1 Environmental and economic assessment of global and German

2 production locations for CO₂-based methanol and naphtha

3 Simon Kaiser^{a1}, Katharina Prontnicki Stefan Bringezu^a

4	
5	
6	Supplementary Information
7	
8	
9	Content:
10	S1: Method and Database for the GIS Analysis
11	S2: Calculation Formulars and Economic Parameters
12	S3: Location Specific Data
13	S4: LCA Results
14	S5: Detailed Results of the Contribution Analysis
15	S6: Detailed Results of the Economic Assessment
16	S7: Uncertainty Analysis
17	S8: Data Quality Assessment
18	

[°] Center for Environmental Systems Research, University of Kassel, Wilhelmshoeher Allee 47, D-34117 Kassel, Germany

¹ Corresponding author, Email address: <u>simon.kaiser@uni-kassel.de</u>, Tel.: +49 561 804 6122

19 S1: Method and Database for the GIS Analysis

20 Step 1: Characterization of the regions

The Geoinformation System (GIS) analysis was conducted with the software *ArcGis, Version 10.6.* For the analysis, the different data layers described in Table 1 were combined in a GIS-model using Gauß-Krueger coordinates (WGS 1984). The different regions were delineated according to the watersheds described in Boulay et al. ¹. Since there is no varying of the AWARE factor within one watershed, a further differentiation was not possible. In case a raster point could not be unambiguously assigned to one region, it was completely assigned to the region in which the majority of its area is located. In the next step, the mean value, and the standard deviation for each capacity factor as well as the number of CO₂-point sources were calculated for every region using the *zonal statistics* tool. The transport distance from each region to Germany was calculated using the Euclidean distance between the respective centroids. While the locations of waste incineration and cement plants could be directly extracted from the respective datasets, the locations of the steel plants were derived from company reports of the largest global steel producers and cross-checked with domestic production capacities.

- Resource Parameter Description Resolution/ Data Source Nr. of plants 2 9"x9" Wind Energy **Capacity Factor** IEC Class I 9"x9" 3 Solar Energy **Capacity Factor** kWh/kWp 1 Water AWARE (Available Water m³/m³ 0.5 ° x 0.5 ° Remaining) 4, 5 Waste Incineration 177 Plants Number of industrial 6 CO_2 **Cement Plants** 1561 CO₂ Point sources 7, 8 Steel Plants (Blast 115 Furnace)
- 34 Table 1: Parameters and Data used in the location analysis (IEC = International Electrotechnical Commission).

35

36 Step 2: Selection of representative examples

37 After the combination of the different data layers and the characterization of the different regions,

38 best case examples for every system type and distance category were identified according to the

39 decision procedure described in Figure 1. The selected regions were later used as representative

40 $\,$ locations in the environmental and economic assessments.

- 41
- 42
- 43
- 44
- 45

- 47
- 48

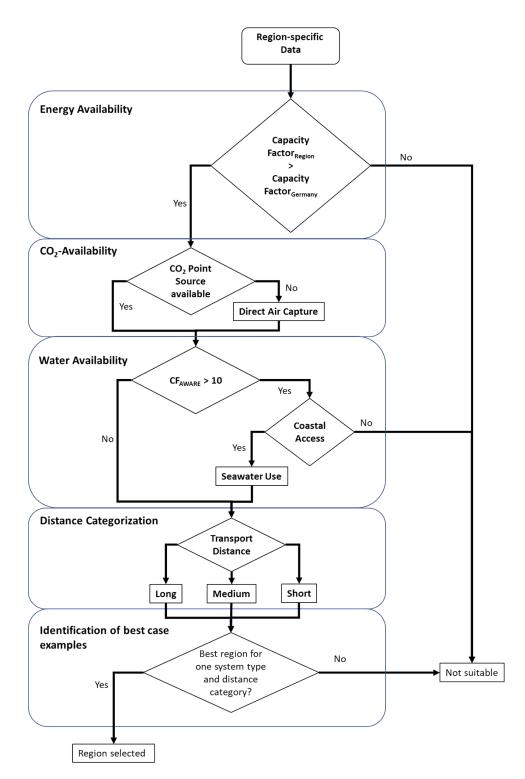


Figure 1: Selection procedure for the identification of best cases for the different system types.

51 S2: Calculation Formulars and Economic Parameters

52 S2-1: Levelized Cost of Energy (LCOE)

$$LCOE_{ij} = \frac{\sum_{t=1}^{n} \frac{Capex_{t} + Opex_{t}}{(1+r_{i})^{t}}}{\sum_{t=1}^{n} \frac{E_{t}}{(1+r_{i})^{t}}} [\pounds/GJ]$$

t: Period

- *i*: Produced Chemical
- j: Location

Capex_t: Capital Expenditures (Investment Costs)

- $Opex_t$: Operation Expenditures (Maintenance, Fuel and Personnel Costs)
- E_t : Cumulated Energy bound in the yearly production volume
- r: project specific interest rate/weighted average costs of capital

62 S2-2: Avoidance Costs (AC)

$$AC_{ij} = \frac{LCOE_{ij} - MP_{fossil}}{GWI_{ij} - GWI_{fossil}} \left[\frac{\notin}{t \ CO_2 eq. \ avoided} \right]$$

- *i*: Produced Chemical
- j: Location
- *LCOE_{ij}*: Levelized Costs of Energy
- $67 \quad MP_{fossil}$: Net market price for fossil fuels in the status quo

