Supporting Information

Rh(III)-catalyzed C(sp²)-H functionalization/cyclization cascade of *N*carboxamide indole and iodonium reagent for access to indoloquinazolinone derivatives

Zhi-Peng Han,^a Meng-Meng Xu,^a Rui-Ying Zhang,^a Xiao-Ping Xu*^{ab} and Shun-Jun Ji*^a

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
^bInnovation Center for Chemical Science, Soochow University
Fax: (+86)-512-65880307; phone: (+86)-512-65880307; E-mail: <u>xuxp@suda.edu.cn;</u> shunjun@suda.edu.cn

Table of Contents

1. General information	S3
2. Synthesis of the starting materials	S3
2.1 General procedure for the synthesis of substrate 1	.S3
2.2 General procedure for the synthesis of substrate 2	.S3
3. Typical procedure for the synthesis of 3aa	S3
4. Gram-scale synthesis	S4
5. Recycling study of the catalytic system	S4
6. References	S5
7. Analytical and spectral data of substrates	S5
8. The ¹ H, ¹³ C, ¹⁹ F NMR spectra of products	S13
9. Crystal data and structure refinement for 3aa	S41

Experimental Section:

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under air, and undistilled solvent was used unless otherwise noted. Melting points were recorded on an electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer. ¹H, ¹³C, ¹⁹F NMR spectra were recorded in CDCl₃ on 400 MHz spectrometers. Tetramethylsilane (TMS) served as internal standard for ¹H NMR and ¹³C NMR. High resolution mass spectra were obtained using a commercial apparatus (ESI or EI Source).

2. Synthesis of the starting materials

2.1 General procedure for the synthesis of substrate 1.

The *N*-methoxy-1H-indole-1-carboxamides **1** were prepared according to previously described methods. ^[1]

2.2 General procedure for the synthesis of substrate 2.

The iodonium ylides 2 were prepared according to previously described methods. ^[2]

3. Typical procedure for the synthesis of 3aa

To a 15 mL reaction tube was sequentially added *N*-methoxy-1H-indole-1-carboxamide **1a** (0.2 mmol, 1.0 equiv), 5,5-dimethyl-1,3-cyclohexanedione phenyliodonium ylide **2a** (0.24 mmol, 2.0

equiv), [Cp*RhCl₂]₂ (3 mol %), CsOAc (3 equiv) and MeOH (2 mL). The reaction mixture was stirred at room temperature for about 1 h. Afterwards, the target product was obtained by filtration and washing with MeOH.

4.Gram-scale synthesis

To a 250 mL reaction flask was sequentially added *N*-methoxy-1H-indole-1-carboxamide **1a** (4.0 mmol, 1.0 equiv), 5,5-dimethyl-1,3-cyclohexanedione phenyliodonium ylide **2a** (4.8 mmol, 2.0 equiv), [Cp*RhCl₂]₂ (3 mol %), CsOAc (3.0 equiv) and MeOH (40 mL). The reaction mixture was stirred at room temperature until the **1a** was consumed completely detected by TLC. Afterwards, the target product (1.11 g, 90%) was obtained by filtration and washing with MeOH.

5.Recycling study of the catalytic system

To a 15 mL reaction flask was sequentially added *N*-methoxy-1H-indole-1-carboxamide **1a** (0.5 mmol), 5,5-dimethyl-1,3-cyclohexanedione phenyliodonium ylide **2a** (1.0 mmol), $[Cp*RhCl_2]_2$ (3 mol %), CsOAc (3.0 equiv) and MeOH (5 mL). The reaction mixture was stirred at room temperature until the **1a** was consumed completely detected by TLC. Afterwards, the product was

filtered directly. The filtrate was transferred to the flask, and to which, *N*-methoxy-1H-indole-1carboxamide **1a** (0.5 mmol), 5,5-dimethyl-1,3-cyclohexanedione phenyliodonium ylide **2a** (1.0 mmol, 2.0 equiv) was added. The reaction mixture was stirred at room temperature until the **1a** was consumed completely detected by TLC. The product was filtered directly. The filtrate was transferr -ed to the flask again for the next eight times.

