Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

# **Supporting Information**

Bimetallic Copper/Cobalt cocatalyzed double aerobic oxidative [3+2] cycloaddition toward  $\pi$ -extended benzofuro[2,3-b]indoles as electron donors for electroluminescence

Muhammad Adnan Bashir<sup>†</sup>, Yulong Zhang<sup>†</sup>, Huaibin Yu, Bofei Wang, Weining Zhao& Fangrui Zhong\*

\*Email: <u>chemzfr@hust.edu.cn</u>

# **Table of Contents**

| (A) General information                                           | 3  |
|-------------------------------------------------------------------|----|
| (B) Optimization of reaction conditions                           | 3  |
| (C) General procedure for catalytic oxidative [3+2] cycloaddition | 4  |
| (D) Gram-scale synthesis of compound 4a                           | 5  |
| (E) Green metrics calculation                                     | 5  |
| (F) Analytical data of cylcoadducts                               | 7  |
| (G) X-Ray crystallographic analysis of 4a                         | 16 |
| (H) NMR spectra of cycloadducts                                   | 18 |

#### (A) General information

Chemicals and solvents were purchased from commercial suppliers and used as received unless noted. All products were purified by flash chromatography on silica gel. The chemical yields referred are isolated products.<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on 400 MHz or 600 MHz Bruker spectrometers. Chemical shifts of <sup>1</sup>H NMR were reported in part per million relatives to the CDCl<sub>3</sub> residual peak ( $\delta$  7.26). Chemical shifts of <sup>13</sup>C NMR were reported relative to CDCl<sub>3</sub> ( $\delta$  77.16) or CD<sub>3</sub>OD ( $\delta$  49.00). The used abbreviations are as follows: s (singlet), d (doublet), t (triplet), quart. (quartet), quint. (quintet), m (multiplet), br (broad). Multiplets which arise from accidental equality of coupling constants of magnetically non-equivalent protons are marked as virtual (*virt*.). High resolution mass spectra (HRMS) data were measured on a ESI-microTOF II. Melting points were measured on a SGW<sub>®</sub> X-4B and are not corrected. Reactions were visualized with a UV light at 254 nm or 365 nm. Further visualization was achieved by staining with iodine, or KMnO<sub>4</sub> followed by heating on a hot plate. Flash column chromatography was performed on silica gel 60 Å, 10-40 µm.

#### (B) Optimization of reaction conditions

Table S1 The effect of different catalysts<sup>a</sup>

| +  | OH<br>CO <sub>2</sub> Me | cat (10 mol%)<br>O₂, CH₂Cl₂, r.t., 48 h | MeO <sub>2</sub> C + | MeO <sub>2</sub> C<br>N<br>H<br>O |
|----|--------------------------|-----------------------------------------|----------------------|-----------------------------------|
| 1a | 2a                       |                                         | 3a                   | 4a                                |
|    |                          |                                         |                      |                                   |

| entry | Cat.                           | Yield (%, 3a) <sup>b</sup> | Yield (%, 4a) <sup>b</sup> |
|-------|--------------------------------|----------------------------|----------------------------|
| 1     | Cu(OTf) <sub>2</sub>           | 24                         | 0                          |
| 2     | [Cu(CH₃CN)₄][PF <sub>6</sub> ] | 60                         | 10                         |
| 3     | CuBr <sub>2</sub>              | 0                          | 0                          |
| 4     | CuCl <sub>2</sub>              | 0                          | 0                          |
| 5     | Cu(OAc) <sub>2</sub>           | <10                        | 0                          |
| 6     | FeCl₃                          | 0                          | 0                          |
| 7     | Fe(OTf)₃                       | 0                          | 0                          |
| 8     | Fe(acac)₃                      | 0                          | 0                          |
| 9     | CoCl <sub>2</sub>              | 0                          | 0                          |

<sup>*a*</sup> Reactions were performed with **1a** (0.2 mmol, 23.43 mg, 1 equiv.), **2a** (0.2 mmol, 33.60 mg, 1 equiv.), and cat (10 mol%) in 4.0 mL of CH<sub>2</sub>Cl<sub>2</sub> at room temperature. <sup>*b*</sup> Isolated yield.

