Electronic Supporting Information (ESI)

Controlled lignosulfonate depolymerization via solvothermalfragmentationcoupledwithcatalytic

hydrogenolysis/hydrogenation in continuous flow reactor

Francesco Brandi, Markus Antonietti and Majd Al-Naji*

Max Planck Institute of Colloids and Interfaces, Colloid Chemistry Department, Am Mühlenberg 1, 14476 Potsdam, Germany

*Corresponding author: Dr. Majd Al-Naji (<u>majd.al-naji@mpikg.mpg.de</u>)

Table of Contents

S1 Materials	S4
S2 Catalyst preparation	
Figure S1: Schematic representation of catalyst synthesis	S5
S3 Catalyst characterization	S7
S4 Reaction setup	S11
Figure S2: Continuous flow setup	S11
Figure S3: Aluminum heating block	S11
Figure S4: Stainless steel tubular rector	S12
Figure S5: Dual experiment reaction setup	S12
S5 Products analysis and quantification	
Figure S6: Scheme of analytical procedure	S14
S6 Result and discussion	\$15
Figure S7: TGA in air of LS	S15
Figure S8: SEC chromatograms od LS	S15
Figure S9: 2D HSQC NMR of LS	S16
Figure S10: FTIR of LS and SHF-LS	S17
Table S1: Main FTIR peak assignment fro Figure S10	S17
Figure S11: SEC chromatograms of SF-EtOH/H ₂ O and SF-H ₂ O	S18
Figure S12: M_w and M_n of SF experiments as a function of temperature	S19
Table S2: M_w , M_n and \oplus values for SF and SHF experiments	S20
Figure S13: GC-MS chromatograms of SF- and SHF-MeOH/H $_2$ O experiments	S21

Table S3: Identified and quantified compound for SF-MeOH/H2O experiments
Figure S14: Monomer yield for SF-MeOH/H ₂ O and SF-EtOH/H ₂ OS23
Figure S15: N ₂ -physisorption isotherms at 77 K of NDC and 35 Ni/NDCS24
Table S4: Textural properties and chemical composition of NDC and 35Ni/NDC
Figure S16: XRD pattern of 35Ni/NDC
Figure S17: HR-TEM image for 35Ni/NDC
Figure S18: Proposed depolymerization scheme for SHFS26
Figure S19: SEC elugram of SHF-H ₂ OS26
Figure S20: M_{w} and M_{n} of SHF experiments as a function of temperature $\hfill \hfill \dots \hfill \h$
Figure S21: 2D HSQC NMR spectra of SHF-MeOH/H ₂ OS28
Figure S22: XRD patterns of 35Ni/NDC-U, 35Ni/NDC-TOS, LS and SHF-LSS28
Table S5: Identified and quantified compounds for SHF experiments S29
Figure S23: GC-FID chromatograms of MeTHF fraction of SHF-MeOH/H $_2$ O experimentS31
Figure S24: Cumulative monomer yield for SHF experiments as a function of temperature .S31
Figure S25: Monomer yield of SHF-H $_2$ O as a function of temperatureS32
Figure S26: Proposed depolymerization pathway for SHF experimentsS33
Figure S27: Proposed hydrogenolysis mechanismS33
Figure S28: Monomer yield from SHF-MeOH/H ₂ O over time on stream
Figure S29: N ₂ –physisorption isotherms at 77 K of 35Ni/NDc and 35Ni/NDC-TOSS35

	7 References	S35
--	--------------	-----

S1. Materials

Industrial residues of Sodium lignosulfunate (LS) have been provided from Domsjö-Fabriker. D-(+) Glucose anhydrous (99.5%), 4-propyl-guaiacol (99%), and homovanyllyl alcohol (99%) were supplied by Sigma aldrich. Hydrochloric acid (0.1 M in water) was obtained from Merk. Urea and nickel nitrate hexahydrate (>99%) and 2-Methyltetrahydrofuran (MeTHF) were supplied by Roth. Guaiacol (99%) has been provided by Sigma. Homovanillyl alcohol (99%) and 4-propyl phenol (99%) were supplied from Aldrich. Dhydroconyferyl alcohol (97%) was supplied from AmBeed. Creosol (99%) was obtained from Acros Organics. MgSO₃ anhydrous has been purchased from J.T. Baker. Zinc oxide nanoparticles (average d = 20 nm) were ordered from Nanostructure and amorphous inc. Semolina (type durum wheat) was acquired from Divella. Forming gas (95/5) and H₂ bottles were purchased from Westfalia. All the chemicals were used as received without any further purification. The sodium poly-(styrene sulfonate) SEC standards (Mw of 29500 g mol⁻¹, 15800 g mol⁻¹, 13500 g mol⁻¹, 9740 g mol⁻¹, 3800 g mol⁻¹, 1670 g mol⁻¹, 891 g mol⁻¹ and 246 g mol⁻¹) have been provided by Polymer Standard Service-USA inc. (PSS).

