Supporting Information

Synergetic recycling and conversion of spent Li-ion battery leachates into high-efficiency oxygen evolution catalysts

Zhijie Chen,^{*a*, *b*} Wensong Zou,^{*a*} Renji Zheng,^{*a*} Wenfei Wei,^{*a*} Wei Wei,^{*b*} Bing-Jie Ni,^{*b*,*} Hong Chen^{*a*,*}

^a State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China

^b Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia

*Corresponding Author:

- Bing-Jie Ni E-mail: bingjieni@gmail.com
- Hong Chen E-mail: chenh3@sustech.edu.cn

Fig. S1. Schematic illustration on synthesis magnetic NCMB OER electrocatalysts from the spent LIBs leachates via a facile boriding process.

Fig. S2. SEM image of NCMB-1.

Fig. S3. XRD pattern of NCMB-1.

Fig. S4. Chronoamperometric i-t curve of NCMB-1 at an applied potential of 1.495 V vs. RHE (inset is a part of the stability curve).

Fig. S5. Equivalent circuit model for EIS data fitting.

Fig. S6. CV measurements of NCMB-1(upper part), and NF (lower part) at different scan rate for C_{dl} determination.

Fig. S7. TEM images of NCMB-2 after the OER test.

Fig. S8. High-resolution XPS scans of NCMB-2 in the O 1s regions after the OER test.

Sample –	Concentration (g L ⁻¹)				
	Ni	Со	Mn	Al	Li
LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ derived leachate	18.53	7.19	10.56	7.24	3.09
LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ derived leachate	32.61	4.38	4.01	5.12	3.68

 Table S1. Metal ions concentration in leachate precursors.

Parameter	Value	
RF Power	1.50 KW	
Plsama flow	15.0 L min ⁻¹	
Auxiliary flow	1.00 L min ⁻¹	
Nebulizer flow	0.10 L min ⁻¹	
Sample uptake delay	30 s	
Instrumental stabilizaton delay	30 s	
Reolicate read time	5 s	
Reolicate read	3 times	

Table S2.1. Experimental parameters adjusted during ICP-MS analysis of ions.

 Table S2.2. Experimental parameters adjusted during ICP-OES analysis of ions.

Parameter	Value		
RF Power	1.3 kW		
Plsama flow	15.0 L min ⁻¹		
Auxiliary flow	1.50 L min ⁻¹		
Nebulizer flow	0.75 L min ⁻¹		
Sample uptake delay	60 s		
Sample pump rate	15 rmp		
Sample rinse time	5 s		
Instrumental stabilizaton delay	15 s		
Standards	Quantitative		
% slope deviation	10		
No of standards	15		
Correlation coefficient	0.995000		
Curve type	Quadratic & linear		

		Recovery rate (%)			D. C
Battery type	Recovery method	Ni	Со	Mn	- References
LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ , LiCoO ₂ , LiMnO ₂	Precipitation, solvent extraction	98.7	98.2	97.1	Waste Manage., 2015, 38, 349-356.
LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂	Step-wise precipitation	97	97	98	J. Alloy Compd., 2020, 847, 156489.
LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂	Selective dissolution, step-wise precipitation	99.7	96.5	93.5	ACS Sustainable Chem. Eng., 2019, 7, 15, 12718-12725.
Mixed spent LIBs	Multi-step directional precipitation	99.6	99.2	99.5	RSC Adv., 2021, 11, 268-277.
Spent LIBs	Step-wise precipitation	~89	98.93	~92	Chem. Eng. J., 2015, 281, 418-427.
Spent LIBs	Solvent extraction, step-wise precipitation	~99	-	~98	Sep. Purif. Technol., 2019, 209, 725-733.
LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂	Selective leaching, adsorption separation	96.23	94.57	-	ACS Sustainable Chem. Eng., 2017, 5, 12, 11489-11495.
Spent LIBs	Step-wise precipitation	98.5	96.8	-	J. Clean. Prod., 2016, 112, 3562- 3570.
Spent LIBs	Step-wise precipitation	-	90	95	J. Clean. Prod., 2017, 147, 37-43.
LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂	One-step boriding	99.93	99.91	99.90	This study
LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	One-step boriding	99.91	99.92	99.84	This study

Table S3. A summary of metal recovery from spent LIBs with state-of-the-art techniques.

Catalyst	Electrolyte	Overpotential @j (mV@ mA cm ⁻²)	References
CoMoS /NE	1 M KOH	442@500	Angew. Chem. Int. Ed., 2020, 59,
COMOS _x /IVI	i wi kon	442(0)500	1659.
Co-MOF/NF	1 M KOH	270@10	Small, 2019, 15, 1906086.
Co@NC/NF	1 М КОН	330@10	Adv. Energy Mater., 2018, 8,
		5500,10	1702838.
CoNW/NF	1 М КОН	534@100	Green Chem., 2019, 21(24):
		55 (@100	6699-6706.
HfN/NF	1 M KOH	358@10	Angew. Chem. Int. Ed., 2019, 58,
			15464.
HOF-Co _{0.5} Fe _{0.5} /NF	1 М КОН	278@10	Appl. Catal. B: Environ., 2019,
			258, 117973.
NiO/Co ₃ O ₄	NiO/Co2O4 1 M KOH 262@10		ACS Catal., 2020, 10: 12376-
			12384.
Ni ₃ FeAl _{0.91} -LDHs/NF	1 М КОН	304@20	Nano Energy, 2017, 35: 350-357.
NiCo-POM/NF	0.1 M KOH	360@10	Angew. Chem. Int. Ed. 2017, 56,
		200@10	4941.
CoTe nanoarrays/NF	1 M KOH	350@100	Small Methods, 2019, 3(5):
		220,00100	1900113.
Ni _x B/NF	1 M KOH	280@20	Adv. Energy. Mater., 2017, 7,

Table S4. A summary of OER properties for reported electrocatalysts supported on nickel foam.

1700381.

NCMB-1	1 M KOH	271@10	This study
		330@100	
		399@500	
NCMB-2	1 M KOH	263@10	This study
		318@100	
		372@500	

RsRfRctNCMB-11.20.5915.8NCMB-21.45.813.1NF1.70.97177.1

Table S5. Calculated charge transfer resistance (R_f , R_{ct}) and solution resistance (R_s) (in Ohm, Ω) of the materials deposited on NF obtained from the Nyquist plot during the EIS experiments.