Supporting Information

Towards Understanding of Delignification of Grassy and Woody Biomass in Cholinium-based Ionic Liquids

Mood Mohan^{1,2}, Hemant Choudhary^{1,2}, Anthe George^{1,2}, Blake A. Simmons^{1,3}, Kenneth Sale^{1,2,*}, and John M. Gladden^{1,2,*}

¹ Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States.

² Department of Biomass Science and Conversion Technology, Sandia National Laboratories,
7011 East Avenue, Livermore, California 94551, United States.

³ Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

*Corresponding Authors

E-mail: jmgladden@lbl.gov, jmgladd@sandia.gov (J. M. Gladden); klsale@lbl.gov, klsale@sandia.gov (K. Sale)

Ionic Liquid	IL molecules [–]	Simulation box length (Å)			ρ (g/cc)	0 = (q/cc)	Error (%)
Tome Elquia		Х	Y	Z	$-p\exp(\theta, \theta, \theta)$	PMD (5,00)	
[Ch][For]	300	40.27	40.27	40.27	-	1.138	-
[Ch][Ace]	300	42.21	42.21	42.21	1.10	1.081	1.73
[Ch][But]	300	45.04	45.04	45.04	1.07	1.043	2.52
[Ch][Hex]	300	47.85	47.85	47.85	1.02	0.997	2.25
[Ch][Oct]	300	50.27	50.27	50.27	-	0.970	-
[Ch][Lys]	300	48.90	48.90	48.90	1.09	1.062	2.57

Table S1: Densities (ρ) of different Ionic liquids obtained from MD Simulations and compared with experimental density.

Figure S1: Root mean square deviation (RMSD) of Lignin as a function of MD simulation time step (in ns) for different Lignin-IL systems at 363.15 K

Lignin [(m	[Ch][Lys]	Lignin	Simulat	ion box leng	Density (g/cc)	
	molecules	molecules	Х	Y	Ζ	Density (gree)
4-0-5	300	30	50.96	50.96	50.96	1.0733
βО4	300	30	51.16	51.16	51.16	1.0788
5-5	300	30	51.02	51.02	51.02	1.0696

Table S2: Outline of investigated systems (different lignin linkage in [Ch][Lys]) in This Study.

Table S3: MD predicted interaction energies between anion and cation in lignin 4–O–5/IL systems obtained from MD simulations.

II lignin system	Anion – Cation Interactions (kcal/mol)				
IL-lightin system	E_{elec}	E_{vdW}	E_{total}		
[Ch][For]	-408.69	3.10	-405.59		
[Ch][Ace]	-367.05	1.14	-365.90		
[Ch][But]	-323.14	-1.13	-324.27		
[Ch][Hex]	-299.33	-1.95	-301.27		
[Ch][Oct]	-285.77	-2.46	-288.23		
[Ch][Lys]	-282.68	-2.34	-285.02		

Lignin/IL	Structure	pK _a	Lignin solubility
Lignin 4–O–5	pK _{a2} HO O O O O O O O O O O O O O O O O O O	$\begin{array}{c} pK_{a1}-9.06\\ pK_{a2}-15.32\\ pK_{a3}-15.92 \end{array}$	
Lignin β–O–4	pK_{a4} HO O O O O O O O O O O O O O O O O O O	$\begin{array}{c} pK_{a1}-9.91\\ pK_{a2}-13.44\\ pK_{a3}-14.65\\ pK_{a4}-15.67 \end{array}$	
Lignin 5–5	pK_{a4} HO pK_{a2} OH pK_{a3} PK_{a3}	$pK_{a1} = 9.21$ $pK_{a2} = 13.75$ $pK_{a3} = 15.33$ $pK_{a4} = 15.93$	
Bivanillin 5–5 linkage	$H \xrightarrow{PK_{a1} OCH_3} H \xrightarrow{OH} OCH_3$	рКа ₁ : 7.04 рКа ₂ : 11.59	
Vanillic acid	HO OCH ₃	рКа ₁ : 4.16 рКа ₂ : 10.14	
Ferulic acid	pK _{a1} HO O O H pK _{a2}	рКа ₁ : 3.58 рКа ₂ : 9.98	

Table S4: Dissociation constant (pK_a) and experimental solubility of lignin in cholinium-based ILs.

