Electronic supplementary information (ESI) for Efficient Hydrogenation of Levulinic Acid Catalysed by Spherical NHC-Ir Assemblies with Atmospheric Pressure of Hydrogen

Lingyun Shen^a, Qingshu Zheng^a, Yaoqi Liu^a, Jiajie Wu^a, Zeye Lu^a and Tao Tu^{a,b,c*}

^a Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry,
 Fudan University, 2005 Songhu Road, Shanghai 200438 (China)
 ^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese
 Academy of Sciences, Shanghai 200032 (China)
 ^c College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou
 450001 (China)
 E-mail: taotu@fudan.edu.cn

Table of Contents:

1. General ·····	S3
2. Syntheses of catalysts	S4
3. Catalytic hydrogenation of LA and derivatives	S7
4. SEM, TEM, EDS images of solid catalysts	S14
5. Powder XRD of solid catalysts	S19
6. XPS spectra of solid catalysts	S21
7. Solid-state ¹³ C NMR of solid catalysts	S23
8. N_2 and H_2 sorption of solid catalysts	S25
9. Dynamic light scattering of the solid catalyst 3a	S26
10. Metal-leaching test with ICP-AES	S27
11. Hydrogen temperature programmed desorption of the solid catalyst 3a ····	S28
12. ¹ H, ¹³ C and ¹⁹ F NMR and IR spectra for important compounds	S29
13. Recycling of 3a under 30 bar H_2 pressure and 1 atm H_2 pressure	S42
14. The reaction profile of LA to GVL	S43
15. References	S45

1. General

All commercial reagents were used directly without further purification, unless otherwise stated. Hydrogen gas (99.99%) was purchased from Dumaoai. Deuterated solvents were purchased from Cambridge Isotope Laboratories. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. The chemical shifts (δ) for ¹H NMR are given in parts per million (ppm) referenced to the residual proton signal of the deuterated solvent (CHCl₃ at δ 7.26 ppm, DMSO at δ 2.50 ppm); coupling constants are expressed in hertz (Hz). ¹³C NMR spectra were referenced to the carbon signal of CDCl₃ (77.0 ppm) or DMSO (39.4 ppm). The following abbreviations are used to describe NMR signals: s = singlet, d = doublet, t =triplet, m = mulitplet, dd = doublet of doublets, q = quartet. ESI-MS spectra were recorded on a Bruker microTOF II instrument. IR spectra were recorded on AVATAR FT-IR 360 instrument. Powder XRD studies were performed on a Bruker AXS D8. SEM experiments were carried out on a Nova NanoSem 450 microscope operated at 20 kV. TEM experiments were carried out on a JEOL JEM-2010 transmission electron microscope. Dynamic Light Scattering (DLS) experiments were carried out on a ALV/CGS-3, Germany. Solid-state ¹³C NMR experiments were carried out on a 400WB AVANCE III. The X-ray photoemission spectroscopy (XPS) was performed in a PHI 5000C ESCA system. Nitrogen and hydrogen soption experiments were performed on a Quantachrome AUTOSORB-IQ. The H₂-TPD was performed in a TP-500.

2. Syntheses of catalysts

2.1 Syntheses of tetraimidazolium salts

Scheme S1 General synthetic procedure of tetraimidazolium salts and complex **5**. Note: tetraimidazolium halides were synthesized according to the literature reports.^{S1,S2}

A Schlenk tube was charged with tetraimidazolium halides (1 mmol), triethyloxonium tetrafluoroborate (1.9 g, 8 mmol), dry CH₃I (20 mL), dry MeOH (10 mL) and sealed with a Teflon-lined cap. The resulting reaction mixture was stirred for 12 hours and then poured into excess diethyl ether (50 mL). After precipitation completed, the solids were collected via filtration and dried under reduced pressure to afford the desired salts.

Salt **L2**: white solid, 88% yield. ¹H NMR (400 MHz, DMSO- d_6 , 298 K) δ = 9.67 (s, 4H), 8.25 (s, 4H), 7.95 (s, 4H), 7.76 (d, J = 8.8 Hz, 8H), 7.61 (d, J = 8.8 Hz, 8H), 3.94 (s, 12H). ¹⁹F NMR (376 MHz, DMSO- d_6 , 298 K): δ = -148.32. ¹³C NMR (100 MHz, DMSO- d_6 , 298 K): δ = 147.21, 136.28, 133.46, 132.13, 125.01, 122.23, 121.33, 64.45, 36.65. HRMS [M-2(BF₄)]²⁺ m/z, calcd. for C₄₁H₄₀N₈(BF₄)₂: 409.1717; found: 409.1718.