69 S2-3: Net Present Value (NPV)

$$NPV_{ij} = -\sum_{1}^{t} \frac{Capex_{t} + Opex_{t}}{(1+r_{i})^{t}} + \sum_{1}^{t} \frac{(MP_{fossil} * (1+\Delta PF_{t})^{t} + CP_{t} * \Delta GWI) * PV_{t}}{(1+r_{i})^{t}} [\epsilon]$$

t: Period

i: Produced Chemical

j: Location

- $\left[\frac{t \ CO_2 \ eq. \ avoided}{t \ Chemical}\right]$
- 75 ΔGWI : Avoided emissions $\begin{bmatrix} t Ch \end{bmatrix}$
- 76 PV_t : Yearly production volume [t]

77 CP_t : Carbon Price

78 ΔPF_t : Relative Price change for fossil fuels compared to the status quo

79 S2-4: Economic Parameters

- 80 Table 2: Description of Cost Parameters. (Sq = Status quo, Capex = Capital Expenditures, Opex = operational expenditures, PV
- 81 = Photovoltaic, FLH = Full load hours, PS = Point Source, DAC = Direct Air Capture, RSWO = Reverse Seawater Osmosis, WACC

82 = Weighted Average Costs of Capital).

Process	Parameter	Value Sq	References	Value 2030	References
Onshore wind	Capex [€/MW]	1,605,000	9	1,000,000	10
plant	Opex [% Capex]	2	_	2	_
	Lifetime [years]	20	_	20	_
PV plant	Capex [€/MW]	900,000.00	11	750,000	11
	Opex [% Capex]	1	_	1	_
	Lifetime [years]	30	_	30	_
Electrolysis	Capex [€/MW]	1,470,000	12	500,000	12,13
-	Opex [% Capex]	1	_	1	_
	Lifetime [FLH]	60,000	-	90,000	14
	Energy	55 kWh/kg H ₂	12	50 kWh/kg	12
	Requirement				
CO₂ Capture (PS)	Capex [€] (Scaling Factor: 0.6)	26,680,367	15	18,676,256	16
	Opex [% Capex]	6	17	6	17
	Lifetime [years]	20		20	
	Heat Costs	Country specific	18	Country specific	18
	[€/kWh]	, ,		, ,	
CO ₂ Capture	Capex [€/t CO ₂	730.00	19	263.50	19
(DAC)	per year]				
	Opex [% Capex]	4	-	4	_
	Heat Costs	Country specific	18	Country specific	18
	[€/kWh]				
	Lifetime [FLH]	105,120	20	105,120	20
RSWO	Capex [€/m ³ H ₂ O	2.25	21	2.25	21
	per year]				
	Opex [% Capex]	4	22	4	22
Freshwater	[€/m³]	Region specific	23	Region	23
Production		0 1		specific	
Methanol	Capex [€/t MeOH	200.00	24	200.00	24
Synthesis	per year]				
-	Opex [% Capex]	5	_	5	_
	Lifetime [years]	20	-	20	_
FT-Synthesis	Capex [€/t	300	24	300	24
	Naphtha per				
	year]				
	Opex [% Capex]	5	_	5	_
	Lifetime	20	_	20	_
Transport	[€/km * kg]	1.96 * 10^-6	25	1.96 * 10^-6	25
	L =/ NIII N6]	1.50 10 0		1.50 10 0	
Methanol					

Synthesis			
WACC	[%]	Country Specific 26	Country Specific 26
	[,0]		

84 S3: Location Specific Data

85 Due to the condition that the production locations must show a higher capacity factor than in Germany, it was not possible to identify regions with a point

86 source and wind as energy for the distance categories short and medium. The identified location in Germany is used as a proxy for these distance categories.

87 Table 3: Specific Data for the analyzed locations. The basin number is taken from ref.¹. (DAC = Direct Air Capture, PS = Point Source, PV = Photovoltaic, Wind = Onshore Wind).

Country	Basin Number	Energy Source	Capacity Factor	Aware Factor			trolyzer Capa	acity				
						[km]	Methanol	Naphtha	Delta	Methanol	Naphtha	Delta
Argentina	10,967	Wind	72 %	1	DAC	13,613	221	316		172	272	
Argentina	10,851	Wind	64 %	17	PS	13,068	239	343	-	194	306	_
Argentina	10,987	Wind	71 %	100	DAC	13,651	223	319	_	174	275	_
Ireland	4,569	Wind	63 %	8	DAC	1,433	245	350	_	197	311	_
Germany	4,583	Wind	58 %	1	PS	0	253	364	-	214	339	-
Germany	4,650	Wind	52 %	4	DAC	0	293	418	-	238	376	-
United Kingdom	4,073	Wind	62 %	11	DAC	1,310	248	354	-	198	314	-
Venezuela	8,199	Wind	69 %	6	DAC	8,312	269	384	-	179	284	-
Western Sahara	7,564	Wind	75 %	94	DAC	4,091	211	301	-	165	261	_
Turkey	6,395	PV	19 %	1	PS	2,248	800	1,151	-	666	1,054	_
Saudi Arabia	7,333	PV	21 %	9	PS	4,372	711	1,023	30 %	592	937	37 %
Bolivia	10,043	PV	24 %	4	PS	10,742	624	897	-	519	821	-
Spain	6,353	PV	19 %	1	DAC	2,095	799	1,141	-	638	1,010	-
China	6,914	PV	24 %	8	DAC	6,425	644	919		514	814	
Argentina	10,243	PV	27 %	1	DAC	11,266	564	805	-	450	713	_
Morocco	6,530	PV	20 %	91	PS	2,221	728	1,048	_	606	959	_
Saudi Arabia	7,119	PV	22 %	65	PS	3,342	671	965	-	558	883	_
Chile	10,209	PV	25 %	100	PS	11,333	592	851	-	492	779	_
Egypt	6,870	PV	20 %	59	DAC	2,583	757	1,081	-	605	957	_
Namibia	10,295	PV	23 %	35	DAC	8,583	670	956	_	535	846	_
Chile	10,138	PV	26 %	97	DAC	11,179	607	867	_	485	767	_

