_{\text{IV}_{2a}}$

18

Ν	-1.231759	-0.311192	-0.539602
С	-0.059918	-0.153727	0.022597
С	1.171494	-0.023844	-0.739202
С	1.104715	0.008944	-2.171110
С	-0.103783	-0.025677	-2.760013
С	-1.385787	-0.147588	-1.985258
С	2.375570	0.080973	-0.041329
С	2.380820	0.062854	1.342020
С	1.192449	-0.059328	2.106361
С	-0.003467	-0.155688	1.463327
0	-2.221238	0.885604	-2.108021
Н	-0.944349	-0.248900	1.992724
Н	1.250546	-0.072055	3.186922
Н	3.327860	0.146721	1.863882
Н	3.303945	0.179381	-0.591246
Н	2.027241	0.118371	-2.730445
Н	-0.210290	0.049503	-3.837213
Н	-1.783884	-1.157657	-2.297574

2a

18

Ν	-1.211201	0.000000	-0.730267
С	-0.029978	0.000000	-0.018411
С	1.186053	-0.000000	-0.724954
С	1.128433	-0.000000	-2.165687
С	-0.048870	0.000000	-2.820528
С	-1.325853	0.000000	-2.105701
С	2.392762	-0.000000	-0.006039
С	2.389135	-0.000000	1.374556

С	1.167893	-0.000000	2.065673	
С	-0.033847	0.000000	1.384050	
Н	-2.084709	0.000000	-0.213056	
Н	-0.980383	0.000000	1.913160	
Н	1.163614	-0.000000	3.149446	

Н	3.322239	-0.000000	1.924263
Н	3.325824	-0.000000	-0.559385
Н	2.065003	-0.000000	-2.714417
Н	-0.108342	0.000000	-3.901458
0	-2.421472	0.000000	-2.646658

Characterization Data of Compounds:

2a

quinolin-2(1H)-one(2a): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.87 (s, 1H), 7.89 (d, *J* = 9.5 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.52 (d, *J* = 9.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.45, 140.87, 139.25, 130.85, 128.32, 122.31, 122.09, 119.65, 115.70. HRMS: m/z (ESI) calculated for (C₉H₇NO) [M+H]⁺ : 146.0600, measured: 146.0623.

3-bromoquinolin-2(1H)-one (3): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-d₆) δ 12.06 (s, 1H), 8.51 (s, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.55 (t, J = 8.2 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.15, 142.18, 138.65, 131.21, 127.80, 122.79, 119.87, 117.55, 115.70. HRMS: m/z (ESI) calculated for (C₉H₆BrNO) [M+H]⁺: 223.9705 and 225.9685, measured: 223.9682 and 225.9705.

3-methylquinolin-2(1H)-one (4): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.95 (s, 1H), 7.67 (s, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 6.9 Hz, 1H), 7.33 (d, *J* = 7.4 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.14, 137.42, 137.34, 130.21, 129.32, 126.97, 122.49, 120.36, 115.30, 16.80. HRMS: m/z (ESI) calculated for (C₁₀H₉NO) [M+H]⁺: 160.0757, measured: 106.0783.

4-methylquinolin-2(1H)-one (5): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-d) δ 12.88 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 6.0 Hz, 2H), 7.31 – 7.15 (m, 1H), 6.61 (s, 1H), 2.52 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 164.56, 149.34, 138.29, 130.50, 124.35, 122.49, 120.43, 116.74,

19.19. HRMS: m/z (ESI) calculated for (C₁₀H₉NO) [M+H]⁺: 160.0757, measured: 160.0793.

4-(1,3-dioxolan-2-yl)quinolin-2(1H)-one: Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 12.45 (s, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.00 (s, 1H), 6.30 (s, 1H), 4.15 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.32, 147.57, 138.89, 130.63, 125.03, 122.73, 117.96, 117.88, 116.61, 100.25, 65.39. HRMS: m/z (ESI) calculated for (C₁₂H₁₁NO) [M+H]⁺: 218.2315, measured: 218.2297.

methyl (E)-3-(2-oxo-1,2-dihydroquinolin-4-yl)acrylate (7): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.54 (s, 1H), 7.59 – 7.51 (m, 2H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.26 – 7.17 (m, 2H), 6.61 (s, 1H), 6.35 (d, *J* = 12.1 Hz, 1H), 3.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.10, 147.62, 138.33, 138.18, 130.82, 125.16, 125.10, 122.73, 119.53, 118.60, 116.48, 51.68. HRMS: m/z (ESI) calculated for (C₁₃H₁₁NO₃) [M+H]⁺: 230.0812, measured: 230.0823.