**Table S2.** The effect of different solvents on the cyclization of  $3a^a$ 



| Entry | Solvent | Catalyst                                                 | T(°C) | Time      | Yield (%) <sup>[b]</sup> |
|-------|---------|----------------------------------------------------------|-------|-----------|--------------------------|
| 1     | DCM     | Cu(OTf) <sub>2</sub>                                     | r.t.  | overnight | >99                      |
| 2     | DCM     | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ][PF <sub>6</sub> ] | r.t.  | overnight | >99                      |
| 3     | DCM     | Fe(acac)₃                                                | r.t.  | overnight | 0                        |
| 4     | DCM     | Fe(OTf) <sub>2</sub>                                     | r.t.  | overnight | >99                      |
| 5     | DCM     | Fe(OTf)₃                                                 | r.t.  | 5 min     | >99                      |
| 6     | EtOH    | Cu(OTf) <sub>2</sub>                                     | 40    | 20 h      | 95                       |
| 7     | EtOH    | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ][PF <sub>6</sub> ] | 40    | 20 h      | 80                       |
| 8     | EtOH    | Fe(OTf) <sub>2</sub>                                     | 40    | 20 h      | 84                       |
| 9     | EtOH    | Fe(OTf)₃                                                 | r.t.  | 20h       | 0                        |
| 10    | EtOH    | Fe(OTf)₃                                                 | 40    | 5 min     | 81                       |
| 11    | EtOH    | Sc(OTf)₃                                                 | r.t.  | 20 h      | >95                      |
| 12    | EtOH    | Bi(OTf)₃                                                 | 40    | 20 h      | <10                      |
| 13    | ETOH    | /                                                        | 40    | 48 h      | 0                        |

<sup>a</sup>Reaction was performed with **3a** (0.2 mmol) and catalyst (10 mol%) in solvent (4.0 m). <sup>b</sup>Isolated yield.

### (C) General procedure for catalytic oxidative [3+2] cycloaddition



To an oven dried 25 mL round bottom flask was added indole **1a** (0.2 mmol, 1.0 eq), methyl 2,5dihydroxybenzoate **2a** (0.2 mmol, 1.0 equiv), Cu(OTf)<sub>2</sub> (7.3 mg, 10 mol%), and CoCl<sub>2</sub> (1.3 mg, 5 mol%) under 1 atm O<sub>2</sub> by using a balloon. EtOH (4 mL) was added via syringe, and the reaction mixture was stirred under O<sub>2</sub> at 40 °C for 48 h. It was quenched by introducing water (15 mL) and then extracted with CH<sub>2</sub>Cl<sub>2</sub> (3\*10 mL). The combined organic fractions were then dried over MgSO4, filtered, and concentrated in vacuum. Purification of crude product **4a** as a pale-yellow solid.

#### (D) Gram-scale synthesis of compound 4a



An oven dried 100 mL round bottom flask was charged with 1H-indole **1a** (5 mmol, 0.58 g, 1.0 equiv), methyl 2,5-dihydroxybenzoate **2a** (5 mmol, 0.84 g, 1.0 equiv), and Cu(OTf)<sub>2</sub> (45.2 mg, 2.5 mol%), and CoCl<sub>2</sub> (8 mg, 1.25 mol%) then caped with rubber septum, sealed by parafilm, under the constant pressure of O<sub>2</sub> (1 atm), the reaction was vented 3 times for 10 sec. to remove air then 20 mL EtOH was added *via* syringe a dramatic color change was observed within 2 min, resulting in a purple reaction mixture. The reaction mixture was stirred under O<sub>2</sub> at 50 °C for 60 h, after the reaction completed checked by TLC metal catalysts were removed by a short pad of silica eluted by 20 mL CH<sub>2</sub>Cl<sub>2</sub> the reaction concentrated *in vacuo* the purification of crude product was performed by recrystallization using *n*-hexane (10 mL) and CH<sub>2</sub>Cl<sub>2</sub> and to afford methyl 2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate **4a** (85% 1.2 g)

#### (E) Green metrics calculation

E-factor, atom economy, atom efficiency, carbon efficiency and reaction mass efficiency were calculated based on the scale-up synthesis of compound 4a.

The E-factor is calculated under the optimized conditions for this reaction conducted on the model substrate. For comparison, the E factors for literature known procedures are also calculated. The calculation is based on the equation: E-factor = m(waste)/m(product). All chemicals used, including solvents and water for work-up procedures, are considered. The purification step is neglected due to a lack of information (amounts of solvents used, etc.).