89 S4: LCA Results

90 Table 4: LCA Results for the different impact categories. If water desalination was used as water source, a water incorporation of 0 was assumed. (GWI = Global Warming Impact, RMI = Raw

91 Material Input, TMR = Total Material Requirement, M = Methanol, N = Naphtha).

Country	Basin	Energy	Capacity	Aware	Carbon I	ootprint		Material	Footprin	t		Water Fo	otprint		Land Footprint		
	Number	Source	Factor	Factor	GWI [kg C	O2 eq./MJ]	RMI [kg/kg]	TMR [kg/kg]	Incorpora	tion [l/MJ]	Evaporati	ion [l/MJ]	Occupation	on [m²*a]	
					М	N	м	Ν	М	N	М	Ν	М	Ν	М	N	
Argentina	10,851	Wind	64%	17	-0.049	-0.056	0.04	0.05	0.05	0.07	0.00	0.00	0.460	0.566	0.001	0.001	
Argentina	10,967	Wind	72%	1	-0.040	-0.042	0.04	0.06	0.06	0.08	0.92	0.98	0.644	0.714	0.001	0.001	
Argentina	10,987	Wind	71%	100	-0.040	-0.045	0.04	0.06	0.06	0.08	0.00	0.00	0.645	0.767	0.001	0.001	
Argentina	10,243	PV	27%	1	-0.022	-0.021	0.07	0.08	0.10	0.12	5.33	5.69	3.232	4.266	0.012	0.016	
Bolivia	10,043	PV	24%	4	-0.034	-0.034	0.05	0.07	0.07	0.10	0.22	0.23	3.102	4.188	0.012	0.017	
Chile	10,209	PV	25%	100	-0.035	-0.036	0.05	0.06	0.07	0.10	0.00	0.00	6.309	8.651	0.012	0.016	
Chile	10,138	PV	26%	97	-0.020	-0.019	0.07	0.09	0.10	0.13	0.00	0.00	3.452	4.547	0.012	0.017	
China	6,914	PV	24%	8	-0.019	-0.017	0.07	0.10	0.11	0.14	0.44	0.47	3.641	4.823	0.013	0.018	
Egypt	6,870	PV	20%	59	-0.015	-0.010	0.08	0.11	0.12	0.16	0.00	0.00	4.213	5.644	0.015	0.021	
Germany	4,583	Wind	58%	1	-0.050	-0.054	0.04	0.05	0.05	0.07	0.22	0.24	0.374	0.515	0.000	0.001	
Germany	4,650	Wind	52%	4	-0.034	-0.034	0.06	0.07	0.07	0.10	0.06	0.06	0.613	0.779	0.001	0.001	
Ireland	4,569	Wind	63%	8	-0.035	-0.035	0.05	0.06	0.06	0.09	0.42	0.45	0.551	0.693	0.001	0.001	
Morocco	6,530	PV	20%	91	-0.033	-0.031	0.06	0.08	0.08	0.12	0.00	0.00	3.554	4.880	0.014	0.020	
Namibia	10,295	PV	23%	35	-0.018	-0.015	0.08	0.10	0.11	0.14	0.00	0.00	5.096	6.812	0.014	0.019	
Saudi Arabia	7,119	PV	22%	65	-0.035	-0.033	0.05	0.07	0.08	0.11	0.00	0.00	3.265	4.493	0.013	0.018	
Saudi Arabia	7,333	PV	21%	9	-0.033	-0.028	0.05	0.07	0.08	0.11	0.05	0.06	3.475	4.743	0.014	0.019	
Spain	6,353	PV	19%	1	-0.006	0.002	0.09	0.12	0.13	0.17	0.04	0.05	4.373	5.809	0.016	0.022	
Turkey	6,395	PV	19%	1	-0.030	-0.027	0.06	0.08	0.09	0.13	0.49	0.52	3.891	5.341	0.016	0.022	
United Kingdom	4,073	Wind	62%	11	-0.035	-0.035	0.05	0.07	0.07	0.09	0.00	0.00	0.554	0.700	0.001	0.001	
Venezuela	8,199	Wind	69%	6	-0.040	-0.042	0.05	0.06	0.06	0.08	0.33	0.35	0.667	0.783	0.001	0.001	
Western Sahara	7,564	Wind	75%	94	-0.043	-0.044	0.04	0.05	0.05	0.07	0.00	0.00	0.571	0.696	0.001	0.001	
Fossil based Process		-	-		0.034	0.010	0.05	0.03	0.05	0.04	0.00	0.00	0.3697	0.3309	0.0003	0.0003	

93 S5: Results of the contribution Analysis

94 For the climate footprint, the heat demand of the CO_2 -capture process (36%) as well as the 95 energy (27%) and material supply (23%) of the supply chain are the main drivers. This is 96 especially the case for DAC production systems for which the contribution of the capture 97 process is on average about 13% higher (41% vs. 28%) than for systems based on point sources. 98 The product synthesis (7%) and the transport (6%) only have a minor impact. Hence, there is a large potential for further optimization in case for scope 1 as well as for scope 3 emissions. The 99 100 resulting negative climate footprint could be twice as high if the whole supply chain and the 101 CO₂-capture process would be defossilized. 102 103 In case of the material footprint, the demand for different metal ores (51 %) is the main driver 104 for environmental impacts related to the material requirement. More specifically, for windbased systems, copper and iron are the main drivers, while for PV-based systems copper, 105 106 aluminum as well as silver are the dominating metal flows. Those metals are important for the 107 construction processes of the respective energy plants. The fossil fuel supply within the supply 108 chain makes up to 26 % of the RMI. In case of minerals (23 %), construction materials like

109 cement are the main contributors. Hence, a higher secondary input rate for metals in 110 combination with a defossilization of the energy supply would be necessary to significantly 111 reduce the RMI of CO_2 -based chemicals and accommodate trade-offs between climate 112 footprint reduction and the material footprint.

