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1. General

All commercial reagents were used directly without further purification, unless
otherwise stated. Hydrogen gas (99.99%) was purchased from Dumaoai. Deuterated
solvents were purchased from Cambridge Isotope Laboratories. *H, 13C and °F NMR
spectra were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. The
chemical shifts (6) for 'TH NMR are given in parts per million (ppm) referenced to the
residual proton signal of the deuterated solvent (CHCl; at 6 7.26 ppm, DMSO at 6 2.50
ppm); coupling constants are expressed in hertz (Hz). 3C NMR spectra were
referenced to the carbon signal of CDCl; (77.0 ppm) or DMSO (39.4 ppm). The
following abbreviations are used to describe NMR signals: s = singlet, d = doublet, t =
triplet, m = mulitplet, dd = doublet of doublets, g = quartet. ESI-MS spectra were
recorded on a Bruker microTOF Il instrument. IR spectra were recorded on AVATAR
FT-IR 360 instrument. Powder XRD studies were performed on a Bruker AXS D8. SEM
experiments were carried out on a Nova NanoSem 450 microscope operated at 20 kV.
TEM experiments were carried out on a JEOL JEM-2010 transmission electron
microscope. Dynamic Light Scattering (DLS) experiments were carried out on a
ALV/CGS-3, Germany. Solid-state 3C NMR experiments were carried out on a 400WB
AVANCE lll. The X-ray photoemission spectroscopy (XPS) was performed in a PHI
5000C ESCA system. Nitrogen and hydrogen soption experiments were performed on

a Quantachrome AUTOSORB-IQ. The H,-TPD was performed in a TP-500.
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2. Syntheses of catalysts

2.1 Syntheses of tetraimidazolium salts
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Scheme S1 General synthetic procedure of tetraimidazolium salts and complex 5.
Note: tetraimidazolium halides were synthesized according to the literature
reports.s152

A Schlenk tube was charged with tetraimidazolium halides (1 mmol), triethyloxonium
tetrafluoroborate (1.9 g, 8 mmol), dry CHsl (20 mL), dry MeOH (10 mL) and sealed with
a Teflon-lined cap. The resulting reaction mixture was stirred for 12 hours and then
poured into excess diethyl ether (50 mL). After precipitation completed, the solids
were collected via filtration and dried under reduced pressure to afford the desired
salts.

Salt L2: white solid, 88% yield. 'H NMR (400 MHz, DMSO-d,, 298 K) 6 =9.67 (s, 4H),
8.25 (s, 4H), 7.95 (s, 4H), 7.76 (d, J = 8.8 Hz, 8H), 7.61 (d, J = 8.8 Hz, 8H), 3.94 (s, 12H).
1F NMR (376 MHz, DMSO-d;, 298 K): 6 = -148.32. 13C NMR (100 MHz, DMSO-d,, 298
K): 6=147.21, 136.28, 133.46, 132.13, 125.01, 122.23, 121.33, 64.45, 36.65. HRMS
[M-2(BF4)]%* m/z, calcd. for C41HaoNg(BF4),: 409.1717; found: 409.1718.

NHC-Ir complex 5 was synthesized according to previously reported procedures.>3>*
1H NMR (400 MHz, DMSO-d) 6 7.58 (dd, J = 5.1, 1.8 Hz, 6H), 7.37 (d, J = 2.0 Hz, 2H),
7.30 — 7.23 (m, 6H), 4.54 (s, 2H), 3.45-3.51 (m, 2H), 2.97 (s, 6H), 2.23-2.33 (m, 2H),

2.09-2.15 (m, 2H), 1.96-2.04 (m, 2H), 1.54 — 1.62 (m, 2H).
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2.2 Syntheses of solid NHC-Ir catalysts
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Scheme S2 General synthetic procedure of solid NHC-Ir assemblies 3a-c ([Ir] is
[Ir(acac)(CO),] or [Ir(COD)CI],).

A Schlenk tube was charged with tetraimidazolium salts (0.5 mmol) and the iridium
precursor ([Ir(acac)(CO),] or [Ir(COD)CI],) (1 mmol), the mixture were dissolved in DMF
(5 mL) under N, at room temperature, LIHMDS (2 mmol) solution in THF was added in
dropwise. The resulting mixture was stirred at 80 °C for 12 h. The solids were isolated
after filtration and washed with DMF, 1,4-dioxane, MeOH, deionized water for three
times respective. The Soxhlet extraction was used after the filtration of the 3D
catalysts in order to remove the metal precursors and solvent.The solids were then
dried over under vacuum.