**Reaction mass efficiency (%)** =  $\frac{mass \ of \ desired \ product}{mass \ of \ all \ reactants} \times 100\% = \frac{1.2}{0.58+0.84+0.16} = 75.9\%$ 

In Comparison with recent work (J. Mater. Chem. C, 2019, 7, 13912; Chem. - Asian J., 2019, 14, 2251.)



 $=\frac{benzofuranylboronic acid 5g + 8.4 g Nitrobenzene + 1.6g Pd(Ph3)4 + K2CO3 11.6g + H2O 66mL + 34mL THF + PPh3 17.2g + 20 mL oDCB}{4g Final Product}$ 

= 41.49 kg waste per 1k product

 $Atom \ economy = \frac{molecular \ mass \ of \ desire \ product}{molecular \ mass \ of \ all \ reactants} \times 100\% = \frac{207.23}{161.9 + 202.1} = 56.9 \ \%$ 

*Atom efficiency* = 80%×81% × 56.9%= 36.9%

Reaction mass efficiency (%) = 
$$\frac{mass \ of \ desired \ product}{mass \ of \ all \ reactants} \times 100\% = \frac{4}{5+8.1} = 30.5\%$$

Table S3 EcoScale calculation for the synthesis of 4a

|                                       | parameters                             | Penalty |
|---------------------------------------|----------------------------------------|---------|
|                                       |                                        | points  |
| 1 Yield                               | (100-%)/2=(100-85)/2=7.5               | 7.5     |
| 2 Price of reaction components        | (To obtained 10 mmol end product)      | 0       |
|                                       | 1. indole = $0.5 \text{ g} = $ \$ 3.47 |         |
|                                       | 2. methyl 2,5-                         |         |
|                                       | dihydroxybenzoate\$ 2                  |         |
|                                       | 3. $Cu(OTf)_2 = $ \$ 0.2               |         |
|                                       | 4. $CoCl_2 = $ 0.1                     |         |
|                                       | 5. EtOH 20 mL =\$ 1.1                  |         |
|                                       | Total price =  6.7                     |         |
|                                       | Thus inexpensive (<\$10)               |         |
| 3 Safety                              |                                        |         |
| EtOH (Toxic)                          |                                        | 5       |
| Flammable                             |                                        | 5       |
| 4 Temperature and time                |                                        | 2       |
| 50 °C and 60 hours                    |                                        |         |
| 5 Workup and purification             |                                        | 0       |
| Removal of solvent less than <150 °C  |                                        | 0       |
| Classical chromatography purification |                                        |         |
|                                       |                                        |         |
| Total Pena                            | 19.5                                   |         |
| EcoS                                  | 80.5                                   |         |

EcoScale = 100 - Sum of individual penalties

Scores on EcoScale: >75, Excellent; >50, Acceptable<50, inadequate

(Ref. Van Aken, K.; Strekowski, L.; Patiny, L. Beilstein J. Org. Chem. 2006, 2, doi:10.1186/1860-5397-2-3)

### (F) Analytical data of cylcoadducts

Methyl 2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4a

A pale yellow solid, 53 mg, 91% yield. **m.p.**: 188-190 °C. **TLC**:  $R_f = 0.69$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.21 (s, 1H), 7.72 – 7.64 (m, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.10 – 7.02 (m, 2H), 6.61 (d, J = 8.8 Hz, 1H), 3.95 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.1, 157.6, 157.4, 149.0, 136.4, 124.2, 120.7, 120.4, 119.9, 119.4, 117.0, 111.2, 107.9, 102.6, 98.3, 51.7. **IR (ATR/cm<sup>-1</sup>)** 3242.5, 1648.8, 1566.9, 1284.4, 1020.84, 745.9. **HRMS (ESI)**: C<sub>16</sub>H<sub>12</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 282.0761; found: 282.0762.

Methyl 2-hydroxy-9-methoxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4b

A yellow solid, 56 mg, 94% yield.

**m.p.**: 161–163 °C

TLC:  $R_f = 0.76$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H NMR** (600 MHz, DMSO) δ 12.24 (s, 1H), 10.31 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.38 – 7.32 (m, 2H), 6.83 (dd, *J* = 8.7, 2.6 Hz, 1H), 6.73 (d, *J* = 8.8 Hz, 1H), 4.11 (s, 3H), 3.84 (s, 3H).

<sup>13</sup>**C NMR** (151 MHz, DMSO) δ 169.1, 158.5, 155.1, 154.0, 149.2, 131.7, 124.7, 121.4, 116.5, 112.9, 109.6, 108.9, 106.4, 104.4, 97.8, 55.3, 52.6.