6.References

[1] Lin-Bao Zhang, Ming-Hui Zhu, Shao-Fei Ni, Li-Rong Wen, and Ming Li. ACS Catal. 2019, 9, 1680-1685

[2] Sivakalai Mayakrishnan, Masilamani Tamizmani and Naryanan Uma Maheswari. *Chem. Commun.* **2020**, *56*, 15462-15465.

7. Analytical and spectral data of substrates

5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3aa):

According to the general procedure, **3aa** was obtained in 92% yield (57 mg). Yellow solid, mp = 169 °C-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.51 (m, 1H), 7.72 – 7.65 (m, 1H), 7.53 (s, 1H), 7.41 – 7.33 (m, 2H), 4.12 (s, 3H), 2.89 (s, 2H), 2.47 (s, 2H), 1.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.1,

148.8, 145.0, 132.6, 131.2, 129.1, 124.5, 123.4, 120.7, 115.7, 104.6, 102.2, 65.1, 50.9, 37.2, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for $[M+H]^+ C_{18}H_{19}N_2O_3$, m/z: 311.1396, found: 311.1396. **IR (thin film):** v_{max} 3672, 2969, 2902, 1723 cm⁻¹.

5-methoxy-3,3,11-trimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ab):

According to the general procedure, **3ab** was obtained in 90% yield (58 mg). White solid, mp = 170 °C-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.0 Hz, 1H), 7.54 (s, 1H), 7.29 – 7.25 (m, 1H), 7.17 (d, J = 4.0 Hz, 1H), 4.11 (s, 3H), 2.87 (s, 2H), 2.60 (s, 3H), 2.46 (s, 2H), 1.19 (s, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 193.3, 148.7, 145.0, 132.3, 130.9, 130.2, 128.5, 124.6, 123.5, 113.2, 104.7, 100.7, 65.1, 50.9, 37.2, 32.6, 28.4, 18.8 ppm. **HRMS (ESI)**: calcd for [M+H]⁺ C₁₈H₁₉N₂O₃, m/z: 325.1552, found: 325.1551. **IR (thin film)**: v_{max} 2962, 2899, 1713 cm⁻¹.

5-methoxy-3,3,10-trimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ac):

According to the general procedure, **3ac** was obtained in 94% yield (61 mg). White solid, mp = 179 °C-181 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 1H), 4.11 (s, 3H), 2.88 (s, 2H), 2.49 (s, 3H), 2.46 (s, 2H), 1.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 148.6, 144.9, 134.1, 131.5, 130.8, 129.1, 124.9, 120.4, 115.3, 104.7, 101.9, 65.1, 50.9, 37.2, 32.6, 28.4, 21.6 ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₈H₁₉N₂O₃, m/z: 325.1552, found: 325.1551. IR (thin film): v_{max} 2969, 2902, 1717 cm⁻¹.

5-methoxy-3,3,9-trimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ad):

According to the general procedure, **3ad** was obtained in 84% yield (54 mg). White solid, mp = 155 °C-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.47 (s, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 4.11 (s, 3H), 2.87 (s, 2H), 2.54 (s, 3H), 2.45 (s, 2H), 1.19 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ

193.2, 148.4, 145.1, 133.5, 133.0, 129.0, 128.5, 126.1, 120.2, 115.7, 104.8, 102.1, 65.1, 50.8, 37.2, 32.6, 28.4, 22.0 ppm. **HRMS (ESI)**: calcd for [M+H]⁺ C₁₈H₁₉N₂O₃, m/z: 325.1552 , found: 325.1550. **IR** (thin film): v_{max} 3623, 3662, 2968, 2901, 1722 cm⁻¹.