NHC-Ir assembly 3a: yellow solid, 85% yield; IR (KBr pellet) v 617.24, 682.62, 823.55,
1246.19, 1363.81, 1476.16, 1507.57, 1559.45, 1617.61, 1636.60, 1653.83, 3421.67 cm"
1. Elemental analysis (%) Calcd. for (CsyHeol,IrNsg)n: C, 45.78; H, 4.04; N, 7.49; found: C,
45.57; H,4.41; N, 7.52.

NHC-Ir assembly 3b: orange solid, 84% vyield; IR (KBr pellet) v 1363.72, 1477.25,
1507.74, 1544.43,1559.43,1636.66, 1647.43, 1653.87,1684.71, 2023.41, 3447.30 cm"
1. Elemental analysis (%) Calcd. for (CasHsgl,1roNgO,-2H,0),.: C, 37.67; H, 2.94; N, 8.17;

found: C, 37.58; H, 2.53; N, 8.14.
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NHC-Ir assembly 3c: brown solid, 80% vyield; IR (KBr pellet) v 521.29, 533.30, 680.42,
1034.08, 1083.63, 1246.58, 1363.77, 1406.53, 1474.86, 1506.86, 1559.33, 1624.03,
3404.43 cm™; Elemental analysis (%) Calcd. for (Cs;HggB,Fglr;Ng-3C4HgO,),: C, 49.29; H,

5.16; N, 6.66; found: C, 49.31; H, 4.88; N, 6.23.
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3. Catalytic hydrogenation of LA and derivatives

3.1 Optimization of reaction conditions

Table S1 Optimization of reaction conditions @

)?\/\ Cat., H, \&o

COOH KOH, i-PrOH

LA GVL
Entry (Cat.] (eZausi\e/') Solvent (aF:;:) T;:\)e Y(i;l)d
1° 3a KOH (1.1) i-PrOH 30 4 95
2b 3b KOH (1.1) i-PrOH 30 4 83
3b 3c KOH (1.1) i-PrOH 30 4 78
4b 3a KOH (1.1) i-PrOH 1 24 78
5 3a KOH (1.1) i-PrOH 1 24 >99
6 3a KOH (2)  i-PrOH 1 24 89
7 3a KOH (1.0) i-PrOH 1 24 54
8 3a KOH (0.5) i-PrOH 1 24 25
9 3a KOH (0)  i-PrOH 1 24 7
10 3a KOH (1.1) t-BuOH 1 24 8
11 3a KOH (1.1) MeOH 1 24 17
12 3a KOH (1.1) H,0 1 24 40
13 3a KOH (1.1)  Neat 1 24 32
14¢ 3a KOH (1.1) H,0 1 48 80
15 3a NaOH (1.1) /-PrOH 1 24 84
16 3a K,CO3(1.1) i-PrOH 1 24 41
17 3a Na,COs (1.1) i-PrOH 1 24 38
189 3a KOH (1.1) i-PrOH 50 72 81
19¢ 3a KOH (1.1) i-PrOH 1 72 60
20 3a KOH (1.1) i-PrOH 1 0.5 37
217 3a KOH (0.1) i-PrOH 1 24 92

@ Reactions were carried out with LA (15 mmol), catalyst (0.02 mol%), KOH (1.1 equiv.),
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H, (1 atm) in i-PrOH (5 mL) at 100 °C for 24 h, the yield was determined by H NMR

with mesitylene as an internal standard. ? With 0.01 mol% catalyst. ¢ With 0.12 mol%

catalyst. With 0.0004 mol% catalyst. ¢ With 0.00125 mol% catalyst. f 1 equiv.

potassium levulinate as reagent.

3.2 Literature overview

Table S2 The TON and TOF values for the conversion of LA into GVL?