NHC-Ir complex **5** was synthesized according to previously reported procedures.^{53,54} ¹H NMR (400 MHz, DMSO- d_6) δ 7.58 (dd, J = 5.1, 1.8 Hz, 6H), 7.37 (d, J = 2.0 Hz, 2H), 7.30 – 7.23 (m, 6H), 4.54 (s, 2H), 3.45-3.51 (m, 2H), 2.97 (s, 6H), 2.23-2.33 (m, 2H), 2.09-2.15 (m, 2H), 1.96-2.04 (m, 2H), 1.54 – 1.62 (m, 2H).

2.2 Syntheses of solid NHC-Ir catalysts

Scheme S2 General synthetic procedure of solid NHC-Ir assemblies **3a-c** ([Ir] is [Ir(acac)(CO)₂] or [Ir(COD)CI]₂).

A Schlenk tube was charged with tetraimidazolium salts (0.5 mmol) and the iridium precursor ([Ir(acac)(CO)₂] or [Ir(COD)CI]₂) (1 mmol), the mixture were dissolved in DMF (5 mL) under N₂ at room temperature, LiHMDS (2 mmol) solution in THF was added in dropwise. The resulting mixture was stirred at 80 °C for 12 h. The solids were isolated after filtration and washed with DMF, 1,4-dioxane, MeOH, deionized water for three times respective. The Soxhlet extraction was used after the filtration of the 3D catalysts in order to remove the metal precursors and solvent. The solids were then dried over under vacuum.

NHC-Ir assembly **3a:** yellow solid, 85% yield; IR (KBr pellet) *v* 617.24, 682.62, 823.55, 1246.19, 1363.81, 1476.16, 1507.57, 1559.45, 1617.61, 1636.60, 1653.83, 3421.67 cm⁻¹; Elemental analysis (%) *Calcd. for* (C₅₇H₆₀I₂Ir₂N₈)_n: C, 45.78; H, 4.04; N, 7.49; *found:* C, 45.57; H, 4.41; N, 7.52.

NHC-Ir assembly **3b**: orange solid, 84% yield; IR (KBr pellet) v 1363.72, 1477.25, 1507.74, 1544.43, 1559.43, 1636.66, 1647.43, 1653.87, 1684.71, 2023.41, 3447.30 cm⁻¹; Elemental analysis (%) *Calcd. for* (C₄₅H₃₆I₂Ir₂N₈O₂·2H₂O)_n: C, 37.67; H, 2.94; N, 8.17; *found:* C, 37.58; H, 2.53; N, 8.14.

NHC-Ir assembly **3c:** brown solid, 80% yield; IR (KBr pellet) *v* 521.29, 533.30, 680.42, 1034.08, 1083.63, 1246.58, 1363.77, 1406.53, 1474.86, 1506.86, 1559.33, 1624.03, 3404.43 cm⁻¹; Elemental analysis (%) *Calcd. for* (C₅₇H₆₀B₂F₈Ir₂N₈·3C₄H₈O₂)_n: C, 49.29; H, 5.16; N, 6.66; *found*: C, 49.31; H, 4.88; N, 6.23.