S2. Catalyst preparation

Figure S1 Schematic representation of the catalytic synthesis protocol starting from extrusion (left) followed by carbonization, incipient metal impregnation, calcination and reduction.¹

The porous nitrogen-doped carbon (NDC) pellets were synthesized based on our group's prevision study.¹⁻ ⁴ Firstly, the glucose, urea, and water mixture with a molar ratio of 1: 3: 11 was prepared at 90°C for 2 h with continuous stirring. Then, a 2 kg mixture composed of semolina (48 wt.-%), the previously prepared glucose, urea, and water mixture (8 wt.-%) and ZnO nanoparticles d = 20 nm (24 wt.-%) were mixed using a commercial kitchen kneader (Bosch, professional home series, model MUMVH48BCN). To provide a consistency that allows for extrusion, 160 cm³ water (20 wt..-% of the mixture) was added to the mixture as a plasticizer. Finally, the low-moisture mixture was extruded and cut in the pellet form with dimensions of 1 mm (diameter) and 1.5 mm (length) using a commercial noodle extruding machine (La Monferrina P3) equipped with a 1 mm PTFE die and automatic cutting knife, cf. Figure S1. The extruded pellets were dried at room temperature for 12 h. The dried pellets were carbonized at 950°C under N₂ atmosphere using a three-step program: (i) purging the oven atmosphere with N_2 at room temperature for 30 min; (ii) increasing the temperature to 120°C with the heating rate of 3°C min⁻¹ and maintaining it for 2 h; (iii) elevating the temperature to 950°C with the heating rate of 3°C min⁻¹ and maintaining it for 2 h, then cooling it down to room temperature. Finally, the carbonized pellets were washed using 0.1 M HCl solution under continuous stirring for 10 h to remove the residual Zn from the pellet. Afterward, the NDC pellets have dried at 90°C for 12h. A loading of 35 Wt.-% of Ni was incorporated on NDC via incipient wetness impregnation. Firstly, 170 g of (Ni(NO₃)₄ · 6H₂O) was dissolved in (110 cm³) of millipore water, followed by dropwise addition with continuous stirring of the aqueous Ni solution on the NDC dried pellets until complete saturation of the support pores. Subsequently, the impregnated pellets were dried again at 60°C

in air for 12 h. Afterwards, the catalyst was calcined under N₂ atmosphere at 450°C. The temperature program of the calcination process consists of two steps: i) purging with N2 at room temperature for 30 min; ii) heating ramp to 450°C with 3°C min⁻¹ rate and maintained for 2 h. Prior to the catalytic experiments, the catalyst was reduced in forming gas (5 wt.-% H₂ and 95 wt.-% N₂) using the following program: i) 30 min of purging at room temperature, ii) increasing the temperature to 450°C with a heating rate of 3°C min⁻¹ and maintained for 5 h.

S3. Catalyst characterization

Combustion elemental analysis (EA)

Elemental analysis of C, H, O, and N from LS and 35Ni/NDC has been performed with a Vario-MICRO cube CHNOS elemental analyzer. Prior to the analysis, the sample has finely ground.

Inductively coupled plasma optical emission spectroscopy elemental analysis (ICP)

The measurements of Na, Ca Mg of LS and Ni of 35Ni/NDC were conducted via inductively coupled plasma optical emission spectroscopy (ICP-OES) using an Optima 8000 ICP-OES from PerkinElmer. Prior to the analysis, the samples (0.1 mg) were finely ground and digested for 13 hours in 500 µL of *Aqua Regia* solution (3:1 molar ratio of HCl and HNO₃, respectively).

N₂ physisorption

The N₂ physisorption measurements of 35Ni/NDC were accomplished with N₂ at -196°C, after degassing the sample at 423 K for 20 h under vacuum, using a Quantachrome Quadrasorb SI porosimeter. The specific surface area was calculated by applying the Brunauer-Emmet-Teller (BET) model in the relative pressure region of (0-0.05) for the adsorption branch (A_{BET}).

Powder X-ray diffraction (XRD)

The XRD measurements were performed on a Bruker D8 diffractometer equipped with a CuK_{α} source (λ = 0.154 nm) and a NaI scintillation counter-Scinti-Detector. The diffraction pattern was recorded in the 20 range between 4-70° with steps of 0.05° and acquisition time of 2 seconds per step.

Thermogravimetric analysis (TGA)

The measurement for the LS has been performed using a Thermo Microbalance TG 209 F1 Libra (Netzsch, Selb, Germany). In a typical experiment, 0.01 g of sample were placed on a Pt crucible, dried at 423 K for 2 h, and then heat to 1273 K in a continuous flow of synthetic air (20 cm³ min⁻¹), with a heating rate of 10 K min⁻¹.