Entry Catalyst Puz (atm) TON TOF Ref.
(h)
3D NHC—Ir coordination
1 50 2.1x10° - This work
assamblies 3a
2 3D NHC—Ir coordination 1 48000 3630 This work
assamblies 3a
3 Ni(OAc), . 4H,0/Triphos 30 10000 ) S5
4 [(dtbpe)PdCl,] - 2100 2100 S6
5 PNP-pincer iron complex 50 23000 1917 S7
1D NHCIr coordination
6 50 1.2x10° - S8
assamblies
7 Ru/TiO2-n 30 - 41.5 S9
8 POMPs 30 1.01x108 - S10
9 IrH3/PNP 100 71000 1479 S11
10 Ir complex 10 78000 2167 S12
11 Co(BF,),/PP3 1 620 - S13

@ quoted from the corresponding references. ? Calculated by Yield/catalyst amount.

3.3 Catalytic procedure of hydrogenation of LA to GVL with NHC-Ir

assemblies

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was
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charged with LA (15 mmol), solid NHC-Ir assemblies (0.02 mol%), KOH (16 mmol) and
isopropanol (5 mL). The reaction mixture was stirred under hydrogen at 100 °C for 24
h. The Schlenk tube was then cooled to room temperature and the pressure was
released. After pH regulation with HCl and additional 1 h stirring at room temperature,
mesitylene (3 mmol) was added to the reaction mixture as an internal standard for 'H

NMR analysis to determine the yield.

3.4 Operation procedure for the recovery of solid 3a

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was
charged with LA (15 mmol), solid 3a (0.06 mol%), KOH (16 mmol) and isopropanol (5
mL). After the hydrogenation by the aforementioned general operation procedure,
the solids were readily recovered after centrifugation and decantation. The recovered
solids 3a were washed with isopropanol (5 mL x 3), the recovered solids were reused
directly in the next run without additional activation steps, simply recharging LA, KOH

and j-PrOH in the Schlenk tube.

3.5 Mechanistic studies

Q i-PrOH, KOH 0=0
A~coon - X

3a, 24 h, 100 °C

trace

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was
charged with LA (15 mmol), solid 3a (0.02 mol%), KOH (16 mmol) and isopropanol (5
mL). The reaction mixture was stirred under nitrogen at 100 °C for 24 h. The Schlenk
tube was then cooled to room temperature and the pressure was released. After pH
regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3
mmol) was added to the reaction mixture as an internal standard for 'H NMR analysis

to determine the yield.

O

H,, Solvent, KOH 0=~©

3a, 24 h, 100 °C

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was
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charged with LA (15 mmol), solid 3a (0.02 mol%), KOH (16 mmol) and different
solvents (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 24 h.
The Schlenk tube was then cooled to room temperature and the pressure was
released. After pH regulation with HCl and additional 1 h stirring at room temperature,
mesitylene (3 mmol) was added to the reaction mixture as an internal standard for 'H

NMR analysis to determine the yield.

O H,, i-PrOH, KOH O
@) 23 y @)
v 3a, 24 h, 100 °C \V\J/
trace

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was
charged with a-angelica lactone (15 mmol), solid 3a (0.02 mol%), KOH (16 mmol) and
isopropanol (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 24
h. The Schlenk tube was then cooled to room temperature and the pressure was
released. After pH regulation with HCl and additional 1 h stirring at room temperature,
mesitylene (3 mmol) was added to the reaction mixture as an internal standard for 1H

NMR analysis to determine the yield.
@]

H,, Ho0, KOH 0
HA~coon = - Xy

3a, 48 h, 100 °C

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was
charged with LA (15 mmol), solid 3a (0.12 mol%), KOH (16 mmol) and H,0 (5 mL). The
reaction mixture was stirred under nitrogen at 100 °C for 48 h. The Schlenk tube was
then cooled to room temperature and the pressure was released. After pH regulation
with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was
added to the reaction mixture as an internal standard for 'H NMR analysis to

determine the yield.

@)

H,, i-PrOH, KOH 0
A ~cook - St

3a, 24 h, 100 °C

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was

charged with potassium levulinate (15 mmol), solid 3a (0.02 mol%), KOH (1 mmol) and
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i-PrOH (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 24 h. The
Schlenk tube was then cooled to room temperature and the pressure was released.
After pH regulation with HCl and additional 1 h stirring at room temperature,
mesitylene (3 mmol) was added to the reaction mixture as an internal standard for 'H

NMR analysis to determine the yield.