3. Catalytic hydrogenation of LA and derivatives

3.1 Optimization of reaction conditions

		Соон н	Cat. , H (OH, <i>i</i> -Pr	2 > -				
LA GVL								
Entry	[Cat.]	Base (equiv.)	Solvent	Р _{н2} (atm)	Time (h)	Yield (%)		
1 ^{<i>b</i>}	За	KOH (1.1)	<i>i</i> -PrOH	30	4	95		
2 ^b	3b	KOH (1.1)	<i>i</i> -PrOH	30	4	83		
3 ^{<i>b</i>}	3c	KOH (1.1)	<i>i</i> -PrOH	30	4	78		
4 ^b	За	KOH (1.1)	<i>i</i> -PrOH	1	24	78		
5	За	KOH (1.1)	<i>i</i> -PrOH	1	24	>99		
6	За	KOH (2)	<i>i</i> -PrOH	1	24	89		
7	За	KOH (1.0)	<i>i</i> -PrOH	1	24	54		
8	За	KOH (0.5)	<i>i</i> -PrOH	1	24	25		
9	За	КОН (0)	<i>i</i> -PrOH	1	24	7		
10	За	KOH (1.1)	t-BuOH	1	24	8		
11	За	KOH (1.1)	MeOH	1	24	17		
12	3a	KOH (1.1)	H ₂ O	1	24	40		
13	За	KOH (1.1)	Neat	1	24	32		
14 ^c	За	KOH (1.1)	H_2O	1	48	80		
15	3a	NaOH (1.1)	<i>i</i> -PrOH	1	24	84		
16	3a	K ₂ CO ₃ (1.1)	<i>i</i> -PrOH	1	24	41		
17	3a	Na ₂ CO ₃ (1.1)	<i>i</i> -PrOH	1	24	38		
18 ^d	3a	KOH (1.1)	<i>i</i> -PrOH	50	72	81		
19 <i>°</i>	3a	KOH (1.1)	<i>i</i> -PrOH	1	72	60		
20	3a	KOH (1.1)	<i>i</i> -PrOH	1	0.5	37		
21 ^{<i>f</i>}	3a	KOH (0.1)	<i>i</i> -PrOH	1	24	92		

Table S1 Optimization of reaction conditions ^a

^a Reactions were carried out with LA (15 mmol), catalyst (0.02 mol%), KOH (1.1 equiv.),

H₂ (1 atm) in *i*-PrOH (5 mL) at 100 °C for 24 h, the yield was determined by ¹H NMR with mesitylene as an internal standard. ^{*b*} With 0.01 mol% catalyst. ^{*c*} With 0.12 mol% catalyst.^{*d*} With 0.0004 mol% catalyst. ^{*e*} With 0.00125 mol% catalyst. ^{*f*} 1 equiv. potassium levulinate as reagent.

3.2 Literature overview

Catalyst	P _{H2} (atm)	TON	TOF	Ref.	
			(h⁻¹)		
3D NHC-Ir coordination	50	2.4.405			
assamblies 3a	50	2.1×10 ³	-	I NIS WORK	
3D NHC–Ir coordination	1	48000	3630	This work	
assamblies 3a					
Ni(OAc), 4H ₂ O/Triphos	30	10000	-	S5	
		2100	2100	S.C.	
	-	2100	2100	50	
PNP-pincer iron complex	50	23000	1917	S7	
1D NHC-Ir coordination	50	1 2.105		60	
assamblies	50	1.2×10°	-	20	
Ru/TiO2-n	30	-	41.5	S 9	
POMPs	30	1.01×10 ⁶	-	S10	
IrH ₃ /PNP	100	71000	1479	S11	
Ir complex	10	78000	2167	S12	
Co(BF ₄) ₂ /PP3	1	62 ^b	-	S13	
	Catalyst 3D NHC–Ir coordination assamblies 3a 3D NHC–Ir coordination assamblies 3a Ni(OAc) ₂ . 4H ₂ O/Triphos [(dtbpe)PdCl ₂] PNP-pincer iron complex [(dtbpe)PdCl ₂] [(dtbpe)PdCl ₂] [(Catalyst P_{H2} (atm)3D NHC-Ir coordination assamblies 3a 50 3D NHC-Ir coordination1assamblies 3a 1assamblies 3a 30 Ni(OAc)_2 · 4H_2O/Triphos 30 [(dtbpe)PdCl_2]-PNP-pincer iron complex 50 1D NHC-Ir coordination 50 1D NHC-Ir coordination 50 assamblies 30 ID NHC-Ir coordination 10 IrH_3/PNP 100 Ir complex 10 Ir complex 10 Co(BF_4)_2/PP3 1	Catalyst P_{H2} (atm) TON 3D NHC-Ir coordination 30 2.1×10^5 assamblies 3a 50 2.1×10^5 3D NHC-Ir coordination 1 48000 assamblies 3a 1 48000 assamblies 3a 1 48000 assamblies 3a 1 48000 assamblies 3a 1 48000 I(OAc)_2 · 4H_2O/Triphos 30 10000 [(dtbpe)PdCl_2] - 2100 PNP-pincer iron complex 50 23000 1D NHC-Ir coordination 50 23000 1D NHC-Ir coordination 50 1.2×10^5 assamblies 70 -1 Ru/TiO2-n 30 -1.01×10^6 Ir H_3/PNP 100 71000 Ir complex 10 78000 Ir complex 10 78000 Co(BF_4)_2/PP3 1 62^b	Catalyst P_{H2} (atm) TON TOF (h ⁻¹) 3D NHC-Ir coordination assamblies 3a 50 2.1×10^5 - 3D NHC-Ir coordination 1 48000 3630 3D NHC-Ir coordination 1 48000 3630 assamblies 3a 1 48000 - 3D NHC-Ir coordination 1 48000 - assamblies 3a - - - Ni(OAc) ₂ . 4H ₂ O/Triphos 30 10000 - [(dtbpe)PdCl ₂] - 2100 2100 PNP-pincer iron complex 50 23000 1917 1D NHC-Ir coordination assamblies 50 1.2×10 ⁵ - Ru/TiO2-n 30 - 41.5 POMPs 30 1.01×10 ⁶ - Ir H ₃ /PNP 100 71000 1479 Ir complex 10 78000 2167 Co(BF ₄) ₂ /PP3 1 62 ^b -	