High-resolution scanning transmission electron microscopy (HR-STEM)

The HR-STEM images of 35Ni/NDC were acquired using a double-Cs-corrected JEOL RM200F, equipped with a cold field emission gun and an energy-dispersive X-ray (EDX) filter. The acceleration voltage was set to 80 kV for the investigation.

Energy-dispersive X-ray spectrometry (EDS)

The EDS investigation of LS and SHF-LS has been conducted on a Scanning electron microscope (SEM) – Gemini Leo 1550 equipped. Prior to the analysis, the detector has been calibrated with a standard Cu sample, the measure was conducted at 15 keV.

CO-chemisorption

CO-Chemisorption was performed using AMI-300 equipped with thermal conductivity detector (TCD) from Altamira Instrument. In each measurement, 0.05 g of catalyst was placed between two layer of quartz wool in the measurement cell (quartz U-tube). primarily, the sample was treated at 120°C in a flow He for 1 h. Afterwards, the sample was reduced by increasing the temperature to 450°C in the presence of a mixture of H₂ (20%) in He (80%) with a dwell of 4 h. Later, saturation of the catalyst with CO at 30°C was applied by flowing CO (20%) over the sample for 5 h. Then, the non-adsorbed CO was removed by flowing He (100%) over the sample for 30 min. To ensure a complete saturation of the samples, 20 pulses (509 µL each) of CO (20%) in He (80%) over the sample at 30°C. Finally, the CO desorption profile was recorded by increasing the temperature from 30°C to 550°C with 10°C min⁻¹ with dwell of 30 min at 550°C.

Size exclusion gel permeation chromatography (SEC)

Size exclusion chromatography (SEC) of sodium lignosulfonate (LS) and depolymerized LS was conducted in a PSS Thermo Separation Products (TPS) equipped with a PSS SECurity² UV-1000\2000 detector and a two columns systems composed by: i) precolumn PSS-MCX 5 μ m and ii) main column PSS-MCX-analytical 5 μ m. The injection volume has been set to 100 μ L, with an elution flow of 1.0 cm³ min⁻¹ using Na₂HPO₄ 0.084 M aqueous buffer as eluent and column temperature of 25°C. Prior to the analysis the sample has been diluted 1:10 in the Na₂HPO₄ and the salt peak at 25°C has been used as internal standard. The molecular weight distributions quantification (M_w, M_n and Đ) has been performed using the PSS – WinGPC UniChrom software and sodium poly-(styrene sulfonate) standards. Accordingly, eight different standard have been used with a M_w of 29500 g mol⁻¹ (RT 8.63 min), M_w of 15800 g mol⁻¹ (RT 9.14 min), M_w of 13500 g mol⁻¹ (RT 9.25 min), M_w of 9740 g mol⁻¹ (RT 9.47 min), M_w of 3800 g mol⁻¹ (RT 9.88 min), M_w of 1670 g mol⁻¹ (RT 10.23 min), M_w of 891 g mol⁻¹ (RT 10.44 min) and M_w of 246 g mol⁻¹ (RT 10.9 min). The standards have been fit with a calibration curve applying a polynomial function of the seventh order (PSS –poly 7).

Two dimensional ¹H-¹³C heteronuclear single quantum coherence nuclear magnetic resonance (2D HSQC- NMR)

NMR spectra were recorded on a Bruker Ascend 400 MHz spectrometer. A sample of the sodium lignosulfonate (50 mg) was dissolved in 0.6 cm³ of DMSO-d6. HSQC experiments had the following parameters: standard Bruker pulse sequence 'hsqc', spectral width of 8.6 ppm in F2 (1H dimension) by using 2048 data points for an acquisition time (AQ) of 159 ms, spectral width of 149 ppm in F1 (¹³C dimension). The number of scans was 64 with an interscan delay of 1.5 s (D1).

Freeze-drying

The freeze-drying of the SHF-LS sample has been conducted using a Christ Alpha 1-4 LSC-basic device. Prior to the freeze-drying, the sample has been placed in a falcon tube and frozen at -10°C for 10 h. Afterwards, a further cooling step has been conducted in liquid nitrogen for 5 minutes. Then, the sample has been freeze-dried for 10 h at a pressure of around 4 kPa followed by 10 h at 0.5 kPa for complete drying.

pH-analysis

The pH of the reactant LS solution and the SHF-LS collected solution has been measured using a WTW Multilab 540 pH meter equipped with a KCL. Prior to the analysis, the pH meter has been calibrated using the Burkett standard buffer solution for pH of 4.0, 7.0 and 8.0. The pH has been measured while the sample has been kept under continuous stirring.