113

114 The main drivers for water evaporation are manufacturing processes (42 %) with the 115 production of chemicals and base metals showing the highest contribution. Furthermore, the 116 energy supply has the second highest (39 %) impact, which is mostly related to fossil-based 117 power plants. The mining processes for fossil fuels (14 %) and metals (5 %) show a minor 118 impact. Therefore, an increased efficiency in water use in combination with a defossilization of 119 the energy supply are the most important measures to reduce the water footprint for CO_2 -120 based chemicals.

121

122 S5-1: Global Warming Impact

123 Table 5: Contribution to the climate footprint of CO₂-based Methanol production.

All Locations		Relative			Absolut	e	
				[kg C	CO₂equiv	. /MJ]	
	Mean	Min	Max	Mean	Min	Max	
Scope 1 (Synthesis)	7%	4%	12%	0.05	0.05	0.05	
Scope 2 (Capture)	36%	23%	57%	0.26	0.11	0.46	
Scope 3 (Energy Supply)	27%	15%	42%	0.22	0.06	0.41	
Scope 3 (Material Supply)	23%	16%	37%	0.17	0.07	0.29	
Scope 3 (Transport)	6%	3%	13%	0.05	0.01	0.08	
Total emissions	100%	100%	100%	0.74	0.37	1.28	
Scope 1 (Sequestration)	-211%	-385%	-110%	- 1.41	- 1.42	- 1.4	
Net emissions	-111%	-285%	-10%	- 0.67	- 1.05	- 0.13	

124

125

126

127

129 S5-2: Raw Material Input

All	R	elative	}	Absolute [kg/kg]				
Locations	Mean	Min	Max	Mean	Min	Max		
Fossil Fuels	26%	18%	31%	0.32	0.14	0.61		
Metals	51%	46%	58%	0.61	0.40	1.06		
Minerals	23%	11%	32%	0.26	0.11	0.34		

 $130 \quad \text{Table 6: Contribution of different Raw Materials to the Raw Material Input.}$

131

132 **S5-3: Water Evaporation**

133 Table 7:Contribution of different Raw Materials to Water Evaporation

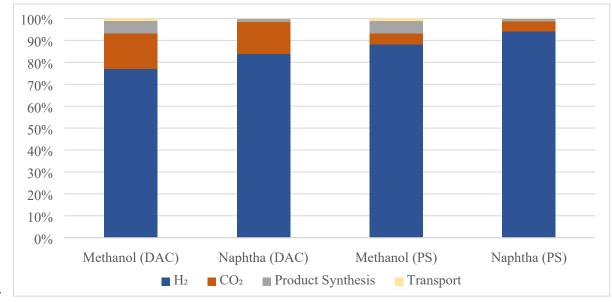
All Locations	R	elative	1	Abso	lute [m³	[m³/MJ]		
	Mean	Min	Max	Mean	Min	Max		
Energy Supply	39%	29%	55%	0.016	0.003	0.029		
Fossil Fuel Mining	14%	9%	20%	0.005	0.001	0.010		
Manufacturing Processes	42%	18%	60%	0.026	0.002	0.052		
Metals Mining	5%	1%	15%	0.001	0.001	0.001		

135 S6: Detailed Results of the economic assessment

136 To enhance the validity of the economic assessment, the calculated results for the levelized costs of electricity were compared with existing studies which contain measured cost data and prognoses for renewable electricity generation ^{10, 27, 28, 29}. For wind energy, accurate data was available for every region. Therefore, the endogenously calculated LCOE were modified accordingly. In case a range was available in the literature, the minimum LCOE value was chosen since the input data for the capacity factor which serves as basis for the plant modelling depicts the technical potential (see SI-8). According to Fraunhofer ISE ²⁹ a LCOE reduction 140 of 7 % was assumed for wind electricity between 2020 and 2030.

156 **S6-1: Methanol**

157 Table 8: Calculated levelized production costs of the different process steps and years for CO₂-based methanol. To calculate the CO₂-avoidance costs for each location, different yearly changes in 158 the oil price were assumed (-1%; +2%; +4%). (WACC = Weighted average costs of capital; LCOH₂/CO₂/MeOH/Naphtha) = Levelized Costs of H₂/CO₂/Methanol/Naphtha production). ²⁶


