Electronic Supplementary Information

Boosting NH₃ production from nitrate electroreduction via electronic structure engineering of Fe₃C nanoflakes

Yuanyuan Wang,^a Linlin Zhang,^{a*} Yongjian Niu,^a Dong Fang,^a Jiao Wang,^a Qingxiao Su^a and Cheng Wang^a

 ^a Tianjin Key Laboratory of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Material Science and Engineering Tianjin University of Technology Tianjin 300384, People's Republic of China

* Corresponing author: Linlin Zhang; Email: zhanglinlin_cn@126.com

Table of contents

- Equation 1: d-band center
- Equation 2: Work function
- Equation 3: Applied potential relative to the reversible hydrogen electrode
- Equation 4: Yield of NH₃
- Equation 5: Faradaic efficiency of NH₃
- Equation 6: Partial current density of NH₃
- Equation 7: Selectivity of NH₃
- Equation 8: Energy efficiency for nitrate electroreduction to ammonia
- Equation 9: Yield of NO₂-
- Equation 10: Faradaic efficiency of NO₂-
- Equation 11: Yield of N₂H₄
- Equation 12: Faradaic efficiency of N₂H₄
- Equation 13: Tafel plots
- Equation 14: Pseudo-first order kinetic equation
- Equation 15: Linear expression of the Langmuir-Hinshelwood model
- Equation 16: Adsorption free energy of NO₃-
- Equation 17: Apparent activation energy
- Equation 18: Charge transfer number
- Figure S1. Photographs for the Fe-NTA mixture, Fe-NTA precursor, Fe-NTA complex and Fe₃C/NC.
- Figure S2. The possible crystal structure of the Ni-NTA complex.
- Figure S3. XRD patterns of NTA, FeCl₃·6H₂O and the Fe-NTA complex.
- Figure S4. FTIR spectra of the Fe-NTA complex and pure NTA.
- Figure S5. XRD patterns for samples prapared under different annealing and solvothermal conditions.
- Figure S6. SEM images for samples prepared at different annealing temperatures.
- Figure S7. SEM images for samples prepared at different annealing durations or ramp rates.
- Figure S8. SEM images for samples prepared using different dosages of reactants.
- Figure S9. SEM images for samples prepared at different solvothermal temperatures and durations.
- Figure S10. TG curves of the Fe-NTA complex under Ar with a ramp rate of 10 °C min⁻¹.
- Figure S11. XRD patterns of the annealed sample before and after etching.
- Figure S12. Photograph of the reactor for NO₃RR.
- Figure S13. Chronoamperometric results for Fe₃C/NC at different potentials.

Figure S14. UV-vis absorption, IC and ¹H NMR spectra of NH4⁺ standard solutions and the

corresponding calibration curves.

- Figure S15. Quantification of the produced ammonia using K¹⁵NO₃ as the feeding nitrate
- Figure S16. Yield of NH₃ for NC after electrolysis for 1 h at different potentials.
- Figure S17. Yield and FE of NH₃ and Raman spectra for Fe₃C/NC-600, Fe₃C/NC-650, Fe₃C/NC, Fe₃C/NC-750 and Fe₃C/NC-800.
- Figure S18. XRD patterns, SEM and EDS elemental mapping images for NC-600, NC and NC-800.
- Figure S19. N 1s and O 1s XPS for NC-600, NC and NC-800.
- Figure S20. NO₃RR performances for NC-600, NC and NC-800.
- Figure S21. NO₃RR performances of samples prepared under different annealing and solvothermal conditions.
- Figure S22. Chronoamperometric responses during the recycling test for Fe₃C/NC at -0.5 V.
- Figure S23. TEM images and XRD patterns for Fe₃C/NC after recycling for 13 runs.
- Figure S24. IC spectra and the corresponding calibration curves of NO₂⁻ and NO₃⁻ standard solutions.
- Figure S25. Time-dependent concentrations of NO_3^- , NO_2^- and NH_4^+ and the corresponding selectivity, yield and FE of NH_4^+ during the continuous long-term electrolysis for 13 h at -0.5 V. Potential-dependent yield and FE of NO_2^- after chronoamperometric electrolysis for 1 h.
- Figure S26. Determination of the possible by-product of N₂H₄ using the Watt-Chrisp method.
- Figure S27. GC spectra of the products after electrolysis at different potentials in 1 M KOH aqueous solutions with Fe₃C/NC as the catalyst.
- Figure S28. Determination of the possible escaped NH₃ in the gas phase.
- Figure S29. XRD patterns for Air-200, Air-100, H₂-100, H₂-300 and the pristine sample of Fe₃C/NC.
- Figure S30. Raman spectra for H₂-300, Air-200 and the pristine sample of Fe₃C/NC.
- Figure S31. SEM images for Air-200, Air-100, H₂-100 and H₂-300.
- Figure S32. TEM images for Air-200, Air-100, H₂-100 and H₂-300.
- Figure S33. LSV curves for H₂-300, H₂-100, Air-100 and Air-200 in electrolytes with or without KNO₃.
- Figure S34. Chronoamperometric responses at different potentials for Air-200, Air-100, H₂-100 and H₂-300 in aqueous solutions containing 1 M KOH and 75 mM KNO₃.
- Figure S35. UV-vis absorbance spectra of the indophenol blue-stained catholytes after electrolysis at given potentials with Air-200, Air-100, H₂-100 and H₂-300 as the catalysts, respectively.
- Figure S36. Yield and FE of NH₃ at different potentials for H₂-300, H₂-100, Air-100, Air-200 and the pristine sample of Fe₃C/NC.
- Figure S37. Potential-dependent energy efficiencies for nitrate reduction to ammonia over Air-200, H_2 -300 and the pristine sample of Fe₃C/NC.
- Figure S38. N₂ adsorption-desorption isotherms and the corresponding pore size distributions for Air-