Table S2 The TON and TOF values for the conversion of LA into GVL^a

^{*a*} quoted from the corresponding references. ^{*b*} Calculated by Yield/catalyst amount.

3.3 Catalytic procedure of hydrogenation of LA to GVL with NHC-Ir

assemblies

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was

charged with LA (15 mmol), solid NHC-Ir assemblies (0.02 mol%), KOH (16 mmol) and isopropanol (5 mL). The reaction mixture was stirred under hydrogen at 100 °C for 24 h. The Schlenk tube was then cooled to room temperature and the pressure was released. After pH regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for ¹H NMR analysis to determine the yield.

3.4 Operation procedure for the recovery of solid 3a

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was charged with LA (15 mmol), solid **3a** (0.06 mol%), KOH (16 mmol) and isopropanol (5 mL). After the hydrogenation by the aforementioned general operation procedure, the solids were readily recovered after centrifugation and decantation. The recovered solids **3a** were washed with isopropanol (5 mL × 3), the recovered solids were reused directly in the next run without additional activation steps, simply recharging LA, KOH and *i*-PrOH in the Schlenk tube.

3.5 Mechanistic studies

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was charged with LA (15 mmol), solid **3a** (0.02 mol%), KOH (16 mmol) and isopropanol (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 24 h. The Schlenk tube was then cooled to room temperature and the pressure was released. After pH regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for ¹H NMR analysis to determine the yield.

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was

charged with LA (15 mmol), solid **3a** (0.02 mol%), KOH (16 mmol) and different solvents (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 24 h. The Schlenk tube was then cooled to room temperature and the pressure was released. After pH regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for ¹H NMR analysis to determine the yield.

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was charged with α -angelica lactone (15 mmol), solid **3a** (0.02 mol%), KOH (16 mmol) and isopropanol (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 24 h. The Schlenk tube was then cooled to room temperature and the pressure was released. After pH regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for 1H NMR analysis to determine the yield.

$$\begin{array}{c} \overset{O}{\longrightarrow} \\ \overset{H_2, H_2O, KOH}{\longrightarrow} \\ \hline 3a, 48 \text{ h}, 100 \text{ °C} \end{array} \xrightarrow{O} \\ \end{array}$$

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was charged with LA (15 mmol), solid **3a** (0.12 mol%), KOH (16 mmol) and H₂O (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 48 h. The Schlenk tube was then cooled to room temperature and the pressure was released. After pH regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for ¹H NMR analysis to determine the yield.

$$\frac{H_2, i-PrOH, KOH}{3a, 24 h, 100 °C} \rightarrow 0 \xrightarrow{0}$$

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was charged with potassium levulinate (15 mmol), solid **3a** (0.02 mol%), KOH (1 mmol) and

i-PrOH (5 mL). The reaction mixture was stirred under nitrogen at 100 °C for 24 h. The Schlenk tube was then cooled to room temperature and the pressure was released. After pH regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for ¹H NMR analysis to determine the yield.

3.6 Catalytic procedure of hydrogenation of LA derivatives with NHC-Ir assemblies

A Schlenk tube equipped with a magnetic stirring bar and a hydrogen balloon was charged with LA derivatives (5 mmol), solid **3a** (0.1 mol%), KOH (10 mmol) and isopropanol (5 mL). The reaction mixture was stirred under hydrogen pressure at 100 °C for 24 h. The Schlenk tube was then cooled to room temperature and the pressure was released. After pH regulation with HCl and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for ¹H NMR analysis to determine the yield.