3.6 Catalytic procedure of hydrogenation of LA derivatives with NHC-Ir

assemblies
0 0O

OH  3a(0.1 mol%), H,
R : -
O KOH, i-PrOH

100 °C, 24 h

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was
charged with LA derivatives (5 mmol), solid 3a (0.1 mol%), KOH (10 mmol) and
isopropanol (5 mL). The reaction mixture was stirred under hydrogen pressure at 100
°C for 24 h. The Schlenk tube was then cooled to room temperature and the pressure
was released. After pH regulation with HCl and additional 1 h stirring at room
temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal
standard for 'H NMR analysis to determine the yield.

O

2b,%8 Yellow oil, 94% yield, 'H NMR (400 MHz, CDCls, 298K) & 7.41 — 7.27 (m, 5H),
5.55—5.43 (m, 1H), 2.73 — 2.58 (m, 3H), 2.17 (s, 1H); 3C NMR (101 MHz, CDCl5) &

176.98,139.42, 131.05, 122.89, 81.27, 29.98 .

0]
0O

2¢,8 Brown solid, 92% yield, 1H NMR (400 MHz, CDCls, 298K) & 7.22 (m, 4H), 5.48 (t, J
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= 6.3 Hz, 1H), 2.65 (m, 3H), 2.36 (s, 3H), 2.19 (m, 1H); 13C NMR (101 MHz, CDCl5) &

177.04, 138.26, 136.32, 129.36, 125.36, 81.35, 30.91, 29.05, 21.12.

O
/@/Olj
~o

2d,%8 Yellow solid, 76% yield, 'H NMR (400 MHz, CDCls, 298K) & 7.25 (d, J = 6.4 Hz, 2H),
6.90 (d, J = 8.7 Hz, 2H), 5.54 — 5.36 (m, 1H), 3.80 (s, 3H), 2.70 — 2.51 (m, 3H), 2.18 (dd,
J=10.7, 9.7 Hz, 1H); 13C NMR (101 MHz, CDCl3) 6 176.98, 159.71, 131.11, 126.95,

114.07, 81.35, 55.30, 30.84, 29.20.

@)
/©)$
Cl

2e,%8 Yellow oli, 94% yield, H NMR (400 MHz, CDCls, 298K) & 7.39 (d, J = 8.2 Hz, 2H),
7.29 (d, J = 7.9 Hz, 2H), 5.58 — 5.44 (m, 1H), 2.77 = 2.61 (m, 3H), 2.17 (m, 1H); 3C NMR

(101 MHz, CDCl5) 6 176.65, 137.89, 134.15, 128.88, 126.74, 80.45, 30.87, 28.87.

0O
J@fﬁ
Br

2f,°8 White solid, 94% yield, 'H NMR (400 MHz, CDCls, 298K) § 7.52 (d, J = 8.5 Hz, 2H),
7.21(d, J = 8.5 Hz, 2H), 5.46 (dd, J = 8.1, 6.2 Hz, 1H), 2.73 — 2.60 (m, 3H), 2.23 — 2.08
(m, 1H); 13C NMR (101 MHz, CDCls3) 6 176.60, 138.54, 132.02, 127.07, 80.53, 31.01,

28.95.
0O
0]

2h,58 White solid, 81% yield, IH NMR (400 MHz, CDCls, 298K) & 7.85 (dd, J = 13.8, 8.7

Hz, 4H), 7.51 (q, J = 3.6 Hz, 2H), 7.41 (d, J = 6.1 Hz, 1H), 5.68 (t, J = 7.1 Hz, 1H), 2.78 —
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2.63 (m, 3H), 2.42 — 2.23 (m, 1H); 13C NMR (101 MHz, CDCl3) 6 176.94, 136.66,
133.07, 128.80, 128.01, 127.71, 126.58, 126.42, 124.24, 122.83, 81.27, 30.88, 28.88.
Cp

0
2j,% White solid, 70% yield, H NMR (400 MHz, CDCl;, 298 K) & = 7.97 (d, J = 8.0 Hz,

1H), 7.73 (t, J = 8.0 Hz, 1H), 7.56 - 7.52 (m, 2H), 5.35 (s, 2H); 13C NMR (100 MHz, CDCls,

298 K) 6 =170.99, 146.41, 133.90, 128.86, 125.46, 125.46, 122.04, 69.55.
0O

O

2k,>8 Yellow oil, 71% yield, *H NMR (400 MHz, CDCls, 298K) § 7.96 (d, J = 7.7 Hz, 1H),
7.71 (t,J = 7.5 Hz, 1H), 7.61 — 7.50 (m, 2H), 5.35 (s, 2H); 13C NMR (101 MHz, CDCl5) &
170.46, 151.19, 134.09, 129.05, 125.56, 121.63, 77.76, 20.38.
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4. SEM, TEM & EDS images of solid NHC-Ir assemblies

4.1 SEM images of solid NHC-Ir assemblies

200 nm WD = 84 mm EWZEDDDKV Mag = SUVUUKX FDU
Signal A = InLens Aperture Size = 3000 um

Fig. S1 SEM image of fresh prepared solid 3a (scale bar: 0.2 um).