 $100 \text{ and } H_2\text{-}100.$

- Figure S39. Scan rate-dependent CV curves and the derived double layer capacitances for H₂-300, H₂-100, Air-100, Air-200 and the pristine sample of Fe₃C/NC.
- **Figure S40-42**. Linear fitting plots of lnC₀/C_t vs. reaction time t based on the pseudo first order kinetic equation for H2-300, Fe₃C/NC and Air-200 with different initial nitrate concentrations in the electrolytes, respectively.
- Figure S43. Fe 2p, C 1s, N 1s and O 1s XPS for H₂-300, H₂-100, Air-100, Air-200 and the pristine sample of Fe₃C/NC.
- Figure S44. Secondary electron cutoff regions of UPS and the derived work functions for H₂-300, H₂-100, Air-100, Air-200 and the pristine sample of Fe₃C/NC.
- Figure S45. Contact angles for Air-200, Fe₃C/NC and H₂-300 before and after chronamperometric electrolysis at -0.5 V for 1 h.
- Figure S46. Nyquist plots for H₂-300, H₂-100, Air-100, Air-200 and the pristine sample of Fe₃C/NC.
- Figure S47. Time-dependent concentrations of nitrate ions for the investigated samples after electrolysis at -0.5 V for 1 h.
- **Figure S48**. Temperature-dependent partial current densities of ammonium for H₂-300, Air-200 and the pristine sample of Fe₃C/NC after electrolysis at -0.5 V for 1 h.
- Table S1. Summary of the synthetic conditions for the control samples in this work.
- Table S2. Origin of weight losses in TG curves of the Fe-NTA complex under Ar.
- Table S3. Yield, faradaic efficiency and selectivity of NH3 at different potentials for Fe3C/NC determined by three methods.
- Table S4. Contents of N, O and C in NC-600, NC and NC-800 from XPS analysis
- Table S5. Contents of Fe, C, N and H elements in the as-synthesized samples.
- **Table S6**. Ratios of Fe^{3+}/Fe^{2+} obtained by XPS analysis.
- Table S7. Comparison of ammonia yield and selectivity from nitrate electroreduction over Fe₃C/NC with literature results.

The equations involved in this work are listed as follows:

 $\varepsilon_d = \int_{-\infty}^{\infty} n_d(\varepsilon) \varepsilon d\varepsilon / \int_{-\infty}^{\infty} n_d(\varepsilon) d\varepsilon(1)$, where ε_d is the d-band center, ε is the energy relative to the fermi level and $n_d(\varepsilon)$ is the photoelectron intensity after the subtraction of the shirley-type background. The upper level of the integration was fixed at 8.0 eV for accurate comparison.

 $\Phi = 21.2 - \text{SEE}$ (2), where Φ is the work function and SEE is the binding energy corresponding to the secondary electron cutoff edge.

 $E(vs. RHE) = E(vs. Hg/HgO) + 0.059 \times pH + 0.098$ (3), where E(vs. RHE) and E(vs. Hg/HgO) are the applied potentials relative to the reversible hydrogen electrode and to the Hg/HgO electrode, respectively.

 $Y_{NH3} = C(NH_3) \times V/(t \times m_{cat.})$ (4), $FE_{NH3} = 8F \times C(NH_3) \times V/(17Q) \times 100\%$ (5), and $J_{NH3} = (I \times FE_{NH3})/A$ (6), where Y_{NH3} , FE_{NH3} and J_{NH3} are the yield, faradaic efficiency and partial current density of NH₃, respectively; $C(NH_3)$ is the molar concentration of measured NH₃, V is the volume of the electrolyte, t is the electrolysis time, $m_{cat.}$ is the mass of the loaded catalyst, F is the Faraday constant (96485 C mol⁻¹) and Q is the total charge passing through the electrode ($Q = \int_0^t j dt$, j is the geometric current density), I is the current during the constant potential electrolysis, A is the surface area of the cathode.