2b,^{s8} Yellow oil, 94% yield, ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.41 – 7.27 (m, 5H), 5.55 – 5.43 (m, 1H), 2.73 – 2.58 (m, 3H), 2.17 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.98 , 139.42 , 131.05, 122.89, 81.27 , 29.98 .

2c,^{s8} Brown solid, 92% yield, ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.22 (m, 4H), 5.48 (t, J

= 6.3 Hz, 1H), 2.65 (m, 3H), 2.36 (s, 3H), 2.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.04, 138.26, 136.32, 129.36, 125.36, 81.35, 30.91, 29.05, 21.12.

2d,^{s8} Yellow solid, 76% yield, ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.25 (d, *J* = 6.4 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 5.54 – 5.36 (m, 1H), 3.80 (s, 3H), 2.70 – 2.51 (m, 3H), 2.18 (dd, *J* = 10.7, 9.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.98, 159.71, 131.11, 126.95, 114.07, 81.35, 55.30, 30.84, 29.20.

2e,⁵⁸ Yellow oli, 94% yield, ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.39 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 5.58 – 5.44 (m, 1H), 2.77 – 2.61 (m, 3H), 2.17 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.65, 137.89, 134.15, 128.88, 126.74, 80.45, 30.87, 28.87.

2f,⁵⁸ White solid, 94% yield, ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.52 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.5 Hz, 2H), 5.46 (dd, *J* = 8.1, 6.2 Hz, 1H), 2.73 – 2.60 (m, 3H), 2.23 – 2.08 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.60, 138.54, 132.02, 127.07, 80.53, 31.01, 28.95.

2h,⁵⁸ White solid, 81% yield, ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.85 (dd, *J* = 13.8, 8.7 Hz, 4H), 7.51 (q, *J* = 3.6 Hz, 2H), 7.41 (d, *J* = 6.1 Hz, 1H), 5.68 (t, *J* = 7.1 Hz, 1H), 2.78 –

2.63 (m, 3H), 2.42 – 2.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.94, 136.66, 133.07, 128.80, 128.01, 127.71, 126.58, 126.42, 124.24, 122.83, 81.27, 30.88, 28.88.

2j,⁵⁸ White solid, 70% yield, ¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.97 (d, *J* = 8.0 Hz, 1H), 7.73 (t, *J* = 8.0 Hz, 1H), 7.56 - 7.52 (m, 2H), 5.35 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, 298 K) δ = 170.99, 146.41, 133.90, 128.86, 125.46, 125.46, 122.04, 69.55.

2k,⁵⁸ Yellow oil, 71% yield, ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.96 (d, *J* = 7.7 Hz, 1H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.61 – 7.50 (m, 2H), 5.35 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.46, 151.19, 134.09, 129.05, 125.56, 121.63, 77.76, 20.38. 4. SEM, TEM & EDS images of solid NHC-Ir assemblies

4.1 SEM images of solid NHC-Ir assemblies

Fig. S1 SEM image of fresh prepared solid **3a** (scale bar: 0.2 μ m).

Fig. S2 SEM image of the recovered solid **3a** after 10^{th} run (scale bar: 0.2 μ m).

Fig. S3 SEM image of fresh prepared solid 3b (scale bar: 0.2 $\mu m).$

Fig. S4 SEM image of fresh prepared solid 3c (scale bar: 20 $\mu\text{m}).$

4.2 TEM images of solid NHC-Ir assemblies

Fig. S5 TEM image of fresh prepared solid **3a** (scale bar: 0.2 μ m).

Fig. S6 TEM image of the recovered solid **3a** after 10^{th} run (scale bar: 0.2 μ m).

4.3 EDS images of solid NHC-Ir assemblies

Fig. S7 EDS image of fresh prepared solid **3a** (scale bar: $1 \mu m$).

Fig. S8 EDS image of the recovered solid **3a** after 10^{th} run (scale bar: 1 μ m).

Fig. S9 EDS image of fresh prepared solid 3b (scale bar: 1 μm).

Fig. S10 EDS image of fresh prepared solid 3c (scale bar: 1 $\mu\text{m}).$

4.4 EDX of solid NHC-Ir assemblies

Fig. S11 EDX pattern of new prepared solid NHC-Ir assembly 3a measured with SEM.