Location	WACC ¹	LCOH	₂ [€/kg]	LCOCO	₂ [€/kg]	LCONaph	ntha [€/t]		CO ₂	-Avoidance	Costs [€/t C	O ₂]	
	Status	Status	2030	Status	2030	Status	2030		Status quo			2030	
	quo	quo		quo		quo		-1%	2%	4%	-1%	2%	4%
Argentina	10.4%	6.9€	3.0€	143€	68€	1,666€	773€	1,167€	1,102€	1,076€	429€	270€	194 €
Argentina	10.4%	4.4€	2.5€	136€	64 €	1,179€	691€	567€	518€	498€	271€	150 €	93€
Argentina	10.4%	4.4€	2.5€	136€	64 €	1,181€	691€	568€	519€	499€	271€	150 €	93€
Argentina	10.4%	4.6€	2.5€	42€	32€	1,072€	653 €	440€	397 €	380€	218€	112€	61€
Bolivia	7.4%	6.4€	3.1€	37€	29€	1,414€	747 €	794 €	734€	709€	340 €	200€	133 (
Chile	4.9%	4.9€	2.3€	114€	58€	1,208€	624 €	806€	725€	691€	315€	134 €	46€
Chile	4.9%	4.9€	2.4 €	34 €	26€	1,111€	588€	561€	498€	472€	220 €	79€	11€
China	7.4%	6.3€	3.1€	127€	63€	1,519€	780€	1,091€	1,016€	985€	457 €	281€	197
Egypt	7.4%	7.4€	3.6€	130€	65€	1,742€	889€	1,396 €	1,315€	1,281 €	599€	410€	318
Germany	3.0%	4.0€	2.4€	143€	93€	1,072€	673€	542€	473€	444 €	284 €	136€	63€
Germany	3.0%	4.0€	2.4€	52€	45€	933€	602€	364 €	308€	284€	191€	71€	11€
Great Britain	7.3%	4.2€	2.3€	149€	86€	1,112€	659€	560€	502€	478€	268€	133€	68€
Ireland	8.4%	4.3€	2.4€	155€	88€	1,148€	676€	584 €	528€	505€	279€	147€	83 €
Morocco	10.4%	5.0€	3.0€	136 €	64 €	1,284 €	784 €	609€	562€	543€	317€	202€	147
Morocco	7.4%	7.4€	3.6€	37€	29€	1,615€	838€	937 €	877€	852€	405€	265€	198
Namibia	7.4%	6.6€	3.2€	128€	64 €	1,576€	810€	1,177€	1,100€	1,068 €	499€	318€	231
Saudi Arabia	4.2%	5.6€	2.7€	33€	26€	1,231 €	638 €	666€	599€	571€	264 €	116€	44 €
Saudi Arabia	4.2%	5.3€	2.5€	33€	26€	1,163€	602€	600€	535€	508€	232€	89€	18€
Spain	5%	6.7€	3.2€	180€	123€	1,661 €	888€	1,619€	1,512€	1,467 €	735€	495€	377 •
Turkey	5.4%	7.0€	3.4 €	41€	34 €	1,523€	789€	907€	840€	812€	386€	236€	162
Venezuela	10.4%	4.5€	2.5€	182€	108€	1,241€	746 €	602€	554 €	534€	304 €	185€	128

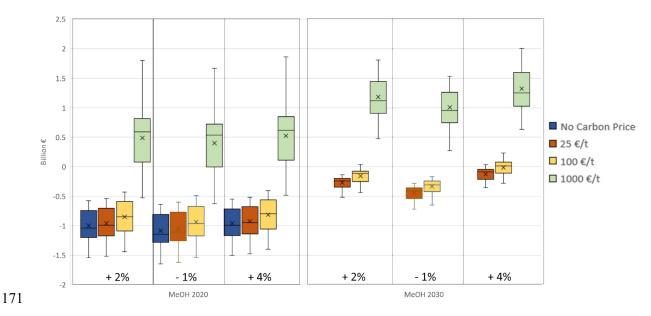
159 S6-2: Naphtha

160 Table 9: Calculated levelized production costs of the different process steps and years for CO2-based naphtha. To calculate the CO_2 -avoidance costs for each location, different yearly changes in the 161 oil price were assumed (WACC = Weighted average costs of capital; LCOH₂/CO₂/Naphtha) = Levelized Costs of H₂/CO₂/Naphtha production).²⁶

Location	WACC ¹	LCOH ₂ [€/kg]	LCOCO2	[€/kg]	LCONaph	itha [€/t]	CO ₂ -Avoid	lance Costs	[€/t CO₂]			
	Status	Status	2030	Status	2030	Status	2030	Status que	0		2030		
	quo	quo		quo		quo		-1%	2%	4%	-1%	2%	4%
Argentina	10.4%	6.8€	3.4 €	163€	84 €	4,911€	2,465€	3,307 €	3,235€	3,207 €	1,548€	1,372€	1,289€
Argentina	10.4%	4.4€	2.9€	159€	79€	3,398€	2,198€	1,307 €	1,265 €	1,248€	803€	699€	650 €
Argentina	10.4%	4.4€	2.5€	159€	79€	3,400€	1,914 €	1,241 €	1,200 €	1,184 €	645€	546€	499€
Argentina	10.4%	4.6€	2.5€	49€	38€	3,109€	1,801€	938€	905€	891€	501€	418€	379€
Bolivia	7%	6.4€	4.1€	44€	34 €	4,207 €	2,732€	2,311€	2,245€	2,218€	1,442€	1,290 €	1,216€
Chile	5%	4.9€	2.3€	124€	66€	3,527€	1,749€	2,509€	2,415€	2,375€	1,122€	912€	809€
Chile	5%	4.9€	2.4€	39€	30€	3,289€	1,652€	1,443€	1,384 €	1,359€	649€	519€	455€
China	7.4%	6.3€	4.0€	143€	76€	4,498€	2,844 €	3,498 €	3,406 €	3,368€	2,125€	1,910€	1,807 €
Egypt	7%	7.4€	3.6€	148€	80€	5,205€	2,591€	5,392 €	5,271€	5,220€	2,511€	2,229€	2,093€
Germany	3%	4.0€	2.4 €	153€	102€	3,082€	1,881€	1,403 €	1,338 €	1,310€	799€	658€	588€
Germany	3%	4.0€	2.3€	55€	47€	2,723€	1,687€	836€	791€	772€	480€	383€	335€
Great Britain	7%	4.2€	2.3€	157€	92€	3,204 €	1,837€	1,421 €	1,366 €	1,343€	752€	624 €	563€
Ireland	8%	4.3€	2.8€	168€	98€	3,309€	2,150€	1,470 €	1,417 €	1,396€	907€	782€	722€
Morocco	10.4%	5.0€	3.0€	163€	81€	3,757€	2,231€	1,414 €	1,373€	1,357 €	790€	690€	642€
Morocco	7%	7.4€	3.6€	45€	35€	4,869€	2,442€	2,515€	2,455€	2,429€	1,176€	1,034 €	966 €
Namibia	7%	6.6€	3.2€	144 €	77€	4,660€	2,322€	3,901 €	3,802€	3,761€	1,803€	1,573€	1,462 €
Saudi Arabia	4%	5.6€	3.3€	39€	30€	3,696 €	2,233€	2,004 €	1,930 €	1,899€	1,143€	982€	902€
Saudi Arabia	4%	5.3€	2.5€	38€	30€	3,490 €	1,738€	1,636 €	1,572€	1,545€	734 €	594 €	525€
Spain	5%	6.7€	4.1€	186€	125€	4,873€	3,046 €	13,200 €	12,857 €	12,713€	7,943€	7,175€	6,801 €
Turkey	5%	7.0€	4.3€	47 €	38€	4,588€	2,863€	2,580 €	2,509€	2,479€	1,546 €	1,386€	1,308 €
Venezuela	10.4%	4.5€	3.0€	196 €	116€	3,545€	2,339€	1,385€	1,342€	1,325€	873€	768€	718€