[Ch][For]	HON ⁺ O ⁻ pK _{a1}	$pK_{a1} = 4.27$	28.3 g/mol; 45%
[Ch][Ace]	HO N ⁺ O pK _{a1}	$pK_{a1} = 4.76$	31.0 g/mol
[Ch][But]	HO N^* O pK_{al}	$pK_{a1} = 4.91$	32.5 g/mol
[Ch][Hex]	HO N^* $n=4$ pK_{a1}	$pK_{a1} = 5.09$	37.2 g/mol
[Ch][Oct]	HO N^* $n=6$ pK_{a1}	$pK_{a1} = 5.19$	39.5 g/mol; 52%
[Ch][Lys]	pK_a HO N^+ M_2N M_2N MH_2 pK_{a1} pK_{a2}	$pK_{a1} = 2.74$ $pK_{a2} = 9.44$ $pK_{a3} = 10.29$	77%

Table S5. Lignin dissolution in lysinate-based ionic liquids^a

IL Type	IL	I.E. ^b (kcal mol ⁻¹)	Lignin removal (%)
Basic	[Ch][Lys]	-132.72	69.3°, 85.1 ^d
Basic	[C ₂ mim][Lys]	-123.25	80.3°, 86.6 ^d
Acidic	[Ch][Ace]	-139.73	17°, 50.2 ^d
Acidic	[C ₂ mim][Ace]	-134.28	16.5°, 48.9 ^d

^a Data taken from Sun et al. (2014)¹; ^b QC-based Interaction energies of dilignol-IL complexes; ^c at 90 °C/5 h; and ^d at 140 °C/1 h.

Ionic liquids		nK	Densitya	Viscosity ^b	
Name	Abbreviations	pn_a	Density	. 10000109	
Cholinium lysinate	[Ch][Lys]	2.74, 9.44, 10.29	1.062	187°	
Cholinium formate	[Ch][For]	4.27	1.138	_d	
Cholinium acetate	[Ch][Ace]	4.76	1.081	_d	
Cholinium butyrate	[Ch][But]	4.91	1.043	_d	
Cholinium hexanoate	[Ch][Hex]	5.09	0.997	_d	
Cholinium octanoate	[Ch][Oct]	5.19	0.970	_d	

Table S6. Properties influencing lignin dissolution in ionic liquids

^a Calculated density (g/cc) using MD simulations. ^b Viscosity (Pa·s) data at 25 °C. ^c Santis et al. (2015)². ^d Solid at 25 °C (Petkovic et al. (2010)³).

Figure S2: COSMO-RS predicted contact probability of lignin in choline-carboxylate anions and compared with the experimental lignin solubility data.

Figure S3: RDF plot between the O atom of Lignin with O atom of Lysinate for Lignin/[Ch][Lys] systems at 363.15

Figure S4: Graphical representation of cation- π interactions between Lignin β –O–4 and Choline for Lignin β –O–4/[Ch][Lys] system. The color scheme used for different atoms is C (ash), O (red), N (blue), and H (white), respectively.

Structural Confirmation of Lignin in [Ch][Lys]

Further, the structural conformation of lignin β –O–4 linkage is evaluated as a function of interaction energies between lignin-anion and lignin-cation (Table S7). Herein, we considered 4 unique conformer of the lignin β –O–4 dimer. It is worthy to mention that the probability of conformers 1 and 2 is unlikely owing to the geometric and steric limitations of bond rotation in real polymeric lignin. For lignin-IL interactions, parallel stacking-type of lignin β –O–4 structure exhibits lower interactions with [Ch][Lys], while an antiparallel stacking structure of lignin shows stronger interactions. The presence of lignin parallel stacking-type structure could lead to the poor solubility of lignin due to the strong intramolecular hydrogen bonding and π - π stacking in lignin. However, from the MD simulations, the convergence of lignin into the antiparallel staking is higher thus exhibited stronger interactions with [Ch][Lys] and leads to higher the solubility of lignin.

Table S7: β –O–4 lignin conformer structures and their interaction energies with [Ch][Lys]. The color scheme used for different atoms is C (ash), O (red), and H (white), respectively.

Conformer	Lignin - Lysinate		Lignin - Cholinium	
Comornici	E_{elec}	E_{vdW}	Eelec	E_{vdW}
Conformer 1	-29.99	-15.71	-7.60	-8.57
Conformer 2	-39.23	-13.40	-2.87	-8.35

References

- 1. N. Sun, R. Parthasarathi, A. M. Socha, J. Shi, S. Zhang, V. Stavila, K. L. Sale, B. A. Simmons and S. Singh, *Green Chem.*, 2014, **16**, 2546-2557.
- 2. S. De Santis, G. Masci, F. Casciotta, R. Caminiti, E. Scarpellini, M. Campetella and L. Gontrani, *Phy. Chem. Chem. Phy.*, 2015, **17**, 20687-20698.
- 3. M. Petkovic, J. L. Ferguson, H. N. Gunaratne, R. Ferreira, M. C. Leitao, K. R. Seddon, L. P. N. Rebelo and C. S. Pereira, *Green Chem.*, 2010, **12**, 643-649.