IR (ATR/cm<sup>-1</sup>) 2953.61, 1620.65, 1539.8, 1523.18, 1091.07, 823.22.

**HRMS (ESI)**: C<sub>17</sub>H<sub>14</sub>NO<sub>5</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 312.0866; found: 312.0868.

# Methyl 2-hydroxy-9-methyl-6H-benzofuro[2,3-b]indole-1-carboxylate 4c



A pale yellow solid, 54 mg, 91.2 % yield. **m.p.**: 198-200 °C. **TLC**:  $R_f = 0.46$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (s, 1H), 7.53 (dd, J = 8.8, 1.8 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.10 – 7.04 (m, 1H), 6.78 – 6.71 (m, 1H), 4.24 (s, 3H), 2.53 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.1, 158.8, 158.3, 149.9, 135.5, 129.4, 125.2, 122.4, 121.6, 121.1, 117.8, 111.7, 108.6, 103.5, 98.91, 52.5, 21.6. **IR (ATR/cm<sup>-1</sup>)** 3261.7, 1649.1, 2854.5, 1564.4, 1241.0, 1024.6, 646.1. **HRMS (ESI)**: C<sub>17</sub>H<sub>14</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 296.0917; found: 296.0918.

Methyl 2-hydroxy-8-methyl-6H-benzofuro[2,3-b]indole-1-carboxylate 4d

HC MeO<sub>2</sub>C

A pale yellow solid, 54.5 mg, 92% yield. **m.p.**: 207–209 °C. **TLC**:  $R_f = 0.48$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (400 MHz, DMSO)  $\delta$  12.29 (s, 1H), 10.34 (s, 1H), 7.74 – 7.59 (m, 2H), 7.26 (s, 1H), 7.09 – 6.95 (m, 1H), 6.72 (d, J = 8.8 Hz, 1H), 4.08 (s, 3H), 2.43 (s, 3H). <sup>13</sup>**C NMR (101 MHz, CDCl<sub>3</sub>)**  $\delta$  171.1, 158.4, 149.9, 137.7, 131.2, 125.2, 121.8, 120.5, 119.3, 117.9, 112.4, 108.6, 103.5, 99.1, 52.7, 21.4. **IR (ATR/cm<sup>-1</sup>)** 3262.2, 1640.84, 1230.83, 1129.53, 857.88. **HRMS (ESI)**: C<sub>17</sub>H<sub>14</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 296.0917; found: 296.0918.

Methyl 9-(benzyloxy)-2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4e

MeO<sub>2</sub>C BnC

A yellow solid, 63 mg, 86% yield.

**m.p.**: 170–172 °C.

TLC:  $R_f = 0.50$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 10.29 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.42 (s, 1H), 7.42 – 7.36 (m, 3H), 7.34 (d, *J* = 7.5 Hz, 1H), 6.94 – 6.89 (m, 1H), 6.72 (d, *J* = 8.8 Hz, 1H), 5.17 (s, 2H), 4.05 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.9, 159.1, 158.4, 153.8, 149.9, 137.5, 132.5, 128.5, 127.9, 127.5, 125.2, 122.4, 118.0, 112.5, 110.7, 109.0, 107.5, 103.7, 99.5, 71.5, 52.7.

IR (ATR/cm<sup>-1</sup>) 3316.7, 1640.3, 1386.5, 1286.5, 822.0, 799, 741.2, 627.2.

**HRMS (ESI)**:  $C_{23}H_{18}NO_5^+$  [(M+H)<sup>+</sup>]: calcd.: 388.1179; found: 388.1180.

Methyl 8-fluoro-2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4f



A pale yellow solid, 44 mg, 74% yield.

**m.p.**: 242–244 °C.

TLC:  $R_f = 0.72$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 10.31 (s, 1H), 7.84 – 7.76 (m, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.28 (dd, *J* = 9.7, 2.5 Hz, 1H), 7.09 – 7.01 (m, 1H), 6.74 (d, *J* = 8.8 Hz, 1H), 4.07 (s, 3H).

<sup>13</sup>C NMR (151 MHz, DMSO) δ 169.0, 158.9, 158.1, 157.4, 155.4, 149.2, 137.1 (d, *J* = 12.3 Hz), 124.5, 121.5 (d, *J* = 23.0 Hz), 117.6, 116.8, 109.4, 107.9 (d, *J* = 9.4 Hz), 106.3, 99.1 (d, *J* = 26.3.0 Hz), 97.5, 52.6.