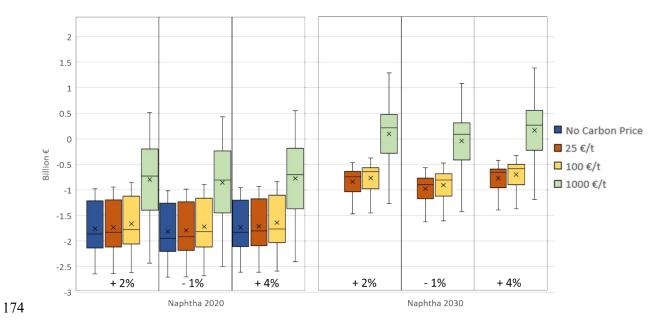
163 S6-3: Cost Composition

164


165 Figure 2: Average cost composition for the production and import of CO_2 -based methanol and naphtha using Direct Air 166 Capture (DAC) or a point source (PS) as CO_2 source.

167

168 S6-4: Net Present Value


169 For the NPV calculation the following prices were assumed for the fossil methanol (2020: 322€/t,

170 2030: 292 up to 477 €/t) and naphtha production (2020: 414€/t, 2030: 374 €/t up to 616 €/t).

172 Figure 3: Results for the Net Present Value for CO₂-based Methanol production, depending on the oil price development

173 (+4%, +2%, -1%) and the carbon price in \in per ton CO_2 avoided.

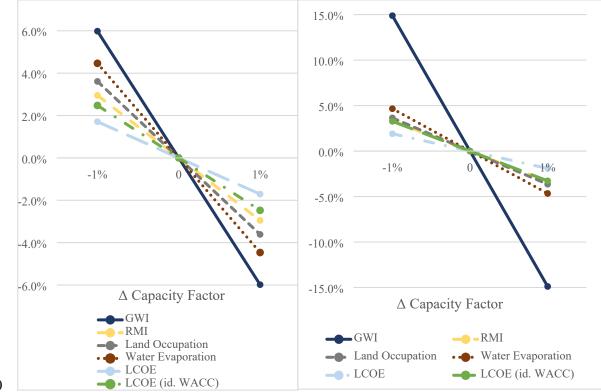
175 Figure 4: Results for the Net Present Value for CO_2 -based Naphtha production, depending on the oil price development (+4%, 176 $\sim 2\%$ (4%) and the and the price development (20 price development).

176 +2%, -1%) and the carbon price in ${\mbox{\sc eps}}$ per ton CO2 avoided.

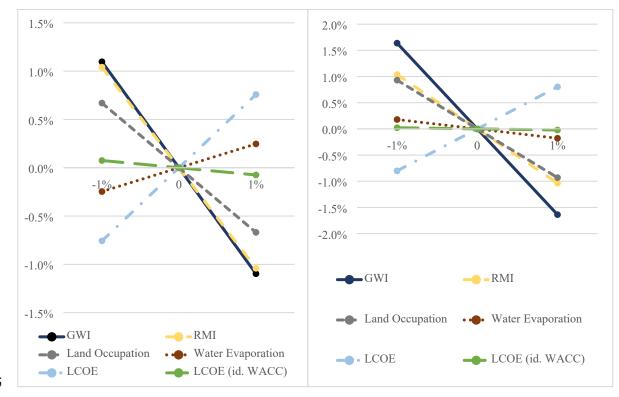
178 S7: Uncertainty Analysis

179 S7-1: Monte Carlo Analysis

180Table 10: Results of the Monte Carlo Analysis for one onshore wind and one photovoltaic location for CO_2 -based Methanol.181(CF = Capacity Factor, GWI = Global Warming Impact, RMI = Raw Material Input, STD = Standard Deviation).


Energy Source	Country (CF)	Indicator	Mean	Min	Max	STD
Wind	Argentina	GWI	-0.84	-0.95	-0.67	0.05
	(71 %)	RMI	0.95	0.75	1.24	0.07
Photovoltaic	Chile	GWI	-0.36	-0.55	-0.01	0.08
	(26 %)	RMI	1.52	1.2	2.06	0.16

182


183 S7-2: Sensitivity Analysis

184 In the sensitivity analysis, the influence of a capacity factor alteration on the ecological and economic

- 185 results was calculated for methanol and naphtha production, differentiated between the energy
- 186 sources. To exclude the influence of different CO₂ sources, the sensitivity analysis was conducted only
- 187 $\,$ for systems using an identical CO_2 source. Because more results are available for systems using Direct $\,$
- 188 Air Capture, this system type was selected for the sensitivity analysis. The resulting sensitivities
- 189 correspond to the slope of the trend line calculated by linear regression analysis.