5. Powder XRD spectra of solid NHC-Ir assemblies

Fig. S12 XRD spectrum of fresh prepared solid 3a.

Fig. S13 XRD spectrum of recovered solid 3a.

Fig. S14 XRD spectrum of fresh prepared solid 3b.

Fig. S15 XRD spectrum of fresh prepared solid 3c.

6. XPS spectra of solid NHC-Ir assemblies

Fig. S16 XPS of freshly prepared solid 3a.

Fig. S17 XPS of recovered solid 3a after the 10th run.

Fig. S18 XPS of freshly prepared 5.

Fig. S19 XPS of freshly prepared 4b.

7. Solid-state ¹³C NMR of solid NHC-Ir assemblies

Fig. S20 Solid-state ¹³C NMR of NHC-Ir complex 5

Fig. S21 Solid-state ¹³C NMR of solid 3a

Fig. S22 Solid-state ¹³C NMR of solid 4b

Fig. S23 N_2 adsorption/desorption isotherm of 1D solid 4b (black line) and 3D solid 3a

(red line).

Fig. S24 H₂ adsorption and desorption isotherm of solid 3a and 4b at 298 K

9. Dynamic light scattering of the solid NHC-Ir assembly 3a

Fig. S25 Dynamic Light Scattering of solid 3a.

10. Metal-leaching test with ICP-AES

[Cat.]	Run	Conc. of Ir (mg/L)
3a	1	0.080
3 a	2	0.075
3 a	3	0.074
3 a	4	0.082
3 a	5	0.062
3 a	6	0.072
3 a	7	0.076
3 a	8	0.073
3 a	9	0.078
3 a	10	0.035

Table S3 Iridium leaching test with the filtrates of the reaction mixture after consecutive run^{*a*}.

^{*a*} ICP-AES analysis of the filtrates after each consecutive run. After the reaction was quenched, the catalyst was separated with centrifuging. The pH value of the resulting clear solution was adjusted with HCl to about 3-4 and diluted to 1 L. The corresponding amount of Ir in the original mixture is 1× the concentration measured with ICP-AES (mg).

11. Hydrogen temperature programmed desorption of the solid

catalyst 3a

Fig. S26 Hydrogen temperature programmed desorption of solid catalyst **3a**.

$$D(\%) = \frac{2 \times V_{ad} \times M \times SP}{m \times P \times V_m \times D_r} \times 100^{[S14]}$$

$$P = \frac{2 \times V_{ad} \times M \times SF}{m \times D \times V_m \times D_r} \times 100$$

In the equations, V_{ad} (mL) represents the volume of chemisorbed H₂ obtained from the TPD result, which was 75.1449 mL. M is 192.22 g mol⁻¹, which is the molecular weight of Ir; SF means the stoichiometric factor (the Ir:H molar ratio in the chemisorption) usually supposed as 2 and m (g) means the catalyst mass used for TPD measurement, which is 101.2 mg. P is the mass fraction of Ir in the catalyst and V_m is the molar volume of H₂ (22.4 L mol⁻¹). D_r is the reduction degree of iridum, which is usually taken as 100%. D is the dispersion of the catalyst which is taken as 100% because it is supposed as "sigle site". As a result, the mass fraction of Ir in the catalyst measured by TDP is 25.5%, which is consistent with the 26.6% measured by ICP.

12. ¹H, ¹³C, and ¹⁹F NMR and IR spectra for important compounds

Fig. S37 ¹H NMR (400 MHz, DMSO- d_6 , 298 K)spectrum of compound L1.

Fig. S28 ¹H NMR (400 MHz, DMSO- d_6 , 298 K)spectrum of compound L2.

Fig. S29 ¹⁹F NMR (376 MHz, DMSO- *d*₆, 298 K) spectrum of compound **L2**.

Fig. S30 13 C NMR (101 MHz, DMSO- d_6 , 298 K) spectrum of compound L2.

Fig. S31 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum after a typical catalytic reaction with 0.02% catalyst **3a**.

Fig. S32 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2b.

Fig. S33 ¹³C NMR (101 MHz, CDCl₃, 298K) spectrum of compound 2b.

Fig. S34 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2c.

Fig. S36 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2d.

Fig. S37 ¹³C NMR (101 MHz, CDCl₃, 298K) spectrum of compound 2d.