X-ray diffraction (XRD)

Powder XRD measurements for 35Ni/NDC were performed on a Bruker D8 diffractometer equipped with a CuK α source (λ = 0.154 nm) and a NaI scintillation counter-Scinti-Detector. The diffraction pattern was recorded in the 2 θ range between 4-70° with steps of 0.05° and acquisition time of 2 sec per step.

S9

Gas Chromatography equipped with mass spectrometer detector (GC-MS) and with flame ionization detector (GC-FID)

The qualitative and quantitative product analysis has been performed using a Gas chromatography (Agilent 8890 GC) equipped with a HP-5MS Ultra Inert column from Agilent (model: USR577054H), a split-splittles liner (Agilent 5190-2295) and coupled with both mass spectrometer detector, *i.e.* GC-MS configuration, (Agilent 5975 MSD) and flame ionization detector (Agilent), *i.e.* GC-FID configuration. For qualitative analysis the GC-MS configuration has been with used. The MS method has been set with a run time of 32 min, injection volumes of 1.0 μ L and He as carrier gas. The injection has been set in Split mode with a split ration of 10 while the inlet has been kept at 280°C to evaporate the injection. The temperature program for the column oven has been set as following: start at 50°C and maintaining for 1 min, then increasing to 300 °C with a heating rate of 10°C min⁻¹ and maintaining at 300°C for 6 min. The MS detector has been set to scan between 50 and 250 m/z with a gain factor of 1.1. The solvent delay has been set at 2.6 min, while the MS detector and the quadrupole has been kept at 230°C and 150°C, respectively. The mass spectra of the compounds were analyzed integrating the peak area using the Agilent MassHunter Qualitative Analysisi 10.0 software from and comparing with the NIST 17 mass spectral database.

For the quantitative analysis GC-FID configuration has been used. The injection and the oven methods has been set identically to the GC-MS analysis above described. During the analysis the FID detector has been fed with H_2 flow of 30 cm³ min⁻¹ as fuel gas while the heater has been kept at 350°C to avoid product condensation at the GC/FID interface. The quantification of the peak has been conducted using the Agilent MassHunter Qualitative Analysis 10.0 using the ChemStation integrator.

S4. Reaction set up

Figure S2. The setup for the continuous flow solvothermal fragmentation (SF) and Solvothermal combined with hydrogenolysis/hydrogenation LS fragmentation (SHF) consisting of of **A**) HPLC pump equipped with pressure control, **B**) T- piece for gas-liquid mixing **C**) Mass flow controller for H_2 **D**) heating unit (see the inner part of it at Figure S4) **E**) relief valve used for pressure controlling, connected with **s**ample collector.

Figure S3. Homemade aluminum heating block used to ensure efficient heating, consisting of three location bores: **1)** fixed bed reactor place **2)** thermocouple location for temperature control and **3)** preheating unit.

Figure S4. Stainless steel tubular reactor used as reactor (inner diameter 21 mm, outer diameter 24 cm, length 280 mm).

Figure S5. Coupled two reactor setup for solvothermal combined with catalytic hydrogenolysis/hydrogenation fragmentation (SHF) of LS, consisting of **A**) HPLC pump equipped with pressure control, **B**) Mass flow controller for controlling the flow of H₂, **C**) T-piece for gas-liquid mixing, **D1**) and **D2**) independents heating units and **E**) sampling unit equipped with proportional relief valve.

S5. Product analysis and quantification

An analytical procedure has been established to meets the requirement for each analytical techniques, *i.e.* solid specimen for EA, ICP, 2D HSQC NMR XRD, and FTIR) and liquid with minimized water content for GC analysis (GC-MS and GC-FID), see **Figure S6**. The used procedures for these methods are reported in detail in **Section S3** For every experiment, a sample of around 30 g has been collected. Initially, the alcohol solvent, *i.e.* MeOH and EtOH, have been removed with rotary evaporation. In the case of EtOH, where the water-EtOH azeotrope is formed, the rotary evaporation has been interrupted when the half of initial sample has been evaporated. When H₂O is used as solvent mixture, no preliminary rotary evaporation is conducted and the sample is directly extracted.

After the first step, the resulting liquid has been separated into two equals fractions of around 7.5 gram in order to be further treated for solid and liquid analysis separately.

In the case of solid analysis, the water solvent has been removed via freeze-drying. The resulting solid has been used for EA, ICP, 2D HSQC NMR and FTIR analysis.

The other portion has been treated in order to perform GC analysis. Accordingly, to separate the residual sulfonate fragments and to extract the monomer from the aqueous phase the sample has been extracted using MeTHF as extractive solvent. Thus, almost 5 g of water sample have been extracted with 50 cm³ of MeTHF, with five iterative extractions of 10 cm³ each. Afterwards, eventual water residuals in the solution have been dried adding almost 5g of MgSO₃ anhydrous. The MgSO₃ slurry has been removed via filtration. Finally, the MeTHF solution has been concentrated with rotary evaporation until an exact mass of almost 2.5 g has been reached.