Fig. S2 SEM image of the recovered solid 3a after 10t run (scale bar: 0.2 pm).
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Fig. S3 SEM image of fresh prepared solid 3b (scale bar: 0.2 um).

20Tum

Fig. S4 SEM image of fresh prepared solid 3c (scale bar: 20 um).
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4.2 TEM images of solid NHC-Ir assemblies

A2 t‘!rn' €5 G

Fig. S5 TEM image of fresh prepared solid 3a (scale bar: 0.2 um).

Fig. S6 TEM image of the recovered solid 3a after 10t run (scale bar: 0.2 pm).
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4.3 EDS images of solid NHC-Ir assemblies

Ir Lol

lum

Fig. S7 EDS image of fresh prepared solid 3a (scale bar: 1 um).

Ir Lal

lum

Fig. S8 EDS image of the recovered solid 3a after 10t run (scale bar: 1 pm).

Ir Larl

lum

Fig. S9 EDS image of fresh prepared solid 3b (scale bar: 1 um).
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Ir Lal

1um

Fig. $10 EDS image of fresh prepared solid 3c (scale bar: 1 um).

4.4 EDX of solid NHC-Ir assemblies
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Fig. S11 EDX pattern of new prepared solid NHC-Ir assembly 3a measured with SEM.
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5. Powder XRD spectra of solid NHC-Ir assemblies
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Fig. S12 XRD spectrum of fresh prepared solid 3a.
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Fig. S13 XRD spectrum of recovered solid 3a.
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Fig. S14 XRD spectrum of fresh prepared solid 3b.
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Fig. S15 XRD spectrum of fresh prepared solid 3c.
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6. XPS spectra of solid NHC-Ir assemblies
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Fig. S16 XPS of freshly prepared solid 3a.
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Fig. S17 XPS of recovered solid 3a after the 10t run.
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Fig. S18 XPS of freshly prepared 5.
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Fig. S19 XPS of freshly prepared 4b.
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7. Solid-state 13C NMR of solid NHC-Ir assemblies
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Fig. S20 Solid-state 3C NMR of NHC-Ir complex 5
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Fig. S21 Solid-state 3C NMR of solid 3a
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Fig. S22 Solid-state 3C NMR of solid 4b
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8. N, and H; sorption of solid NHC-Ir assemblies
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Fig. S23 N, adsorption/desorption isotherm of 1D solid 4b (black line) and 3D solid 3a

(red line).
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Fig. $24 H, adsorption and desorption isotherm of solid 3a and 4b at 298 K
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9. Dynamic light scattering of the solid NHC-Ir assembly 3a
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Fig. $25 Dynamic Light Scattering of solid 3a.
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10. Metal-leaching test with ICP-AES

Table S3 Iridium leaching test with the filtrates of the reaction mixture after

consecutive run?.

[Cat.] Run Conc. of Ir (mg/L)
3a 1 0.080
3a 2 0.075
3a 3 0.074
3a 4 0.082
3a 5 0.062
3a 6 0.072
3a 7 0.076
3a 8 0.073
3a 9 0.078
3a 10 0.035

a |CP-AES analysis of the filtrates after each consecutive run. After the reaction was
guenched, the catalyst was separated with centrifuging. The pH value of the resulting
clear solution was adjusted with HCI to about 3-4 and diluted to 1 L. The corresponding

amount of Ir in the original mixture is 1x the concentration measured with ICP-AES

(mg).
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11. Hydrogen temperature programmed desorption of the solid

catalyst 3a

Intensity (a.u.)
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Fig. $26 Hydrogen temperature programmed desorption of solid catalyst 3a.