4-(hydroxymethyl)quinolin-2(1H)-one (8): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.63 (s, 1H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.55 (s, 1H), 5.50 (t, *J* = 5.6 Hz, 1H), 4.76 (d, *J* = 5.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.35, 151.75, 139.16, 130.60, 124.15, 122.04, 117.77, 115.96, 60.02. HRMS: m/z (ESI) calculated for (C₁₀H₉NO₂) [M+H]⁺: 176.0706, measured: 176.0719.

4-methoxyquinolin-2(1H)-one (9): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 12.17 (s, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.51 (t, J = 7.1 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 6.04 (s, 1H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.27, 165.03, 138.26, 131.18, 122.71, 122.21, 116.12, 115.52, 95.87, 55.98. HRMS: m/z (ESI) calculated for (C₁₀H₉NO₂) [M+H]⁺: 176.0706, measured: 176.0693.

4,7-dimethoxyquinolin-2(1H)-one (10): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.33 (s, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 6.87 (s, 1H), 6.76 (d, *J* = 7.7 Hz, 1H), 5.73 (s, 1H), 3.89 (s, 3H), 3.79 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.18, 163.89, 161.87, 140.89, 124.17, 110.59, 108.79, 98.59, 94.67, 56.44, 55.80. HRMS: m/z (ESI) calculated for ($C_{11}H_{11}NO_3$) [M+H]⁺: 206.0812, measured: 206.0817.

7-chloro-4-methoxyquinolin-2(1H)-one (11): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO- d_6) δ 11.57 (s, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.40 (s, 1H), 7.19 (d, J = 8.1 Hz, 1H), 5.90 (s, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 163.69, 163.16, 139.78, 135.82, 124.69, 122.01, 114.96, 113.86, 97.40, 56.77.

HRMS: m/z (ESI) calculated for (C₁₀H₈ClNO₂) [M+H]⁺: 210.0316, measured: 210.0351.

4,7-dichloroquinolin-2(1H)-one (12): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.07 (s, 1H), 7.81 (d, *J* = 8.6 Hz, 1H), 7.37 (s, 1H), 7.30 (d, *J* = 8.6 Hz, 1H), 6.82 (s, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.82, 143.97, 139.86, 136.83, 127.04, 123.15, 122.01, 116.58, 115.39. HRMS: m/z (ESI) calculated for (C₉H₅Cl₂NO) [M+H]⁺: 213.9821, measured: 213.9836.

 O_2N

6-nitroquinolin-2(1H)-one (13): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.32 (s, 1H), 8.63 (s, 1H), 8.27 (d, *J* = 9.1 Hz, 1H), 8.08 (d, *J* = 9.6 Hz, 1H), 7.42 (d, *J* = 9.1 Hz, 1H), 6.64 (d, *J* = 9.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.40, 143.72, 141.85, 140.53, 125.42, 124.70, 124.26, 118.95, 116.52. HRMS: m/z (ESI) calculated for (C₉H₆N₂O₃) [M+H]⁺: 191.0451, measured: 191.0472.

methyl 2-oxo-1,2-dihydroquinoline-6-carboxylate (14): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.04 (s, 1H), 8.31 (s, 1H), 8.03 (t, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.6 Hz, 1H), 6.57 (d, *J* = 9.6 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.17, 162.52, 142.59, 140.87, 131.05, 130.37, 123.35, 123.23, 119.14, 115.88, 52.51. HRMS: m/z (ESI) calculated for (C₁₁H₉NO₃) [M+H]⁺: 204.0655, measured: 204.0643.

6-fluoroquinolin-2(1H)-one (15): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.84 (s, 1H), 7.89 (d, *J* = 9.6 Hz, 1H), 7.55 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.41 (td, *J* = 8.8, 2.8 Hz, 1H), 7.32 (dd, *J* = 9.0, 4.9 Hz, 1H), 6.57 (d, *J* = 9.6 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.11, 158.52, 156.16, 139.90, 136.04, 123.66, 120.16, 118.95, 118.71, 117.39, 113.22, 112.99. HRMS: m/z (ESI) calculated for (C₉H₆FNO) [M+H]⁺: 164.0506, measured: 164.0492.