The quantification has been conducted in comparison of calibration curve with standard compounds using GC-FID as detector. The single monomer yield and the cumulative monomers yield (Y_{CM}) expressed in mg g_{LS}^{-1} have been calculated as follow:

$$y_i = \left(C_i \cdot \frac{M_0}{M_f}\right) \cdot \frac{1}{C_{LS}} \cdot 1000$$
$$Y_{CM} = \sum_{n=1}^{N} (y_i)$$

Where C_i indicates the measured concentration of the i^{th} compounds expressed in wt.-%, M_0 indicates the Mass of the collected sample before the analytical procedure, M_f represents the mass of the sample after the final step of the concentration and c_{LS} represent the LS concentration in the reactant solution.

The Space time cumulative monomer yield (STY_{CM}) and the weight hourly space velocity (WHSV) were calculated as follow and expressed in mg $h^{-1} g_{Ni}^{-1}$ and $g_{LS} h^{-1} g_{Ni}^{-1}$.

$$WHSV = c_{LS} \cdot \dot{w} \cdot M_{Ni}^{-1}$$
$$STY_{CM} = Y_{CM} \cdot WHSV$$

Where c_{LS} indicates the weight concentration of LS in the feed solution, *i.e.* 1 or 2.5 wt.-%, \dot{W} indicates the hourly mass feed flow rate, expressed in g h⁻¹, and M_{Ni} represents the mass of Nickel in g.

Figure S6 Analytical procedure scheme for solid SHF-LS and liquid SHF-LS analysis.

Figure S7. TGA of sodium lignosulfonate (LS) in synthetic air.

Figure S8. SEC chromatograms of LS. The straight line indicates the eluents buffer reference peak (NaHPO₃), dotted and dashed lines show the analytical standard peaks, i.e., sodium poly-(styrene sulfonate), with M_w of 246 g mol⁻¹ (RT = 10.9 min) and with M_w of 891 g mol⁻¹ (RT = 10.4 min), respectively.

,

Figure S9. 2D HSQC NMR of LS. Selected structural motif are highlighted: Guaiacyl units ($G_{2,5,6}$) and sulfogroups (α -S_{α,β,γ}).

Figure S10. FTIR of sodium lignosulfonate (LS) and of the **SHF-LS** after **MeOH/H**₂**O** experiment. The highlighted peaks e assigned in **Table S1**.

Wave number	functional group	reference
/ cm ⁻¹		
3450-3300	O-H stretching vibration	567
2934	C-H stretching CH_3 (and O-CH ₃)	5 6
2854	C-H stretching CH ₂	5 6
1713	C=O stretching vibration	5
1585	C=C stretching (aromatic) and C=O stretching	6
1390-1487	Aromatic ring breathing	5 6
1150-1200	O=S=O symmetric stretching	678
1122	C-O alkoxy group vibration	9
1036	S=O stretching	79
791	Aromatic C-H out of plane	5 6
626	C=O ketone vibration breathing	5

 Table S1 Main FTIR peak assignment from Figure S10, according to literature.

Figure S11. SEC chromatograms of the solvothermal fragmentation (SF) of LS in EtOH/H₂O. Reaction conditions: $c_{LS} = 1.0 \text{ wt.-\%}$, T = 150°C, 200°C and 250° C, p = 7.0 MPa, $Q_{educt} = 1.0 \text{ cm}^3 \text{ min}^{-1}$, $Q_{H_2} = 20 \text{ cm}^3 \text{ min}^{-1}$ and $t_{residence} = 50 \text{ min}$. The straight line indicates the eluents buffer reference peak (NaHPO₃), dotted and dashed lines show the analytical standard peaks, i.e., sodium poly-(styrene sulfonate), with M_w of 246 g mol⁻¹ (RT = 10.9 min) and with M_w of 891 g mol⁻¹ (RT = 10.4 min), respectively.

Figure S12. Mass-average (M_w) and number-average (M_n) molar mass for LS thermal fractionation (SF) with MeOH/H₂O (up), EtOH/H₂O (middle), and H₂O (down) as a function of reaction temperature. Reaction conditions: $c_{LS} = 1.0$ wt.-%, T = 150°C, 200°C and 250° C, p = 7.0 MPa, $Q_{educt} = 1.0$ cm³ min⁻¹, $Q_{H_2} = 20$ cm³ min⁻¹ and $t_{residence} = 50$ min.

