[Electronic Supplementary Information]

Bio-based poly(pentamethylene sebacamide) by solid-state polymerization from bio-based monomers

Myung Ock Lee,^{a,b} Ji Hyun Kim,^b JaeYun Park^b and Sang Youl Kim*^a

^aDepartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejon 34141, Korea

^bLotte Chemical Research Institute, 115 Gajeongbuk-ro, Yuseong-gu, Daejeon 34110, Korea

Correspondence to Sang Youl Kim e-mail: kimsy@kaist.ac.kr Fax: +82-42-350-2810

Figure S1. ¹H NMR spectra of bio-PA510 a) prepolymer, b) polymer produced by solid-state polymerization, c) polymer obtained by melt polymerization. HFP is 1,1,1,3,3,3-hexafluoro-2-propanol and CDCl₃-d is chloroform-d.

Figure S2. ¹H NMR spectrum of the effluent water (Methanol-d₄).

It was also observed that not only the cyclic end groups of the oligomer but also the cyclic monomers from cadaverine during the melt polymerization in the effluent water. ¹H NMR analysis of effluent water revealed that the cyclic by-product was piperidine which was formed through elimination of ammonia from cadaverine (Methanol-d₄ solvent, Figure S2). The similar results were reported in the case of the polymerization of PA46 from putrescine.^{S1, S2}

Figure S3. GPC chromatogram of bio-PA 510 prepolymer (RV = 1.7, M_n = 25,100 g/mol, M_w = 45,800 g/mol, \Box = 1.82, m-cresol eluent)

Figure S4. GPC chromatogram of bio-PA 510 prepared by SSP (RV = 3.8, M_n = 94,800 g/mol, M_w = 157,000 g/mol, D = 1.66, m-cresol eluent)

Figure S5. GPC chromatogram of bio-PA 510 prepared by melt polymerization (RV = 4.7, M_n = 114,000 g/mol, M_w = 187,000 g/mol, D = 1.65, m-cresol eluent)

The molecular weight was analyzed by Gel Permeation Chromatography (GPC, Agilent) with 3 columns (Guard column and two Jordi Resolve 13µm columns) with 1ml/min flow rate at 100°C. m-Cresol was used as solvent with concentration of 1mg/ml. Molecular weight was measured (based on polystyrene standards) with three samples for just checking the molecular weight trend versus the relative viscosity. The results were followings: RV 1.7 (Prepolymer): M_n was 25,100 g/mol and M_w was 45,800 g/mol with 1.82 of D value; RV 3.8 of bio-PA510 produced by SSP process: M_n 94,800 g/mol and M_w 157,000 g/mol with 1.66 of D value; RV 4.7 of bio-PA510 produced by melt polymerization: M_n 114,000 g/mol and M_w 187,000 g/mol with 1.65 of D value.

Figure S6. DSC curve of bio-PA 510 prepared by SSP.

Figure S7. TGA curve of bio-PA 510 prepared by SSP.

Figure S8. Stress-strain diagram of bio-PA 510 prepared by SSP.

Figure S9. Flexure Stress-Flexure extension diagram of bio-PA 510 prepared by SSP.

Figure S10. DSC curve of PA 612.

Figure S11. TGA curve of PA 612.

Figure S12. Stress-strain diagram of PA 612.

Figure S13. Flexure Stress-Flexure extension diagram of PA 612.

Figure S14. DSC curve of PA 610.

Figure S15. TGA curve of PA 610.

Figure S16. Stress-strain diagram of PA 610.

Figure S17. Flexure Stress-Flexure extension diagram of PA 610.

Properties	Units	PA510	PA612	PA610	Standard
T _m / T _d (Base resin)	°C	217/453	217/445	224/444	-
Glass fiber contents	%	32	31	31	-
Density	g/cm ³	1.3209	1.2941	1.3163	ASTM D792
Yield stress (Tensile strength)	MPa	145	141	145	ASTM D638
Breaking stress	MPa	144	141	143	
Elongation at break	%	8	8	9	
Flexural strength	MPa	222	220	222	ASTM D790
Flexural modulus	MPa	7270	7360	7320	
Notched Izod Impact - 23°C, 3T	kg.cm/cm	13.59	19.4	19.2	
Notched Izod Impact 30°C, 3T	kg.cm/cm	4.3	4.3	5.3	ASTIVI D250
HDT – 18.5kg	°C	193	190	194	ASTM D648
Shrinkage	%	0.253	0.297	0.297	-

Table S1. Thermal and mechanical properties of synthesized bio-PA510 and representative commercialized long-chain nylons, PA610 and PA612.

 Table S2. % Crystallinity of Bio-PA510, PA610, PA612, PA6 and PA66.

PAs	RV	ΔH^{obs}_{f} (J/g)	ΔH_f^o (J/g)	Crystallinity (%)
PA510	3.3	67.27	257 (PA69)	26
PA610	3.0	84.82	254	33
PA612	2.8	80.95	258	31
PA6	2.5	72.16	230	32
PA66	2.5	93.78	226	41

 $\Delta H^{obs}_{\ \ f}$: Enthalphy of polymer samples obtained from DSC analysis

 $\Delta H^0_{f:}$ Enthalphy of 100% crystalline polymer (theoretical values from References^s)

Crystallinity (%) =
$$\frac{\Delta H_f^{obs}}{\Delta H_f^0} \times 100$$

Figure S18. XRD patterns of bio-PA510, PA612, and PA66.

References

- S1 R. J. Gaymans, T. E. C. Vanutteren, J. W. A. Vandenberg and J. Schuyer, J. Polym. Sci., 1977, 15, 537-545.
- S2 E. Roerdink and J. M. M. Warnier, *Polymer*, 1985, **26**, 1582-1588.
- S3 R. L. Blaine, TA Instruments, Thermal applications note, Polymer heat of fusion.