- 191 Figure 5: Results of the sensitivity analysis for CO₂-based methanol (left) and naphtha (right) production with photovoltaic
- 192 plants as electricity and DAC as CO_2 source (GWI = Global Warming Impact; RMI = Raw Material Input; LCOE = Levelized 193 Costs of Electricity; id. WACC = identical weighted average costs of capital of 5 % for all locations).

196 Figure 6: Results of the sensitivity analysis for CO₂-based methanol (left) and naphtha (right) production with onshore wind

197plants as electricity and DAC as CO_2 source. (GWI = Global Warming Impact; RMI = Raw Material Input; LCOE = Levelized198Costs of Electricity; id. WACC = identical weighted average costs of capital of 5 % for all locations).

199 **S7-3: Manova**

- 200 A one-way Manova was conducted (n = 21) using the software SPSS Statistics, version 26. As 201 significance level, an alpha-value of 0.05 was assumed. The results of the multivariate analysis (Table 202 11) show the significant effect (p < 0.05) of the variables CO_2 and *Energy source* on the combined
- 203 dependent variables, while the *Water Source* and *Transport Distance* do not show a significant effect.

204	Table 11: Results of the multivariate test for the independent variables	

Independent Variable	Test procedure	Value	Hypothesis df	Error df	F	Significance
Water Source	Wilks-Lambda	0.583	5	9	1,288	0.348
CO ₂ Source	Wilks-Lambda	0.075	5	9	22,087	0.000
Energy Source	Wilks-Lambda	0.006	5	9	281,474	0.000
Transport Distance	Wilks-Lambda	0.004	5	9	126,939	0.063

205

- 206 The results of the post-hoc tests (Table 12) show if there are significant effects of the independent
- 207 variables *Energy* and CO_2 source on single dependent variables. While the values for the energy source
- 208 show a significant effect on all dependent variables, the CO₂ source only shows a significant effect on
- the GWI and RMI.

211 Table 12: Results of the post-hoc tests for those independent variables with a significant effect on the combined variable

212 (GWI = Global Warming Impact, RMI = Raw Material Input, Evaporation, LCO MeOH = Levelized Costs of Methanol

213 production)

Independet Variable	Dependent Variable	Typ III Sum of Squares	Mean of squares	F	Significance
CO ₂ Source	GWI	0.352	0.352	46.343	0.000
	RMI	0.538	0.538	24.056	0.000
	Water Evaporation	2.962E-05	2.962E-05	0.108	0.747
	Land Occupation	6.816E-08	6.816E-08	0.034	0.856
	LCO MeOH	31473.052	31473.052	0.867	0.369
Energy Source	GWI	0.648	0.648	85.248	0.000
	RMI	0.910	0.910	40.704	0.000
	Water Evaporation	0.022	0.022	79.360	0.000
	Land Occupation	0.001	0.001	351.602	0.000
	LCO MeOH	538712.805	538712.805	17.961	0.001

214

215

216

217 S8: Data Quality Assessment

218 Within this study, different types of data sets were utilized. To assess the resource availability for energy, water, and CO_2 datasets for their distribution on a global scale were applied. To be 219 220 independent of periodical fluctuations of the regional resource availability, only data sources which 221 depict long-term yearly averages were used. To enable a direct comparison between different 222 locations, the actuality, consistency, and completeness of the datasets are very important aspects. 223 Therefore, for energy and water availability state-of-the-art datasets were used which cover all global 224 regions instead of combining data from different regions, sources, and publication dates. Even though 225 site specific data might be more accurate, the use of several different datasets and sources would 226 involve consistency errors due to the use of different methods and premises. This procedure was selected, because a valid comparability of the different locations was seen as a very important aspect 227 in our analysis. However, the capacity factors for energy generation used in the models depict the 228 229 technical optimum. Capacity factors reached in practice are typically lower but show a continuously increasing trend over the last decade³⁰. In consequence, the results in this study possibly 230 underestimate the actual absolute environmental impacts and production costs in the status quo, 231 232 nevertheless the relations between the different locations would be identical if lower values for the 233 capacity factors would have been used. In case of CO₂, the point sources were identified using publicly 234 available information from industry reports, scientific studies, or company reports. However, the data 235 availability differed between different regions and sectors. For example, while for Europe and North 236 America detailed information about CO₂-point sources was available, no, or only few data were 237 available for CO₂ point sources in China. Furthermore, the available data for cement and waste 238 incineration plants was very good, while the available information about steel plants using a blast 239 furnace only covers around 30 % of the global production capacity. Therefore, the completeness of the 240 data can be enhanced for certain regions and sectors. Nevertheless, significant deviations of the results 241 are not expected because of the number of already included point sources.