5-methoxy-3,3,8-trimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ae):

According to the general procedure, **3ae** was obtained in 90% yield (58 mg). White solid, mp = 166 °C-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.30 – 7.23 (m, 1H), 7.16 (d, J = 8.0 Hz, 1H), 4.08 (s, 3H), 2.88 (d, J = 3.6 Hz, 5H), 2.47 (s, 2H), 1.21 (s, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 192.9, 148.9, 145.7, 132.9, 132.5, 130.0, 127.6, 126.5, 125.0, 118.6, 104.6, 104.0, 64.8, 51.0, 37.3, 32.61, 28.4, 24.0 ppm. **HRMS (ESI)**: calcd for [M+H]⁺ C₁₈H₁₉N₂O₃, m/z: 325.1552, found: 325.1551. **IR (thin film)**: v_{max} 3673, 2983, 2901, 1717 cm⁻¹.

10-fluoro-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3af):

According to the general procedure, **3af** was obtained in 81% yield (53 mg). Yellow solid, mp = 189 °C-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, J = 8.0, 4.0 Hz, 1H), 7.49 (s, 1H), 7.31 (m, 1H), 7.08 (m, 1H), 4.13 (s, 3H), 2.91 (s, 2H), 2.49 (s, 2H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 160.2

(d, $J_{C-F} = 239.0 \text{ Hz}$), 149.1, 144.8, 132.4 (d, $J_{C-F} = 11.0 \text{ Hz}$), 130.6, 128.9, 116.8 (d, $J_{C-F} = 10.0 \text{ Hz}$), 111.4 (d, $J_{C-F} = 26.0 \text{ Hz}$), 105.8 (d, $J_{C-F} = 23.0 \text{ Hz}$), 104.4, 101.9 (d, $J_{C-F} = 4.0 \text{ Hz}$), 65.2, 50.8, 37.2, 32.6, 28.4 ppm. ¹⁹F NMR (376 MHz, Chloroform-*d*) $\delta = -117.9$ ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₈H₁₈FN₂O₃, m/z: 329.1301, found: 329.1298. IR (thin film): v_{max} 2951, 2867, 1720 cm⁻¹.

10-chloro-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ag):

According to the general procedure, **3ag** was obtained in 94% yield (64 mg). Yellow solid, mp = 189 °C-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 8.0 Hz, 1H), 7.62 (s, 1H), 7.44 (s, 1H), 7.32 – 7.25 (m, 1H), 4.12 (s, 3H), 2.89 (s, 2H), 2.48 (s, 2H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ

193.0, 149.3, 144.7, 132.4, 130.9, 130.4, 130.1, 123.5, 120.0, 116.7, 104.5, 101.3, 65.2, 50.8, 37.2, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for $[M+H]^+ C_{18}H_{18}ClN_2O_3$, m/z: 345.1006, found: 345.1005. **IR** (thin film): v_{max} 3671, 2957, 2901, 1722 cm⁻¹.

10-bromo-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ah):

According to the general procedure, **3ah** was obtained in 86% yield (67 mg). Yellow solid, mp = 189 °C-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 8.0 Hz, 1H), 7.79 (s, 1H), 7.44 – 7.42 (m, 2H), 4.12 (s, 3H), 2.89 (s, 2H), 2.48 (s, 2H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 149.4,

144.7, 132.9, 131.2, 130.2, 126.2, 123.1, 118.0, 117.0, 104.5, 101.2, 65.2, 50.8, 37.2, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for $[M+H]^+ C_{18}H_{18}BrN_2O_3$, m/z: 389.0501, found: 389.0501. **IR (thin film)**: $v_{max} = 3671$, 2957, 2902, 1720 cm⁻¹.

10-iodo-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ai):

According to the general procedure, **3ai** was obtained in 90%yield (78 mg). Yellow solid, mp = 189 °C-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.0 Hz, 1H), 8.00 – 7.97 (m, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.41 (s, 1H), 4.12 (s, 3H), 2.88 (s, 2H), 2.46 (s, 2H), 1.20 (s, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 193.0, 149.4, 144.7, 133.5, 131.8, 129.9, 129.4, 117.4, 104.4, 100.9, 89.1, 65.2, 50.8, 37.2, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for [M+H]⁺ C₁₈H₁₈IN₂O₃, m/z: 437.0362, found: 437.0360. **IR** (thin film): v_{max} 2951, 2867, 1720 cm⁻¹.