Samplo	Entry	Т/	M _w /	M _n /	٩
Sample		°C	g mol⁻¹	g mol ⁻¹	D
LS	1	n.a.	12390	1364	9.1
	2	150	9132	1192	7.7
SF-MeOH/H ₂ O	3	200	6093	991	6.1
	4	250	3856	586	6.5
	5	150	8899	1206	7.4
SF-EtOH/H₂O	6	200	6886	963	7.1
	7	250	2994	556	5.3
	8	150	10591	1243	8.5
SF- H₂O	9	200	7929	1224	6.5
	10	250	5578	957	5.8
	11	150	10104	993	10
SHF-MeOH/H ₂ O	12	200	3106	589	5.3
	13	250	433	360	1.2
	14	150	8457	968	8.7
SHF-EtOH/H ₂ O	15	200	1556	583	2.7
	16	250	502	485	1.1
	17	150	9555	1715	5.5
SHF- H ₂ O	18	200	8375	680	12
	19	250	1393	363	3.8

Table S2. Molecular weight (M_w) and number averaged molecular weight (M_n) distribution and dispertity(Đ) values calculated from SEC in function of different solvents in SF and SHF experiments.

n.a.: not applicable

Figure S13. GC-MS-Chromatograms of solvothermal fragmentation (SF) of LS and solvothermal combined with catalytic hydrogenolysis/hydrogenation (SHF) with MeOH/H₂O solvent mixture. Reaction conditions: $c_{LS} = 1.0 \text{ wt.-\%}$, T = 250° C, p = 7.0 MPa, $Q_{educt} = 1.0 \text{ cm}^3 \text{ min}^{-1}$, $Q_{H_2} = 20 \text{ cm}^3 \text{ min}^{-1}$, $m_{35Ni/NDC} = 10 \text{ g}$, $t_{residence} = 50 \text{ min}$, and weight hour space velocity (WHSV) = 0.17 g_{LS} h⁻¹ mg_{Ni}⁻¹.

GC-MS RT/ Min	GC-FID RT/ Min	Structure	Name	Abbreviation	Quantified
11.653	14.70	HO	4-Propyl	G1	Yes
			guaiacol		
10.428	13.548	HO	4-Ethyl	G2	Yes
			guaiacol		
13.735	16.802	Но	Homovanillyl alcohol	G3	Yes
15.098	18.137	норон	Dihydroconiferyl alcohol	G4	Yes
7.632	10.810	HO	Guaiacol	G5	Yes
9.158	12.330	HO	Creosol	G6	Yes
12.730	15.961	HO	Eugenol	G7	Yes
12.123	15.456	HO	Isoeugenol	G8	Yes
10.058	13.134	HO	4-Propyl phenol	H1	No
		ر م ال	Ethanone,1-(2-hydroxy-5-		
10.911	-	Т С Сн	ethylphenyl)-	-	No
11.542	-	но	<i>p</i> -Cymene-2,5-diol	-	Νο
12.079	-	HO	Vanillin	-	No

Table S3. Identified and quantified compounds via GC-MS and GC-FID of the solvothermal fragmentation (SF) experiment with $MeOH/H_2O$ and $EtOH/H_2O$.

13.645	-	С	BHT – MeTHF stabilizer	-	No
13.988	-	ОН	Benzene, 4 butyl alcohol- 1,2-dimethoxy	-	Νο
14.753	-	по п	Butanone,4-(4-hydroxy-3- methoxyphenyl)-	-	No
16.061	-	о С С С С С С С С С С С С С С С С С С С	Benzeneacetic acid, 3,4 dimethoxy	-	No

Figure S14. Monomer yield for the solvothermal fragmentation (SF) using MeOH/H₂O and EtOH/H₂O solvent systems (**top**) and identified monomers structure (**bottom**); Reaction conditions: $c_{LS} = 1.0 \text{ wt.-\%}$, T = 250° C, p = 7.0 MPa, $Q_{educt} = 1.0 \text{ cm}^3 \text{ min}^{-1}$, $Q_{H_2} = 20 \text{ cm}^3 \text{ min}^{-1}$, $m_{35Ni/NDC} = 10 \text{ g and } t_{residence} = 50 \text{ min}$.

Figure S15.N₂-physisorption isotherms at 77 K of the NDC and 35 Ni/NDC.

Table S4.	Textural	properties	and	chemical	composition	of	NDC	and	35NiNDC	obtained	with N_2
physisorpt	ion and E	A-ICP.									

Catalyst	C ^a /	Nª /	C/N ratio	Ni ^b /	A _{BET} ^c /	A _{Ni} ^d / m ² g ⁻¹
	wt.%	wt.%		wt.%	m ² g ⁻¹	
NDC	75	3.7	22	n.a.	755	-
35Ni/NDC	55	2.8	20	34.7	578	21

^a measured with EA analysis, ^b measured with ICP analysis, ^c calculated from N₂ physisorption and ^d Measured via CO-TPD.