16

6-chloroquinolin-2(1H)-one (16): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO- d_6) δ 11.90 (s, 1H), 7.87 (d, J = 9.6 Hz, 1H), 7.77 (s, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 6.56 (d, J = 9.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.17, 139.66, 138.04, 130.66, 127.33, 126.01, 123.63, 120.71, 117.43. HRMS: m/z (ESI) calculated for (C₉H₆ClNO) [M+H]⁺: 180.0211, measured: 180.0219.

6-bromoquinolin-2(1H)-one (17): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.85 (s, 1H), 7.92 (s, 1H), 7.88 (d, J = 9.6 Hz, 1H), 7.64 (d, J = 10.9 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 6.55 (d, J = 9.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.07, 139.58, 138.42, 133.31, 130.35, 123.61, 121.28, 117.73, 113.76. HRMS: m/z (ESI) calculated for (C₉H₆BrNO) [M+H]⁺: 223.9705 and 225.9685, measured: 223.9718 and 225.9691

6-methylquinolin-2(1H)-one (18): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 12.26 (s, 1H), 7.79 (d, J = 9.5 Hz, 1H), 7.37 (d, J = 8.7 Hz, 3H), 6.72 (d, J = 9.5 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.39, 140.87, 136.40, 132.31, 132.10, 127.39, 121.24, 119.92, 115.99, 20.91. HRMS: m/z (ESI) calculated for (C₁₀H₉NO) [M+H]⁺: 160.0757, measured: 160.0762.

N-(2-oxo-1,2-dihydroquinolin-6-yl)acetamide (19): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO- d_6) δ 11.66 (s, 1H), 9.99 (s, 1H), 7.97 (s, 1H), 7.86 (d, J = 9.6 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 6.48 (s, 1H), 2.05 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.62, 162.09, 140.56, 135.38, 134.01, 123.23, 122.72, 119.48, 117.61, 115.84, 24.31. HRMS: m/z (ESI) calculated for (C₁₁H₁₀N₂O₂) [M+H]⁺: 203.0815, measured: 203.0821.

20

8-fluoroquinolin-2(1H)-one (20): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.56 (s, 1H), 7.79 (d, J = 10.7 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.33 – 7.25 (m, 1H), 7.21 – 7.12 (m, 1H), 6.76 (d, J = 9.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.62, 150.59, 148.14, 140.11, 127.32, 123.29, 123.20, 122.15, 121.51, 115.65, 115.48. HRMS: m/z (ESI) calculated for (C₉H₆FNO) [M+H]⁺: 164.0506, measured: 164.0513.

8-methylquinolin-2(1H)-one (21): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.02 (s, 1H), 7.79 (d, *J* = 9.5 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.3 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 9.5 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.45, 141.35, 136.88, 131.84, 126.09, 123.23, 122.29, 121.40, 119.70, 16.86.

HRMS: m/z (ESI) calculated for (C₁₀H₉NO) [M+H]⁺: 160.0757, measured: 160.0781.

8-methoxyquinolin-2(1H)-one (22): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.43 (s, 1H), 7.74 (d, *J* = 9.5 Hz, 1H), 7.22 – 7.08 (m, 2H), 6.99 (d, *J* = 9.1 Hz, 1H), 6.68 (d, *J* = 9.5 Hz, 1H), 3.99 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.15, 145.56, 140.46, 128.54, 122.53, 122.21, 120.01, 119.58, 110.16, 56.02.

HRMS: m/z (ESI) calculated for (C₁₀H₉NO₂) [M+H]⁺: 176.0706, measured: 176.0716.

8-(*benzyloxy*)*quinolin-2(1H*)-*one* (23): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.28 (s, 1H), 7.76 (d, J = 9.6 Hz, 1H), 7.51 – 7.36 (m, 5H), 7.19 (d, J = 6.7 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 9.0 Hz, 1H), 6.69 (d, J = 9.6 Hz, 1H), 5.21 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.03, 144.61, 140.46, 135.61, 128.85, 127.89, 122.60, 122.20, 120.19, 119.87, 111.45, 71.06. HRMS: m/z (ESI) calculated for (C₁₆H₁₃NO₂) [M+H]⁺: 252.1019, measured: 252.1030.