5,10-dimethoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3aj):

According to the general procedure, **3aj** was obtained in 89% yield (60 mg). Yellow solid, mp = 187 °C-188 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 7.10 (d, J = 4.0 Hz, 1H), 6.98 – 6.95(m, 1H), 4.11 (s, 3H), 3.88 (s, 3H), 2.87 (s, 2H), 2.45 (s, 2H), 1.19 (s, 6H). ¹³C

NMR (100 MHz, CDCl₃) δ 193.2 157.1, 148.6, 144.7, 132.3, 129.7, 127.3, 116.4, 112.7, 104.5 102.4, 101.9, 65.1, 55.6, 50.8, 37.2, 32.6, 28.4 ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₉H₂₁N₂O₄, m/z: 341.1501, found:341.1501. IR (thin film): v_{max} 2951, 2867, 1720 cm⁻¹.

5-methoxy-3,3-dimethyl-10-nitro-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ak):

According to the general procedure, **3ak** was obtained in 45% yield (32 mg). Yellow solid, mp = 189 °C-190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 12.0 Hz, 1H), 8.56 (d, J = 1.7 Hz, 1H), 8.22 – 8.20 (m, 1H), 7.67 (s, 1H), 4.16 (s, 3H), 2.94 (s, 2H), 2.52 (s, 2H), 1.23 (s, 6H). ¹³C NMR (100

MHz, CDCl₃) δ 192.9, 149.9, 145.0, 144.8, 135.4, 131.9, 131.1, 118.3, 116.8, 116.0, 104.5, 102.7, 65.3, 50.8, 37.3, 32.6, 28.4 ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₈H₁₈N₃O₅, m/z: 356.1246, found: 356.1245. IR (thin film): v_{max} 3673, 3651, 2966, 2902, 1731 cm⁻¹.

9-fluoro-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3al):

According to the general procedure, **3al** was obtained in 82% yield (53 mg). Yellow solid, mp = 172 °C-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.0 Hz, 1H), 7.59 (m, 1H), 7.46 (s, 1H), 7.14 (t, J = 8.0 Hz, 1H), 4.12 (s, 3H), 2.89 (s, 2H), 2.47 (s, 2H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0,

159.8 (d, $J_{C-F} = 239.0$ Hz), 148.6, 144.9, 132.4 (d, $J_{C-F} = 12.0$ Hz), 129.5, 127.5, 121.3 (d, $J_{C-F} = 11.0$ Hz), 113.0 (d, $J_{C-F} = 24.0$ Hz), 104.8, 102.8 (d, $J_{C-F} = 28.0$ Hz), 101.8, 65.2, 50.8, 37.2, 32.6, 28.4 ppm. ¹⁹F NMR (376 MHz, Chloroform-*d*) $\delta = -117.5$ ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₈H₁₈FN₂O₃, m/z: 329.1301, found: 329.1300. IR (thin film): v_{max} 2969, 2901, 1711 cm⁻¹.

9-chloro-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3am):

According to the general procedure, **3am** was obtained in 92% yield (63 mg). Yellow solid, mp = 188 °C-189 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.51 (m, 2H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.41 (s, 1H), 7.32 (dd, *J* = 4.0, 8.0 Hz,

1H), 4.12 (s, 3H), 2.87 (s, 2H), 2.45 (s, 2H), 1.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0 149.0, 144.7, 132.6, 129.7, 129.7, 128.9, 125.0, 121.3, 115.7, 104.6, 101.7, 65.2, 50.8, 37.2, 32.6, 28.4 ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₈H₁₈ClN₂O₃, m/z: 345.1006, found: 345.1003. IR (thin film): v_{max} 2951, 2867, 1720 cm⁻¹.