**IR** (**ATR/cm**<sup>-1</sup>) 3282.6, 1644.6, 1513.3, 1289.3, 1058.9, 786.6.

**HRMS (ESI)**:  $C_{16}H_{11}FNO_4^+$  [(M+H)<sup>+</sup>]: calcd.: 300.0667; found: 300.0667.

#### Methyl 9-chloro-2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4g



A pale yellow solid, 45.5 mg, 72% yield.

**m.p.**: 244–246 °C.

**TLC**:  $R_f = 0.80$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H** NMR (400 MHz, DMSO) δ 10.25 (s, 1H), 7.87 (d, J = 2.1 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.22 (dd, J = 8.6, 2.2 Hz, 1H), 6.77 (d, J = 8.8 Hz, 1H), 4.07 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO) δ 168.8, 159.0, 155.3, 149.46, 124.7, 124.6, 122.0, 120.9, 120.1, 116.9, 114.0, 109.8, 106.6, 97.5, 52.6. **IR (ATR/cm<sup>-1</sup>)** 3238.4, 1651.0, 1565.1, 1462.0, 1126.2, 973.0, 878.0. **HRMS (ESI)**: C<sub>16</sub>H<sub>11</sub>ClNO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 316.0371; found: 316.0371.

Methyl 8-chloro-2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4h

A yellow solid, 47.5 mg, 77% yield. **m.p.**: 235–237 °C. **TLC**:  $R_f = 0.76$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.23 – 7.18 (m, 1H), 6.76 (d, J = 8.8 Hz, 1H), 4.21 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.7, 158.7, 158.3, 149.9, 137.8, 126.6, 124.7, 121.5, 120.6, 120.1, 118.0, 112.1, 109.2, 103.6, 98.9, 52.6. **IR** (**ATR/cm<sup>-1</sup>**) 3269.9, 2438.0, 1737.7, 1456.1, 1317.9, 826.0. **HRMS (ESI)**: C<sub>16</sub>H<sub>11</sub>ClNO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 316.0371; found: 316.0370.

Methyl 8-bromo-2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4i



Pale yellow solid, 52 mg, 75% yield. **m.p.**: 229–231 °C. **TLC**:  $R_f = 0.50$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.6 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.38 – 7.32 (m, 1H), 6.78 (d, J = 8.8 Hz, 1H), 4.20 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  178.4, 167.7, 164.9, 158.9, 147.4, 133.9, 132.7, 131.8, 129.5, 126.4, 124.5, 122.8, 119.3, 116.1, 107.2, 62.2. **IR** (ATR/cm<sup>-1</sup>) 2953.7, 1643.8, 1466.8, 1332.9, 1185.8, 847.6, 798.1. **HRMS (ESI)**: C<sub>16</sub>H<sub>11</sub><sup>79</sup>BrNO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 359.9866; found: 359.9866.

Dimethyl 2-hydroxy-6H-benzofuro[2,3-b]indole-1,9-dicarboxylate 4j



A yellow solid, 41 mg, 60 % yield.

**m.p.**: 269 – 271 °C.

TLC:  $R_f = 0.41$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 10.62 (s, 1H), 8.57 (d, *J* = 1.7 Hz, 1H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.56 (d, *J* = 8.5 Hz, 1H), 6.80 (d, *J* = 8.9 Hz, 1H), 4.16 (s, 3H), 3.89 (s, 3H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 169.3, 167.1, 158.7, 156.4, 149.4, 139.9, 124.0, 122.6, 122.2, 121.5, 120.4, 117.5, 112.3, 109.9, 105.6, 98.3, 52.7, 51.8.

IR (ATR/cm<sup>-1</sup>) 3190.3 2919.1, 1664.3, 1526.3, 1497.3, 1287.5, 1126.7, 1090.2.

**HRMS (ESI)**: C<sub>18</sub>H<sub>14</sub>NO<sub>6</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 340.0816; found: 340.0816.