8-(*p*-tolyl)quinolin-2(1H)-one (24): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.85 (s, 1H), 7.83 (d, J = 9.6 Hz, 1H), 7.57 (d, J = 6.8 Hz, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.39 – 7.24 (m, 5H), 6.67 (d, J = 9.6 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.45, 141.00, 138.66, 135.43, 132.82, 131.40, 130.28, 129.07, 128.73, 127.26, 122.41, 121.81, 120.00, 21.21. HRMS: m/z (ESI) calculated for (C₁₆H₁₃NO) [M+H]⁺: 236.1070, measured: 236.1052.

isoquinolin-1(2H)-one (25): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.08 (s, 1H), 8.44 (d, J = 8.1 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.0 Hz, 1H), 6.61 (d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.20, 138.11, 132.76, 127.49, 127.35, 126.91, 126.27, 126.03, 106.89. HRMS: m/z (ESI) calculated for (C₉H₇NO) [M+H]⁺: 146.0600, measured: 146.0989.

4-bromoisoquinolin-1(2H)-one (26): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.56 (s, 1H), 8.24 (d, *J* = 7.7 Hz, 1H), 7.87 (t, *J* = 7.7 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.55 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.45, 136.15, 133.95, 130.58, 128.09, 127.87, 126.93, 125.82, 98.02. HRMS: m/z (ESI) calculated for (C₉H₆BrNO) [M+H]⁺: 223.9705 and 225.9685, measured: 223.9699 and 225.9707

5-bromoisoquinolin-1(2H)-one (27): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.32 (s, 1H), 8.48 – 8.37 (m, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.31 – 7.24 (m, 1H), 6.97 (d, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.65, 137.25, 137.09, 130.26, 128.21, 127.04, 126.92, 120.57, 104.98. HRMS: m/z (ESI) calculated for (C₉H₆BrNO) [M+H]⁺: 223.9705 and 225.9685, measured: 223.9723 and 225.9689

6-nitroisoquinolin-1(2H)-one (28): Gradient eluent: EtOAc/petroleum ether: 1/2 to 3/1; ¹H NMR (400 MHz, DMSO- d_6) δ 12.32 (s, 1H), 8.63 (s, 1H), 8.27 (d, J = 9.1 Hz, 1H), 8.08 (d, J = 9.6 Hz, 1H), 7.42 (d, J = 9.1 Hz, 1H), 6.64 (d, J = 9.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.40, 143.72, 141.85, 140.53, 125.42, 124.70, 124.26, 118.95, 116.52. HRMS: m/z (ESI) calculated for (C₉H₆N₂O₃) [M+H]⁺: 191.0451, measured: 191.0432.

¹H and ¹³C NMR spectra of products:

Figure S1. ¹H NMR spectrum of quinolin-2(1H)-one (2a).

Figure S2. ¹³C NMR spectrum of quinolin-2(1H)-one (2a).

Figure S3. ¹H NMR spectrum of 3-bromoquinolin-2(1H)-one (3).

Figure S4. ¹³C NMR spectrum of 3-bromoquinolin-2(1H)-one (3).

Figure S5. ¹H NMR spectrum of 3-methylquinolin-2(1H)-one (4).

Figure S6. ¹³C NMR spectrum of 3-methylquinolin-2(1H)-one (4).

Figure S7. ¹H NMR spectrum of 4-methylquinolin-2(1H)-one (5).

Figure S8. ¹³C NMR spectrum of 4-methylquinolin-2(1H)-one (5).

Figure S9. ¹H NMR spectrum of 4-(1,3-dioxolan-2-yl)quinolin-2(1H)-one (6).

Figure S10. ¹³C NMR spectrum of 4-(1,3-dioxolan-2-yl)quinolin-2(1H)-one (6).

Figure S11. ¹H NMR spectrum of methyl (E)-3-(2-oxo-1,2-dihydroquinolin-4-yl)acrylate (7).

Figure S12. ¹³C NMR spectrum of methyl (E)-3-(2-oxo-1,2-dihydroquinolin-4-yl)acrylate (7).

Figure S13. ¹H NMR spectrum of 4-(hydroxymethyl)quinolin-2(1H)-one (8).

Figure S14. ¹³C NMR spectrum of 4-(hydroxymethyl)quinolin-2(1H)-one (8).