9-bromo-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3an):

According to the general procedure, **3an** was obtained in 82% yield (64 mg). Yellow solid, mp = 188 °C-189 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.53 – 7.45 (m, 3H), 4.12 (s, 3H), 2.89 (s, 2H), 2.47 (s, 2H), 1.21 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 193.0, 149.1, 144.8, 133.0, 130.0, 129.6, 127.7, 121.7, 118.6, 116.5,

104.5, 101.8, 65.2, 50.8, 37.2, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for [M+Na]⁺ C₁₈H₁₇BrNaN₂O₃, m/z: 411.0320, found:411.0316. **IR (thin film)**: *v*_{max} 2951, 2867, 1720 cm⁻¹.

9-iodo-5-methoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ao):

According to the general procedure, **3ao** was obtained in 84% yield (73 mg). Yellow solid, mp = 188 °C-189 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 7.66 – 7.64 (m, 1H), 7.45 – 7.41 (m, 2H), 4.12 (s, 3H), 2.89 (s, 2H),

2.47 (s, 2H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 149.2, 144.7, 133.3, 133.2, 130.5, 129.4, 124.4, 122.1, 104.4, 101.8, 86.9, 65.2, 50.8, 37.2, 32.6, 28.4 ppm. HRMS (ESI): calcd for [M+H]⁺C₁₈H₁₈IN₂O₃, m/z: 437.0362, found: 437.0363. IR (thin film): v_{max} 2951, 2867, 1720 cm⁻¹.

5-methoxy-3,3-dimethyl-1,6-dioxo-1,2,3,4,5,6-hexahydroindolo[1,2-c]quinazoline-9carbonitrile (3ap):

According to the general procedure, **3ap** was obtained in 67% yield (44 mg). Yellow solid, mp = 176 °C-177 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.61 – 7.54 (m, 2H), 4.16 (s, 3H), 2.96 (s, 2H), 2.52 (s, 2H), 1.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 150.4, 144.5,

134.4, 132.4, 131.4, 127.4, 121.3, 120.2, 120.0, 105.6, 104.4, 102.0, 65.3, 50.8, 37.3, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for $[M+H]^+ C_{19}H_{18}N_3O_3$, m/z: 336.1348, found: 336.1345. **IR (thin film)**: v_{max} 2951, 2867, 1720 cm⁻¹.

5-methoxy-3,3,12-trimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3aq):

According to the general procedure, **3aq** was obtained in 83% yield (53 mg). White solid, mp = 151 °C-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.51 (m, 1H), 7.67 – 7.61 (m, 1H), 7.42 – 7.34 (m, 2H), 4.06 (s, 3H), 2.86 (s, 2H), 2.52 (s, 3H), 2.47 (s, 2H), 1.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ

192.8, 148.1, 145.0, 132.8 132.7, 124.9, 124.1, 123.8, 118.6, 115.7, 111.4, 106.9, 65.0, 51.6, 37.6, 32.3, 28.4, 11.9 ppm. **HRMS (ESI)**: calcd for $[M+H]^+ C_{19}H_{21}N_2O_3$, m/z: 325.1552, found: 325.1550. **IR** (thin film): v_{max} 2949, 2913, 1716 cm⁻¹.

5-methoxy-3,3-dimethyl-12-phenyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ar):

According to the general procedure, **3ar** was obtained in 75% yield (58 mg). Yellow solid, mp = 166 °C-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 12.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.40 (m, 5H), 7.30 (d, J = 8.0 Hz, 2H), 4.13 (s, 3H), 2.91 (s, 2H), 2.33 (s, 2H), 1.17 (s, 6H). ¹³C NMR (100

MHz, **CDCl**₃) δ 190.8, 148.8, 145.0, 135.9, 132.7, 131.8, 129.5, 127.7, 126.7, 124.6, 124.1, 119.7, 116.8, 115.8, 106.1, 65.1, 51.0, 37.6, 32.5, 28.4 ppm. **HRMS (ESI)**: calcd for [M+H]⁺ C₂₄H₂₃N₂O₃, m/z: 387.1709, found: 387.1704. **IR (thin film):** v_{max} 2953, 2867, 1722 cm⁻¹.