Methyl 2-hydroxy-9-((4-methylphenyl)sulfonamido)-6H-benzofuro[2,3-b]indole-1-

carboxylate 4k

A yellow solid, 74 mg, 82 % yield. **m.p.**: 275–277 °C. **TLC**:  $R_f = 0.25$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (400 MHz, DMSO)  $\delta$  12.43 (s, 1H), 10.41 (s, 1H), 9.92 (s, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.50 (d, J = 2.1 Hz, 1H), 7.30 (dd, J = 8.4, 7.0 Hz, 3H), 6.92 (dd, J = 8.6, 2.1 Hz, 1H), 6.73 (d, J = 8.8 Hz, 1H), 4.04 (s, 3H), 2.30 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, DMSO)  $\delta$  169.1, 158.4, 155.2, 149.2, 142.7, 136.7, 134.6, 130.3, 129.4, 126.8, 124.2, 120.8, 117.1, 116.6, 115.1, 112.6, 109.2, 106.4, 97.7, 52.7, 20.8. **IR** (**ATR/cm<sup>-1</sup>**) 3271.4, 2952.2, 1651.0, 1485.3, 1245.2, 1106.5, 847.4. **HRMS (ESI)**: C<sub>23</sub>H<sub>19</sub>N<sub>2</sub>O<sub>6</sub>S<sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 451.0958; found: 451.0966.

Methyl 9-((tert-butoxycarbonyl)amino)-2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate

41



A pale yellow solid, 70 mg, 88 % yield. **m.p.**: 212–214 °C. **TLC**:  $R_f = 0.54$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (s, 1H), 7.55 – 7.48 (m, 1H), 7.30 (dd, J = 8.6, 2.0 Hz, 1H), 7.12 – 7.02 (m, 1H), 6.77 – 6.68 (m, 1H), 4.30 (s, 3H), 1.56 (s, 9H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 169.4, 158.4, 155.2, 153.2, 149.2, 133.0, 132.6, 124.4, 120.7, 116.4, 112.1, 108.8, 106.4, 97.7, 78.4, 52.9, 28.2

IR (ATR/cm<sup>-1</sup>) 2998.0, 1703.1, 1587.1, 1442.0, 1174.4, 1055.9, 1443.5, 926.8.

**HRMS (ESI)**:  $C_{21}H_{21}N_2O_6^+$  [(M+H)<sup>+</sup>]: calcd.: 397.1394; found: 397.1394.

Methyl 2-hydroxy-9-pivalamido-6H-benzofuro[2,3-b]indole-1-carboxylate 4m



A pale yellow solid, 68 mg, 89% yield.

**m.p.**: 229–231 °C.

TLC:  $R_f = 0.20$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H** NMR (400 MHz, DMSO) δ 10.51 (s, 1H), 9.15 (s, 1H), 8.04 (d, *J* = 2.0 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.38 (d, *J* = 8.6 Hz, 1H), 7.25 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.73 (d, *J* = 8.8 Hz, 1H), 4.17 (s, 3H), 1.27 (s, 9H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 176.1, 169.4, 158.4, 155.5, 149.2, 133.7, 132.2, 124.3, 120.5, 116.7, 116.3, 114.1, 111.8, 108.9, 106.1, 97.8, 52.9, 27.4.

IR (ATR/cm<sup>-1</sup>) 3448.3, 1660.6, 1551.2, 1453.4, 1396.0, 1166.1, 931.7.

**HRMS (ESI)**:  $C_{21}H_{21}N_2O_5^+$  [(M+H)<sup>+</sup>]: calcd.: 381.1445; found: 381.1443.

Ethyl 2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4n

A yellow solid, 51.3 mg, 87% yield.

**m.p.**: 128–130 °C.

**TLC**:  $R_f = 0.24$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H NMR** (600 MHz, DMSO-*d*<sub>6</sub>) δ 12.42 (s, 1H), 10.09 (s, 1H), 7.84 – 7.79 (m, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.23 – 7.17 (m, 2H), 6.73 (d, *J* = 8.8 Hz, 1H), 4.59 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 168.4, 158.0, 154.3, 149.4, 137.1, 124.6, 121.2, 120.8, 120.5, 120.3, 116.0, 112.4, 109.1, 107.7, 97.6, 61.3, 14.3.