2%V, X MxSF
D(%) = x 1001514
mxPxV, xD,

2 XV, X MXSF
P_

= x 100
mXDXV XD,

In the equations, V,q(mL) represents the volume of chemisorbed H, obtained from the

TPD result, which was 75.1449 mL. M is 192.22 g mol~1, which is the molecular weight

of Ir; SF means the stoichiometric factor (the Ir:H molar ratio in the chemisorption)
usually supposed as 2 and m (g) means the catalyst mass used for TPD measurement,

which is 101.2 mg. P is the mass fraction of Ir in the catalyst and V,, is the molar volume

of H, (22.4 L mol™1). D, is the reduction degree of iridum, which is usually taken as

100%. D is the dispersion of the catalyst which is taken as 100% because it is supposed
as “sigle site”. As a result, the mass fraction of Ir in the catalyst measured by TDP is

25.5%, which is consistent with the 26.6% measured by ICP.
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12. 1H, 13C, and °F NMR and IR spectra for important compounds

JP201224D1 /1 — 00 < AN Vv [
" . N0 RQ X0\ S
o 00 N N N N~ I3
I — I

4.00
8.004
1210

0 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 05 O.
S(ppm)

Fig. S37 'H NMR (400 MHz, DMSO-ds, 298 K)spectrum of compound L1.
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Fig. S28 'H NMR (400 MHz, DMSO-ds, 298 K)spectrum of compound L2.
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Fig. $29 °F NMR (376 MHz, DMSO- dg, 298 K) spectrum of compound L2.
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Fig. S30 3C NMR (101 MHz, DMSO-d,, 298 K) spectrum of compound L2.
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Fig. S31 'H NMR (400 MHz, CDCls, 298K) spectrum after a typical catalytic reaction
with 0.02% catalyst 3a.
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Fig. $32 'H NMR (400 MHz, CDCl;, 298K) spectrum of compound 2b.
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Fig. $33 3C NMR (101 MHz, CDCls, 298K) spectrum of compound 2b.
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Fig. S34 'H NMR (400 MHz, CDCls, 298K) spectrum of compound 2c.
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Fig. S35 13C NMR (101 MHz, CDCls, 298K) spectrum of compound 2c.
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Fig. S36 'H NMR (400 MHz, CDCl;, 298K) spectrum of compound 2d.
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Fig. S38 'H NMR (400 MHz, CDCls, 298K) spectrum of compound 2e.
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Fig. S40 'H NMR (400 MHz, CDCls, 298K) spectrum of compound 2f.
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Fig. S41 3C NMR (101 MHz, CDCl;, 298K) spectrum of compound 2f.
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Fig. S42 'H NMR (400 MHz, CDCls;, 298K) spectrum of compound 2h.

S3

6



NayPh[19 £ OOl + % q T [0

13 Pl CTRRSTY Y AR 5 R r
g S 1 e 00|00 F O P N R ®
N Rl N SHSE ES SRS — I 0
— — = = = — 0 o N
[ = ~f—=—"1" I

40 2380 220|2(1Q 200 [190 18)*70 YGO 150|140 13F 120 11p 100 90 [ 80| 70 60 50 40||Bp 20 10 O -1
S(ppm

Fig. S43 13C NMR (101 MHz, CDCls, 298K) spectrum of compound 2h.
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Fig. S44 'H NMR (400 MHz, CDCls, 298K) spectrum of compound 2j.
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Fig. S46 'H NMR (400 MHz, CDCls, 298K) spectrum of compound 2k.
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Fig. S48 'H NMR (400 MHz, CDCls, 298K) spectrum of the ligand of 4’515
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13. Recycling of 3a under 30 bar H, pressure and 1 atm H, pressure
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Fig. S53 Recycling and reuse of the solid NHC-Ir catalyst 3a in the hydrogenation of LA
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Fig. S54 Recycling and reuse of the solid NHC-Ir catalyst 3a in the hydrogenation of LA
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14. The reaction profile of LA to GVL

A several reactions were preformed under the standard condtion and stopped in
different times. The Schlenk tubes were then cooled to room temperature and the
pressure was released. After pH regulation and additional 1 h stirring at room
temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal

standard for 'H NMR analysis to determine the yield of GVL and the conversion of LA.
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Fig. S55 The reaction profile for the hydrogenation of LA to GVL.
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Fig. S56 The 'H NMR (400 MHz, CDCl;, 298K) spectrum of the hydrogenation of LA to

GVL after 1 h reaction.
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