methyl 5-methoxy-3,3-dimethyl-1,6-dioxo-1,2,3,4,5,6-hexahydroindolo[1,2-c]quinazoline-12carboxylate (3as):

According to the general procedure, **3as** was obtained in 65% yield (48 mg). Yellow solid, mp = 188 °C-189 °C. M.p. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 8.0 Hz, 1H), 7.88 – 7.81 (m, 1H), 7.47 – 7.37 (m, 2H), 4.10 (s, 3H), 3.94 (s, 3H), 2.89 (s, 2H), 2.39 (s, 2H), 1.17 (s, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 191.2, 165.8, 150.4, 144.3, 132.0, 128.9, 128.1, 125.3 124.5, 119.8, 115.7, 107.9, 104.9, 65.2, 51.8, 50.4, 37.3, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for [M+H]⁺ C₂₀H₂₁N₂O₅, m/z: 369.1450, found: 369.1449. **IR (thin film)**: v_{max} 2949, 2867, 1735 cm⁻¹.

5,11-dimethoxy-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3at):

According to the general procedure, **3at** was obtained in 82% yield (55 mg). Yellow solid, mp = 172 °C-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 1H), 7.62 (s, 1H), 7.33 – 7.27 (m, 1H), 6.81 (d, J = 8.0 Hz, 1H), 4.13 (s, 3H), 4.00 (s, 3H), 2.85 (s, 2H), 2.42 (s, 2H), 1.19 (s, 6H). ¹³C NMR (100

MHz, **CDCl**₃) δ 192.9, 152.8, 148.3, 145.1, 133.7, 127.8, 124.3, 121.9, 108.7, 104.8, 104.4, 99.3, 65.1, 55.6, 50.7, 37.1, 32.5, 28.4 ppm. **HRMS (ESI)**: calcd for [M+H]⁺C₁₉H₂₁N₂O₄, m/z: 341.1501, found: 341.1505. **IR (thin film)**: v_{max} 2960, 2867, 1735 cm⁻¹.

5-methoxy-3,3-dimethyl-1,6-dioxo-1,2,3,4,5,6-hexahydroindolo[1,2-c]quinazoline-11carbonitrile (3au):

According to the general procedure, **3au** was obtained in 82% yield (55 mg). Yellow solid, mp = 175 °C-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 8.3 Hz, 1H), 7.81 – 7.59 (m, 2H), 7.38 (t, J = 8.0 Hz, 1H), 4.16 (s, 3H), 2.95 (s, 2H), 2.51 (s, 2H), 1.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 150.2,

144.6, 132.9, 132.3, 131.7, 129.2, 122.9, 120.1, 117.9, 104.3, 103.0, 100.2, 65.3, 50.7, 37.3, 32.6, 28.4 ppm. **HRMS (ESI)**: calcd for $[M+H]^+ C_{19}H_{18}N_3O_3$, m/z: 336.1348, found: 336.1343. **IR (thin film):** v_{max} 2969, 2867, 1735 cm⁻¹.

5-(benzyloxy)-3,3-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3av):

According to the general procedure, **3av** was obtained in 83% yield (64 mg). Yellow solid, mp = $178 \circ C - 179 \circ C \cdot H NMR$ (400 MHz, CDCl₃) $\delta 8.62$

(s, 1H), 7.70 (s, 1H), 7.53 (s, 3H), 7.44 – 7.40 (m, 5H), 5.29 (s, 2H), 2.65 (s, 2H), 2.38 (s, 2H), 1.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 149.5, 145.4, 133.3, 132.6, 131.3, 130.2, 129.8, 129.2, 129.0, 124.5, 123.4, 120.7, 115.7, 104.4, 102.1, 79.4, 50.8, 37.7, 32.4, 28.2 ppm. HRMS (ESI): calcd for [M+H]⁺ C₂₄H₂₃N₂O₃, m/z: 387.1709, found:387.1704. IR (thin film): v_{max} 2963, 2967, 1722 cm⁻¹.