Figure S16. XRD pattern of 35Ni/NDC. The symbols indicate the typical reflection for Ni⁰ and C already reported in literature.^{1, 3}

Figure S17. HR-TEM image for 35Ni/NDC.

Figure S18. Proposed depolymerization scheme for the solvothermal assisted catalytic hydrogenation/hydrogenolysis of LS. The 35Ni/NDC catalyst accelerate the LS fragmentation through hydrolysis (1) as well as prevent eventual unstable fragments formed solvothermally (2) to recondensate via hydrogenation (3).

Figure S19. SEC elugram of SHF of LS using H₂O as a solvent. Reaction conditions: $c_{LS} = 1.0$ wt.-%, T =150°C, 200°C, and 250°C, p = 7.0 MPa, $Q_{educt} = 1.0$ cm³ min⁻¹, $Q_{H_2} = 20$ cm³ min⁻¹, $m_{35Ni/NDC} = 10$ g, $t_{residence} = 50$ min, and weight hour space velocity (WHSV) = 0.17 g_{LS} h⁻¹ g_{Ni}⁻¹. The straight line indicates the eluents buffer reference peak (NaHPO₃), dotted and dashed lines show the analytical standard peaks, i.e., sodium polystyrene sulfonate, with M_w of 246 g mol⁻¹ (RT = 10.9 min) and with M_w of 891 g mol⁻¹ (RT= 10.4 min), respectively.

Figure S20. Mass-average (M_w) and number-average (M_n) molar mass for LS solvothermal assisted catalytic hydrogenolysis/hydrogenation (SHF) using MeOH/H₂O (up), EtOH/H₂O (center), and H₂O (down) as a solvent mixture, reported as a function of reaction temperature. Reaction conditions: $c_{LS} = 1.0$ wt.-%, T =150°C, 200°C, and 250° C, p = 7.0 MPa, $Q_{educt} = 1.0$ cm³ min⁻¹, $Q_{H_2} = 20$ cm³ min⁻¹, $m_{35Ni/NDC} = 10$ g, $t_{residence} = 50$ min, and weight hour space velocity (WHSV) = 0.17 g_{LS} h⁻¹ g_{Ni}⁻¹.

Figure S21. 2DHSQC NMR spectra of SHF-MeOH/H₂O. Reaction conditions: $c_{LS} = 1.0$ wt.-%, T = 250° C, p = 7.0 MPa, $Q_{educt} = 1.0$ cm³ min⁻¹, $Q_{H_2} = 20$ cm³ min⁻¹, $m_{35Ni/NDC} = 10$ g, $t_{residence} = 60$ min, and weight hour space velocity (WHSV) = 0.17 g_{LS} h⁻¹ g_{Ni}⁻¹.

Figure S22. XRD reflection patterns of the spent catalyst after 1 h (35Ni/NDC-U), after 9 h of time on stream (35Ni/NDC-TOS), of the LS compared to the freeze-dried sample after SHF experiment (SHF-LS).

GC-MS RT/ Min	GC-FID RT/ Min	Structure	Name	Abbreviation	Quantified
11.653	14.70	HO	4-Propyl guaiacol	G1	Yes
10.428	13.548	HO	4-Ethyl guaiacol	G2	Yes
13.735	16.802	Но	Homovanillyl alcohol	G3	Yes
15.098	18.137	Но	Dihydroconiferyl alcohol	G4	Yes
7.632	10.810	HO	Guaiacol	G5	Yes
9.158	12.330	HO	Creosol	G6	Yes
12.730	15.961	HO	Eugenol	G7	No
12.123	15.456	HO	Isoeugenol	G8	No
10.058	13.134	HO	4-Propyl phenol	H1	Yes
8.742	-	ОН	Phenol 4-ethyl	-	No
8.961	-	но	Ethyl <i>p</i> - hydroxybenzoate	-	Νο
11.542	-		Benzene, 4-ethyl-1,2- diemthoxy	-	No
12.079	-	HO	Vanillin	-	No

Table S5. Identified and quantified compounds via GC-FID and GC-MS of the SHF-LS fragmentation experiments.

13.306	-	но	t-Butylhydroquinone	-	No
13.645	-	ОН	BHT – MeTHF stabilizer	-	No
13.988	-	он	Benzene, 4 butyl alcohol-1,2- dimethoxy	-	No
14.389	-		3,4-Dimethoxyphenyl alcohol	-	No
14.753	-	HO	Butanone,4-(4- hydroxy-3- ethoxyphenyl)-	-	No
16.061	-	Состан	Benzeneacetic acid, 3,4 dimethoxy	-	No

Figure S23. GC-FID Chromatogram of the MeTHF fraction extracted from the SHF-MeOH/H₂O. The red cross of the peak at 16.8 corresponds to the BHT stabilizer of MeTHF. Reaction conditions: $c_{LS} = 1.0$ wt.-%, T = 250° C, p = 7.0 MPa, $Q_{educt} = 1.0$ cm³ min⁻¹, $Q_{H_2} = 20$ cm³ min⁻¹, $m_{35Ni/NDC} = 10$ g and $t_{residence} = 50$ min, weight hour space velocity (WHSV) = 0.17 g_{LS} h⁻¹ g_{Ni}⁻¹.