242 For life cycle modelling, process and cost data from the literature was combined with a state-of-the-art 243 life cycle-database (ecoinvent 3.5). The process and cost data for the CO_2 -based production processes 244 were derived from recent publications. According to the data quality assessment for life cycle data 245 introduced by Weidema et al. ³¹ their overall reliability and temporal correlation can be assessed as 246 good. Since the material requirement for the electrolyzer and sequestration plants were also 247 considered in this study the completeness can be assessed as good, too. However, especially for the 248 CO₂-sequestration and electrolyzer plants only demonstration plants with smaller production volumes 249 than considered in this study exist, wherefore the technological correlation is only sufficient. Energy 250 and material requirements of production plants with the assumed production volume can only be 251 estimated. To handle this aspect and shed light on the uncertainty and future values for the 252 environmental impacts and LCOEs, value ranges were considered in combination with an MCA and 253 scenario analysis, additional to the modelling with discrete values. Furthermore, the background data 254 was extracted from the life-cycle database which was last actualized in 2018. Thus, the actuality of the 255 database is good, nevertheless the specific actuality and technological correlation of the included 256 processes differ. To increase the quality of the results important background processes, such as the 257 construction of a wind power or solar power plant as well as RSWO were cross checked with literature 258 data and actualized if more actual data was available.

259

260

261 **References**

- A.-M. Boulay, J. Bare, L. Benini, M. Berger, M. J. Lathuillière, A. Manzardo, M. Margni, M.
 Motoshita, M. Núñez, A. V. Pastor, B. Ridoutt, T. Oki, S. Worbe and S. Pfister, *Int J Life Cycle Assess*, 2018, **23**, 368–378.
- 265 2 DTU, *Global Wind Atlas 3.0,* available at: www.globalwindatlas.info, accessed 1 December 2020.
- Solargis, *Global Solar Atlas 3.0*, available at: www.globalsolaratlas.info, accessed 1 December
 2020.
- 268 4 ISWA, *Waste to Energy State of the Art Report*, International Solid Waste Association, 2012.
- UBA, Energy from waste incineration (Orig. Title: Energieerzeugung aus Abfällen), German
 Environment Agency, Dessau-Roßlau, 2018.
- 271 6 Cemnet, The Global Cement Report. Online Database of Cement Plants, Cemnet, 2019.
- 272 7 OECD, Steelmaking Capacity, available at:
- https://stats.oecd.org/Index.aspx?datasetcode=STI_STEEL_MAKINGCAPACITY, accessed 3
 February 2020.
- Worldsteel, *Top steel-producing companies*, available at: https://www.worldsteel.org/steel-by topic/statistics/top-producers.html, accessed 3 February 2021.
- Agora, Future Cost of Onshore Wind. Future cost of onshore wind. Recent auction results, long term outlook and implications for upcoming German auctions., 2017.
- 279 10 IRENA, Future of Wind. A Global Energy Transformation paper, Abu Dhabi, 2019.
- 11 Fraunhofer ISE, Current and Future Cost of Photovoltaics. Long-term Scenarios for Market
 Development, System Prices and LCOE of Utility-Scale PV Systems, 2015.
- 12 NOW GmbH, Industrialization of water electrolysis in Germany (Orig. Title: IndWEDe
 283 Industrialisierung der Wasser-elektrolyse in Deutschland), Berlin, 2018.
- 284 13 Agora, Die zukünftigen Kosten strombasierter synthetischer Brennstoffe, Agora Verkehrswende,
- Agora Energiewende, Frontier Economics, 2018.
- 286 14 K. Bareiß, C. de La Rua, M. Möckl and T. Hamacher, *Applied Energy*, 2019, **237**, 862–872.
- 287 15 W. Zhou, Di Jiang, D. Chen, C. Griffy-Brown, Y. Jin and B. Zhu, *Energy*, 2016, **106**, 464–474.

- 16 IEA, Energy Technology Perspectives 2020. CCUS in clean energy transitions, International Energy
 Agency, 2020.
- 290 17 D. Baker, Holmes, Daniel, J. Hunt, P. Napier-Moore, S. Turner and M. Clark, *CO2 Capture in the* 291 *cement industry*, IEA, 2008.
- 292 18 Global Petrol Prices, Natural Gas Prices, available at:
- 293 https://www.globalpetrolprices.com/natural_gas_prices/, accessed 19 March 2021.
- 294 19 M. Fasihi, O. Efimova and C. Breyer, *Journal of Cleaner Production*, 2019, **224**, 957–980.
- 295 20 A. Lozanovski, LCA of CO2 Direct Air Capture, Aachen, 2019.
- 296 21 U. Caldera and C. Breyer, *Water Resour. Res.*, 2017, **53**, 10523–10538.
- 297 22 U. Caldera, D. Bogdanov and C. Breyer, *Desalination*, 2016, **385**, 207–216.
- 298 23 GWI, Global Water Tariff Survey, available at: https://globalwatersecurity.org/content-hub/2019-
- 299 02-11/What-does-the-world-pay-for-water, accessed 2 April 2021.
- 300 24 VCI, Roadmap Chemie 2050. On a way to a greenhouse gas neutral chemical industry in Germany
 301 (orig. Title: Auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland),
 302 German Chemical Industry Association, Frankfurt am Main, 2019.
- 303 25 F. H. Saadi, N. S. Lewis and E. W. McFarland, *Energy Environ. Sci.*, 2018, **11**, 469–475.
- 304 26 B. Steffen, *Energy Economics*, 2020, **88**, 104783.
- 305 27 IRENA, *Renewable power generation costs in 2019*, Abu Dhabi, 2020.
- 306 28 IRENA, Future of Solar Photovoltaic. A Global Energy Transformation paper, 2019.
- 307 29 Fraunhofer ISE, *Levelized Cost of Electricity- Renewable Energy Technologies. June 2021*, Freiburg,
 308 2021.
- 309 30 IRENA, *Renewable power generation costs in 2019*, International Renewable Energy Agency,
 310 2020.
- 311 31 B. P. Weidema, C. Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, C. O. Vadenbo and G.
- 312 Wernet, Overview and Methodology. Data quality guideline for the ecoinvent database version 3.
- 313 Ecoinvent Report 1(v3), St Gallen, 2013.