5-methoxy-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3ba):

According to the general procedure, **3ba** was obtained in 89% yield (50 mg). Yellow solid, mp = 168 °C-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59 – 8.49 (m, 1H), 7.72 – 7.64 (m, 1H), 7.57 – 7.48 (m, 1H), 7.36 (m, 2H), 4.12 (s, 3H), 3.09 – 2.96 (m, 2H), 2.64 – 2.54 (m, 2H), 2.28 – 2.15 (m, 2H). ¹³C

NMR (100 MHz, CDCl₃) δ 193.1, 150.5, 132.6, 131.19, 129.2, 124.4, 123.4, 120.7, 115.7, 105.6, 102.4, 65.1, 37.1, 23.7, 20.9 ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₆H₁₅N₂O₃, m/z: 283.1083, found: 283.1080. IR (thin film): ν_{max} 2938, 2867, 1735 cm⁻¹.

5-methoxy-3-methyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3bb):

According to the general procedure, **3bb** was obtained in 85% yield (50 mg). Yellow solid, mp = 184 °C-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.54 (m, 1H), 7.72 – 7.70 (m, 1H), 7.55 (s, 1H), 7.42 – 7.36 (m, 2H), 4.15 (s, 3H), 3.20 (dd, J = 4.0 Hz, 20.0Hz, 1H), 2.72 – 2.54 (m, 2H), 2.47 – 2.38 (m,

1H), 2.33 – 2.26 (m, 1H), 1.24 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 149.9, 144.9, 132.6, 131.2, 129.2, 124.4, 123.4, 120.7, 115.7, 105.2, 102.2, 65.1, 45.3, 31.5, 28.6, 21.1 ppm. HRMS (ESI): calcd for [M+H]⁺ C₁₇H₁₇N₂O₃, m/z: 297.1239, found: 297.1238. IR (thin film): v_{max} 2949, 2867, 1735 cm⁻¹.

5-methoxy-3-phenyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3bc):

According to the general procedure, **3bc** was obtained in 79% yield (56 mg). Yellow solid, mp = 195 °C-196 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.51 (m, 1H), 7.72 – 7.67 (m, 1H), 7.56 (s, 1H), 7.42 – 7.30 (m, 7H), 4.10 (s, 3H), 3.56 – 3.48 (m, 1H), 3.40 (dd, J = 4.0, 20.0 Hz, 1H), 3.06 – 2.98 (m, 1H),

2.90 – 2.76 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 149.5, 144.8, 141.8, 132.6, 131.2, 129.1, 129.0, 127.6, 126.8, 124.5, 123.5, 120.8, 115.7, 102.5, 65.2, 43.9, 39.1, 31.3 ppm. HRMS (ESI): calcd for [M+H]⁺ C₂₂H₁₉N₂O₃, m/z: 359.1396, found: 359.1395. IR (thin film): v_{max} 2974, 2901, 1723 cm⁻¹.

5-methoxy-2,2-dimethyl-3,4-dihydroindolo[1,2-c]quinazoline-1,6(2H,5H)-dione (3bd):

According to the general procedure, **3bd** was obtained in 80% yield (50 mg). Yellow solid, mp = 141 °C-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60

-8.52 (m, 1H), 7.71 -7.64 (m, 1H), 7.55 (s, 1H), 7.40 -7.31 (m, 2H), 4.13 (s, 3H), 3.05 -3.02 (m, 2H), 2.06 -2.03 (m, 2H), 1.25 (s, 6H). ¹³C **NMR (100 MHz, CDCl₃)** δ 198.3, 148.9, 145.0, 132.6, 131.2, 129.7, 124.4, 123.3, 120.7, 115.7, 103.8, 102.5, 65.1, 40.4, 34.2 24.4, 20.6 ppm. **HRMS (ESI)**: calcd for [M+H]⁺ C₁₈H₁₉N₂O₃, m/z: 311.1396, found: 311.1395. **IR (thin film):** v_{max} 3628, 2970, 2938, 1719 cm⁻¹.