**IR (ATR/cm<sup>-1</sup>)** 3287.0, 1647.0, 1452.4, 1201.9, 1125.0, 851.6, 740.1.

**HRMS (ESI)**:  $C_{17}H_{14}NO_4^+$  [(M+H)<sup>+</sup>]: calcd.: 296.0917; found: 296.0917.

#### Methyl 2-hydroxy-6-methyl-6H-benzofuro[2,3-b]indole-1-carboxylate 4o



A yellow solid, 58 mg, 85% yield. **m.p.**: 197–199 °C **TLC**:  $R_f = 0.60$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H** NMR (400 MHz, DMSO)  $\delta$  10.36 (s, 1H), 7.86 – 7.80 (m, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.29 – 7.21 (m, 2H), 6.74 (d, J = 8.8 Hz, 1H), 4.07 (s, 3H), 3.88 (s, 3H). <sup>13</sup>C NMR (151 MHz, DMSO)  $\delta$  168.9, 158.0, 155.3, 149.3, 137.9, 124.9, 121.1, 120.7, 120.6, 120.3, 116.7, 110.5, 109.1, 106.5, 96.7, 52.6, 29.0. **IR (ATR/cm<sup>-1</sup>)** 2943.8, 1650.0, 1313.78, 1136.7, 1047.9, 750.5. **HRMS (ESI)**: C<sub>17</sub>H<sub>14</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 296.0917; found: 296.0917.

# Methyl 6-benzyl-2-hydroxy-6H-benzofuro[2,3-b]indole-1-carboxylate 4p

MeO<sub>2</sub>C Β'n

A pale yellow, 53 mg, 71% yield. **m.p.**: 147–149 °C. **TLC**:  $R_f = 0.32$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 7.36 – 7.16 (m, 9H), 6.75 (d, J = 8.8 Hz, 1H), 5.46 (s, 2H), 4.21 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.2, 158.8, 158.7, 150.3, 138.0, 136.1, 129.1, 128.1, 127.1, 125.5, 121.84, 121.5, 121.1, 118.5, 110.7, 109.5, 104.0, 53.0, 46.8. **IR** (**ATR/cm<sup>-1</sup>**) 3026.8, 1650.0, 1507.1203.6, 1074.8, 789.0, 728.6. **HRMS** (**ESI**): C<sub>23</sub>H<sub>18</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 372.1230; found: 372.1231.

# Methyl 2-hydroxy-6-propyl-6H-benzofuro[2,3-b]indole-1-carboxylate 4q



A pale yellow, 57mg, 89% yield.

**m.p.**: 125–127 °C.

TLC:  $R_f = 0.59$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) δ 7.93 – 7.82 (m, 1H), 7.58 – 7.50 (m, 1H), 7.42 – 7.33 (m, 1H), 7.28 – 7.21 (m, 2H), 6.73 (d, *J* = 8.7 Hz, 1H), 4.22 (t, *J* = 7.0 Hz, 2H), 4.20 (s, 3H), 3.10 (s, 4H), 1.95 (q, *J* = 7.3 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 171.6, 159.3, 159.1, 150.7, 138.4, 125.9, 121.9, 121.1, 118.5, 110.6, 109.5, 104.3, 98.7, 53.1, 45.2, 23.1, 11.6.

IR (ATR/cm<sup>-1</sup>) 2916.6, 2847.2, 1661.0, 1488.6, 1295.8, 924.3.

**HRMS (ESI)**: C<sub>19</sub>H<sub>18</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 324.1230; found: 324.1229.

Methyl 2-hydroxy-6-isopropyl-6H-benzofuro[2,3-b]indole-1-carboxylate 4r

Pale yellow solid, 55 mg, 88% yield **m.p.**: 119–121 °C. **TLC**:  $R_f = 0.89$  (Hexane/EtOAc = 50:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  11.07 (s, 1H), 7.98 – 7.93 (m, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.34 – 7.29 (m, 2H), 6.80 (d, J = 8.8 Hz, 1H), 5.06 – 4.74 (m, 1H), 4.26 (s, 3H), 1.75 (s, 3H), 1.73 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.4, 158.8, 158.7, 150.7, 137.7, 125.2, 121.7, 121.6, 121.6, 120.8, 118.4, 110.6, 109.4, 104.1, 99.6, 53.0, 47.8, 21.6. **IR (ATR/cm<sup>-1</sup>)** 2982.6, 1655.2, 1503.1, 1311.1, 1137.2, 841.0. **HRMS (ESI)**: C<sub>19</sub>H<sub>18</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 324.1230; found: 324.1230.

Methyl 2-hydroxy-6-phenyl-6H-benzofuro[2,3-b]indole-1-carboxylate 4s



A pale yellow solid, 53 mg, 75 % yield.

**m.p.**: 152–154 °C.

TLC:  $R_f = 0.35$  (Hexane/EtOAc = 10:1) [UV, KMnO<sub>4</sub>].

<sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) δ 7.99 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.64 – 7.60 (m, 2H), 7.58 – 7.55 (m, 2H), 7.48 (t, 1H), 7.34 (t, *J* = 1.1 Hz, 1H), 7.28 (t, 2H), 6.81 (d, *J* = 8.8 Hz, 1H), 4.26 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.4, 170.3, 158.5, 158.3, 156.9, 149.2, 149.1, 137.4, 134.4, 129.3, 127.2, 124.5, 124.2, 121.4, 121.1, 121.1, 120.8, 117.9, 117.9, 110.5, 109.6, 109.5, 103.5, 99.2, 52.3. **IR** (**ATR/cm<sup>-1</sup>**) 2917.4, 1657.8, 1540.4, 1323.5, 1096.7, 833.6.

**HRMS (ESI)**:  $C_{22}H_{16}NO_4^+$  [(M+H)<sup>+</sup>]: calcd.: 358.1074; found: 358.1074.

Methyl 2-hydroxy-6-(p-tolyl)-6H-benzofuro[2,3-b]indole-1-carboxylate 4t

A pale yellow solid, 57.2 mg, 77 % yield. **m.p.**: 160–162 °C. **TLC**:  $R_f = 0.52$  (Hexane/EtOAc = 10:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, J = 7.9 Hz, 1H), 7.60 – 7.51 (m, 4H), 7.42 (d, J = 8.0 Hz, 2H), 7.38 – 7.24 (m, 2H), 6.86 – 6.75 (m, 1H), 4.26 (s, 3H), 2.49 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) $\delta$  170.8, 158.6, 157.5, 149.7, 138.0, 137.8, 132.1, 130.3, 124.9, 124.8, 121.8, 121.4, 121.4, 121.2, 118.3, 110.9, 109.7, 103.9, 99.4, 95.9, 52.7, 21.0. **IR** (**ATR/cm**<sup>-1</sup>) 2918.6, 1650.6, 1541.1, 1710.5, 1186.9, 1024.7. **HRMS (ESI)**: C<sub>23</sub>H<sub>18</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 372.1230; found: 372.1228.

Methyl 2-(1H-indol-3-yl)-3,6-dioxocyclohexa-1,4-diene-1-carboxylate 3a

A blue solid, 52 mg, 92 % yield. **m.p.**: 185-187 °C. **TLC**:  $R_f = 0.21$  (Hexane/EtOAc = 3:1) [UV, KMnO<sub>4</sub>]. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.79 (s, 1H), 7.54 – 7.50 (m, 1H), 7.46 (d, J = 2.9 Hz, 1H), 7.40 (dd, J = 8.0, 1.2 Hz, 1H), 7.27 – 7.16 (m, 2H), 6.98 – 6.87 (m, 2H), 3.70 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  186.6, 184.2, 165.6, 138.2, 136.7, 136.3, 133.8, 128.9, 126.1, 123.4, 121.4, 120.5, 111.8, 107.9, 53.0.

**IR (ATR/cm<sup>-1</sup>)** 3289.4, 1661.5, 1535.4, 1416.1, 1264.7, 1101.5, 882.7 **HRMS (ESI)**: C<sub>16</sub>H<sub>12</sub>NO<sub>4</sub><sup>+</sup> [(M+H)<sup>+</sup>]: calcd.: 282.0761; found: 282.0761

# (G) X-Ray crystallographic analysis of 4a



| F000'                         | 2343.95   |
|-------------------------------|-----------|
| h,k,lmax                      | 23,8,47   |
| Nref                          | 4973      |
| Tmin,Tmax                     |           |
| Tmin'                         |           |
| 281.26                        |           |
| 1.523                         |           |
| 16                            |           |
| 0.925                         |           |
| 2336.0                        |           |
| 22,8,47                       |           |
| 4810                          |           |
| 0.400,1.000                   |           |
| Correction method= #          |           |
| Reported T Limits: Tmin=0.400 |           |
| Tmax=1.000                    |           |
| AbsCorr = MULTI-SCAN          |           |
| Data completeness= 0.967      |           |
| R(reflections)= 0.0370( 4510) |           |
| Theta(max)= 73.808            |           |
| wR2(reflections)=             |           |
| 0.0966( 4810)                 |           |
| S = 1.046                     | Npar= 383 |
|                               |           |

# (H) NMR spectra of cycloadducts











175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 f1 (ppm)









- 1000 - 500 - 0 - - - 500

30

20



