Figure S24. Cumulative monomer yield for the SHF-MeOH/H₂O, SHF-EtOH/H₂O, and SHF-H₂O as function of temperature. Reaction conditions: $c_{LS} = 1.0 \text{ wt.-\%}$, T = 150°C, 200°C and 250° C, p = 7.0 MPa, $Q_{educt} = 1.0 \text{ cm}^3 \text{ min}^{-1}$, $Q_{H_2} = 20 \text{ cm}^3 \text{ min}^{-1}$, $m_{35Ni/NDC} = 10 \text{ g}$, $t_{residence} = 50 \text{ min}$, and weight hour space velocity (WHSV) = 0.17 g_{LS} h⁻¹ g_{Ni}⁻¹.

Figure S25. Monomers yield derived from the SHF-H₂O in continuous flow system as a function of reaction temperature; Reaction conditions: $c_{LS} = 2.5$ wt.-%, T = 150°C, 200°C, and 250° C, p = 7.0 MPa, $Q_{educt} = 1.0$ cm³ min⁻¹, $Q_{H2} = 20$ cm³ min⁻¹, $m_{35Ni/NDC} = 10$ g, $t_{residence} = 50$ min, and weight hour space velocity (WHSV) = 0.17 g_{LS} h⁻¹ g_{Ni}⁻¹.

Figure S26. Proposed depolymerization pathway for the SHF experiments using 35Ni/NDC as catalyst. At lower temperature (150°C and 200°C) the fragmentation occurs mostly through hydrogenolysis, while at 250°C bonds are cleaved mostly solvothermal.

Figure S27. Proposed hydrogenolysis mechanism of **A**) β -O-4 and **B**) 4-O-5 ethers linkages over 35Ni/NDC. Mechanism: **1.** H₂ diffusion through the pores, **2.** H₂ dissociative adsorption on Ni surface, **3.** Molecules adsorption and protonation, **4.** Products desorption.

Figure S28. Monomers yield derived from the SHF-MeOH/H2O in continuous flow system as a function of time on stream (TOS); Reaction conditions: $c_{LS} = 2.5$ wt.-%, T = 250° C, p = 7.0 MPa, $Q_{educt} = 1.0$ cm³ min⁻¹, $Q_{H2} = 20$ cm³ min⁻¹, $m_{35Ni/NDC} = 10$ g, $t_{residence} = 50$ min, and weight hour space velocity (WHSV) = 0.43 g_{LS} h^{-1} g_{Ni}⁻¹.

Figure S29. N₂ physisorption isotherms at 77 K of the fresh 35 Ni/NDC and after 9 h of time on stream (35Ni/NDC-TOS.)

S7. References

- 1. F. Brandi, M. Bäumel, V. Molinari, I. Shekova, I. Lauermann, T. Heil, M. Antonietti and M. Al-Naji, *Green Chem*, 2020, **22**, 2755-2766.
- 2. M. Al-Naji, J. A. Mendoza Mesa, F. Brandi, I. Shekova and M. Antonietti, *Green Chem*, 2020, DOI: 10.1039/d0gc01517b.
- F. Brandi, M. Bäumel, I. Shekova, V. Molinari and M. Al-Naji, *Sustain. Chem.*, 2020, 1, 106-115.
- 4. F. Brandi, I. Khalil, M. Antonietti and M. Al-Naji, *Acs Sustain. Chem. Eng.*, 2020, DOI: 10.1021/acssuschemeng.0c08167.
- 5. C. Mei, C. Hu, Q. Hu, C. Sun, L. Li, X. Liang, Y. Dong and X. Gu, *Catalysts*, 2020, 10.
- 6. V. Hemmilä, R. Hosseinpourpia, S. Adamopoulos and A. Eceiza, *Waste and Biomass Valorization*, 2019, **11**, 5835-5845.
- W. Chen, X.-w. Peng, L.-x. Zhong, Y. Li and R.-c. Sun, Acs Sustain. Chem. Eng., 2015, 3, 1366-1373.
- 8. P. Cui, H.-X. Fang, C. Qian and M.-H. Cheng, *Chromatographia*, 2019, 83, 87-93.
- R. Shu, Y. Xu, L. Ma, Q. Zhang, T. Wang, P. Chen and Q. Wu, RSC Adv., 2016, 6, 88788-88796.