4-methoxy-2,3-dihydro-1H-cyclopenta[4,5]pyrimido[1,6-a]indole-1,5(4H)-dione (3be):

According to the general procedure, **3be** was obtained in 82% yield (44 mg). White solid, mp = 197 °C-198 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.57 – 8.51 (m, 1H), 7.70 – 7.65 (m, 1H), 7.41 – 7.36 (m, 2H), 7.08 (s, 1H), 4.20 (s, 3H), 3.15 – 3.09 (m, 2H), 2.76 – 2.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 160.9, 145.2, 133.1, 130.9, 127.7, 124.6, 123.8, 120.8, 115.5, 109.5,

100.0, 65.6, 34.7, 23.2 ppm. **HRMS (ESI)**: calcd for $[M+H]^+ C_{15}H_{13}N_2O_3$, m/z: 269.0926, found: 269.0924. **IR** v = 2964, 2867, 1735 cm⁻¹.

8.The ¹H, ¹³C, ¹⁹F NMR spectra of products:

¹H NMR (400 MHz, CDCl₃) spectrum of **3aa**

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **3aa**

¹H NMR (400 MHz, CDCl₃) spectrum of **3ab**

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **3ab**

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of **3ac**

¹H NMR (400 MHz, CDCl₃) spectrum of **3ad**

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 3ad

¹H NMR (400 MHz, CDCl₃) spectrum of **3ae**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of 3ae

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 3af

 ^{19}F NMR (376 MHz, CDCl₃) spectrum of 3af

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 3ag

¹H NMR (400 MHz, CDCl₃) spectrum of **3ah**

170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm)

50 40 30 20

-10

10 0

¹H NMR (400 MHz, CDCl₃) spectrum of **3ai**

210 200

190 180

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of **3ai**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of 3aj

¹H NMR (400 MHz, CDCl₃) spectrum of **3ak**

¹H NMR (400 MHz, CDCl₃) spectrum of **3al**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of **3al**

¹H NMR (400 MHz, CDCl₃) spectrum of **3am**

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **3am**

¹H NMR (400 MHz, CDCl₃) spectrum of **3an**

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **3an**

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of **3ao**

¹H NMR (400 MHz, CDCl₃) spectrum of **3ap**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl_3) spectrum of 3ap

¹H NMR (400 MHz, CDCl₃) spectrum of **3aq**

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 3aq

¹H NMR (400 MHz, CDCl₃) spectrum of **3ar**

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 3ar

¹H NMR (400 MHz, CDCl₃) spectrum of **3as**

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **3as**

¹H NMR (400 MHz, CDCl₃) spectrum of **3at**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of **3at**

¹H NMR (400 MHz, CDCl₃) spectrum of **3au**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of 3au

¹H NMR (400 MHz, CDCl₃) spectrum of **3av**

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **3av**

¹H NMR (400 MHz, CDCl₃) spectrum of **3ba**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of 3ba

¹H NMR (400 MHz, CDCl₃) spectrum of **3bb**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl_3) spectrum of 3bb

¹H NMR (400 MHz, CDCl₃) spectrum of **3bc**

¹H NMR (400 MHz, CDCl₃) spectrum of **3bd**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl_3) spectrum of 3bd

¹H NMR (400 MHz, CDCl₃) spectrum of **3be**

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of 3be

9. Crystal data and structure refinement for 3aa

Figure S1 Single crystal structure of 3aa.

The crystal of **3aa** were prepared by recrystallization from ethyl acetate and petroleum ether (5:1).

The thermal ellipsoid was drawn at the 40% probability level. Crystal Number: CCDC 2070972 Empirical formula: $C_{18}H_{18}N_2O_3$ Formula weight: 310.34 Unit cell parameters: a = 8.4879(10) Å, b = 9.8238(14) Å, c = 10.6092(11) Å, $\alpha = 110.924$, $\beta = 95.681$, $\gamma = 108.558$ Temperature: 293 K Wavelength: 1.54184 Å Volume: 760.4(2) F (000): 328.0 h, k, l max: 10,12,13