Fig. S38 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2e.

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 $\delta(\text{ppm})$

Fig. S40 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2f.

Fig. S41 ¹³C NMR (101 MHz, CDCl₃, 298K) spectrum of compound 2f.

Fig. S42 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2h.

Fig. S44 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2j.

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 δ(ppm)

Fig. S46 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of compound 2k.

Fig. S47 ¹³C NMR (101 MHz, CDCl₃, 298K) spectrum of compound 2k.

Fig. S48 ¹H NMR (400 MHz, CDCl₃, 298K) spectrum of the ligand of 4'^{S15}

Fig. S50 IR spectrum of compound 3a after 6 times of reuse.

Fig. S51 IR spectrum of compound 3b.

Fig. S52 IR spectrum of compound 3c.

13. Recycling of 3a under 30 bar H_2 pressure and 1 atm H_2 pressure

Fig. S53 Recycling and reuse of the solid NHC-Ir catalyst 3a in the hydrogenation of LA to GVL under 30 bar H₂ pressure for 4h.

Fig. S54 Recycling and reuse of the solid NHC-Ir catalyst 3a in the hydrogenation of LA to GVL under 1 atm H₂ pressure for 24h.

14. The reaction profile of LA to GVL

A several reactions were preformed under the standard condition and stopped in different times. The Schlenk tubes were then cooled to room temperature and the pressure was released. After pH regulation and additional 1 h stirring at room temperature, mesitylene (3 mmol) was added to the reaction mixture as an internal standard for ¹H NMR analysis to determine the yield of GVL and the conversion of LA.

Fig. S55 The reaction profile for the hydrogenation of LA to GVL.

Fig. S56 The ¹H NMR (400 MHz, $CDCl_3$, 298K) spectrum of the hydrogenation of LA to GVL after 1 h reaction.

13. References

S1 J. Choi, H. Y. Yang, H. J. Kim and S. U. Son, *Angew. Chem. Int. Ed.* 2010, **49**, 7718–7722.

S2 M. Tominaga, A. lekushi, K. Katagiri, K. Ohara, K. Yamaguchi and I. Azumaya, *Tetrahedron Lett.* 2014, **55**, 5789–5792.

S3 L. S. Sharninghausen, J. Campos, M. G. Manas and R. H.Crabtree, *Nat. Commun.***2014**, *5*, 5084

G. E. Dobereiner, A. Nova, N. D. Schley, N. Hazari, S. J. Miller, O. Eisenstein and R.H. Crabtree, J. Am. Chem. Soc. 2011, 133, 7547-7562.

S5 B. Zada, R. Zhu, B. Wang, J. Liu, J. Deng and Y. Fu, *Green Chem.* 2020, 22, 3427-3432.

S6 C. Cervantes, M. Alamo and J. J.GarCía, ACS Catal. 2015, 5, 1424–1431.

S7 Y. Yi, H. Liu, L. Xiao, B. Wang and G. Song, *ChemSusChem* 2018, **11**, 1474 – 1478

S8 Y. Liu, Z. Sun, C. Huang and T. Tu, Chem. Asian J. 2017, 12, 355-360.

S. Li, Y. Wang, Y. Yang, B. Chen, J. Tai, H. Liu and B. Han, *Green Chem.* 2019, 21, 770-774.

S10 Y. Shen, Q. Zheng, H. Zhu and T. Tu, Adv. Mater. 2020, 32, 1905950.

S11 W. Li, J. H. Xie, H. Lin, Q. L. Zhou, Green Chem. 2012, 14, 2388.

S12 J. Deng, Y. Wang, T. Pan, Q. Xu, Q. Guo and Y. Fu, *ChemSusChem* 2013, **6**, 1163–1167.

S13 Z. Liu, Z. Yang, P. Wang, X. Yu, Y. Wu, H. Wang and Z. Liu, ACS Sustain. Chem. Eng.
2019, 7, 18236–18241.

S14 S. Li, G. Liu, S. Zhang, K. an, Z. Ma, L. Wang and Y. Liu, *J. Energy Chem.* 2020, **43**, 155–164.

S15 A. J. Boydston, P. D. Vn, O. L. Dykhno, V. Chang, A. R. Wyatt, A. S. Stockett, E. T. Ritschdorff, J. B. Shear and C. W. Bielawski, *J. Am. Chem. Soc.* 2008, **130**, 3143-3155.