Figure S15. ¹H NMR spectrum of 4-methoxyquinolin-2(1H)-one (9).

Figure S16. ¹³C NMR spectrum of 4-methoxyquinolin-2(1H)-one (9).

Figure S17. ¹H NMR spectrum of 4,7-dimethoxyquinolin-2(1H)-one (10).

Figure S18. ¹³C NMR spectrum of 4,7-dimethoxyquinolin-2(1H)-one (10).

Figure S19. ¹H NMR spectrum of 7-chloro-4-methoxyquinolin-2(1H)-one (11).

Figure S20. ¹³C NMR spectrum of 7-chloro-4-methoxyquinolin-2(1H)-one (11).

Figure S21. ¹H NMR spectrum of 4,7-dichloroquinolin-2(1H)-one (12).

Figure S22. ¹³C NMR spectrum of 4,7-dichloroquinolin-2(1H)-one (12).

Figure S23. ¹H NMR spectrum of 6-nitroquinolin-2(1H)-one (13).

Figure S24. ¹³C NMR spectrum of 6-nitroquinolin-2(1H)-one (13).

Figure S25. ¹H NMR spectrum of methyl 2-oxo-1,2-dihydroquinoline-6-carboxylate (14).

Figure S26. ¹³C NMR spectrum of methyl 2-oxo-1,2-dihydroquinoline-6-carboxylate (14).

Figure S27. ¹H NMR spectrum of 6-fluoroquinolin-2(1H)-one (15).

Figure S28. ¹³C NMR spectrum of 6-fluoroquinolin-2(1H)-one (15).

Figure S29. ¹H NMR spectrum of 6-chloroquinolin-2(1H)-one (16).

Figure S30. ¹³C NMR spectrum of 6-chloroquinolin-2(1H)-one (16).

Figure S31. ¹H NMR spectrum of 6-bromoquinolin-2(1H)-one (17).

Figure S32. ¹³C NMR spectrum of 6-bromoquinolin-2(1H)-one (17).

Figure S33. ¹H NMR spectrum of 6-methylquinolin-2(1H)-one (18).

Figure S34. ¹³C NMR spectrum of 6-methylquinolin-2(1H)-one (18).

Figure S35. ¹H NMR spectrum of N-(2-oxo-1,2-dihydroquinolin-6-yl)acetamide (19).

Figure S36. ¹³C NMR spectrum of N-(2-oxo-1,2-dihydroquinolin-6-yl)acetamide (19).

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

Figure S37. ¹H NMR spectrum of 8-fluoroquinolin-2(1H)-one (20).

Figure S38. ¹³C NMR spectrum of 8-fluoroquinolin-2(1H)-one (20)

Figure S39. ¹H NMR spectrum of 8-methylquinolin-2(1H)-one (21).

Figure S40. ¹³C NMR spectrum of 8-methylquinolin-2(1H)-one (21).

Figure S41. ¹H NMR spectrum of 8-methoxyquinolin-2(1H)-one (22).

Figure S42. ¹³C NMR spectrum of 8-methoxyquinolin-2(1H)-one (22).

Figure S43. ¹H NMR spectrum of 8-(benzyloxy)quinolin-2(1H)-one (23).

Figure S44. ¹³C NMR spectrum of 8-(benzyloxy)quinolin-2(1H)-one (23).

Figure S45. ¹H NMR spectrum of 8-(p-tolyl)quinolin-2(1H)-one (24).

Figure S46. ¹³C NMR spectrum of 8-(p-tolyl)quinolin-2(1H)-one (24).

Figure S47. ¹H NMR spectrum of isoquinolin-1(2H)-one (25).

Figure S48. ¹³C NMR spectrum of isoquinolin-1(2H)-one (25).

Figure S49. ¹H NMR spectrum of 4-bromoisoquinolin-1(2H)-one (26).

Figure S50. ¹³C NMR spectrum of 4-bromoisoquinolin-1(2H)-one (26).

Figure S51. ¹H NMR spectrum of 5-bromoisoquinolin-1(2H)-one (27).

Figure S52. ¹³C NMR spectrum of 5-bromoisoquinolin-1(2H)-one (27).

Figure S53. ¹H NMR spectrum of 6-nitroisoquinolin-1(2H)-one (28).

Figure S54. ¹³C NMR spectrum of 6-nitroisoquinolin-1(2H)-one (28).