Selec. = $C(NH_3)/\Delta C(NO_3^-) \times 100\%$ (7), where Selec. is the selectivity of NH_3 , C_0 is the initial concentration of NO_3^- in the electrolyte and $\Delta C(NO_3^-)$ is the concentration difference of NO_3^- before and after electrolysis

 $EE_{NH3} = (1.23 - E_{NH3}^0)FE_{NH3}/(1.23 - E)$ (8), where EE_{NH3} is the energy efficiency for nitrate electroreduction to ammonia, E_{NH3}^0 is the equilibrium potential of nitrate electroreduction to ammonia (0.69 V), FE_{NH3} is the faradaic efficiency for ammonia, 1.23 V is the equilibrium potential of water oxidation and E is the applied potential *vs*. RHE.

 $Y_{NO2} = C(NO_2^-) \times V/(t \times m_{cat.})$ (9), $FE_{NO2} = 2F \times C(NO_2^-) \times V/(46Q) \times 100\%$ (10), where Y_{NO2} and FE_{NO2} are the yield and faradaic efficiency of NO_2^- , respectively; $C(NO_2^-)$ is the molar concentration of measured NO_2^- , V is the volume of the electrolyte, t is the electrolysis time, $m_{cat.}$ is the mass of the loaded catalyst, F is the Faraday constant (96485 C mol⁻¹) and Q is the total charge passing through the electrode (Q = $\int_0^t j dt$, j is the geometric current density).

 $Y_{N2H4} = C(N_2H_4) \times V/(t \times mcat.)$ (11), $FE_{N2H4} = 7F \times C(N_2H_4) \times V/(32Q) \times 100\%$ (12), where Y_{N2H4} and

 FE_{N2H4} are the yield and faradaic efficiency of N₂H₄, respectively; C(NO₂⁻) is the molar concentration of measured NO₂⁻, V is the volume of the electrolyte, t is the electrolysis time, m_{cat} is the mass of the loaded catalyst, F is the Faraday constant (96485 C mol⁻¹) and Q is the total charge passing through the electrode $(Q = \int_0^t j dt, j$ is the geometric current density).

 $E = a + blog(J_{NH3})$ (13), where E is the applied potential vs. RHE, J_{NH3} is the partial current density of NH₃, a is a constant and b is the Tafel slope

 $\ln(C_0/C_t) = k_{ap}t$ (14), where k_{ap} is the apparent rate constant, C_0 and C_t are the concentrations of NO₃⁻ in the electrolytes at the beginning and at reaction time t, respectively

 $1/r_0 = 1/(kK_{ads}C_0) + 1/k$ (15), where K_{ads} is the equilibrium adsorption constants for NO₃⁻, r_0 is the initial reduction rate of NO₃⁻ ($r_0 = k_{ap}C_0$), k is the rate constant for the adsorbed NO₃⁻, C_0 is the initial concentration of NO₃

 $\Delta G_{ads} = -RTlnK_{ads}$ (16), where ΔG_{ads} is the adsorption free energy of NO₃⁻, R is the gas constant, T is the reaction temperature and K_{ads} is the equilibrium adsorption constants for nitrate ions.

 $i_k = Ae^{(-Ea/RT)}$ (17), where E_a is the apparent activation energy, i_k is the kinetic current at -0.5 V, A is the pre-exponential factor, T is the reaction temperature and R is the universal gas constant

 $j_p = (-2.99 \times 10^5)n\alpha^{1/2}CD^{1/2}v^{1/2}$ (18), where n is the charge transfer number, j_p is the peak current density (A cm⁻²), α is transfer coefficient (0.5), C is the nitrate concentration in electrolytes (7.5×10⁻⁵ mol cm⁻³), D is the diffusion coefficient of nitrate ions (2.0×10⁻⁵ cm² s⁻¹) and v is the scan rate (V s⁻¹).

Figure S1. Photographs for the Fe-NTA mixture (a), Fe-NTA precursor (b), Fe-NTA complex (c) and Fe₃C/NC (d).

Figure S2. The possible crystal structure of the Fe-NTA complex.

Figure S3. XRD patterns of NTA, FeCl₃·6H₂O and the Fe-NTA complex.

Figure S4. FTIR spectra of the Fe-NTA complex (red) and pure NTA (black). The peaks located at about 850 cm⁻¹ and 1770 cm⁻¹ were assigned to the vibrations of Fe-O and Fe-N bonds, respectively.

E. t.	Sample	Solvothermal			Calcination			Etching	Post treatment	
Entry		n(Fe) (mmol)	n(NTA) (mmol)	Temp. (°C)	Time (h)	Temp. (°C)	Time (h)	Rate (°C min ⁻¹)	C(HCl) (M)	Temp. (°C)
1	Fe ₃ C/NC	4	2	180	6	700	2	2	2	-
2	Fe ₃ C/NC-0.5Fe	2	2	180	6	700	2	2	2	-
3	Fe ₃ C/NC-2Fe	8	2	180	6	700	2	2	2	-
4	Fe ₃ C/NC-0.5C	2	1	180	6	700	2	2	2	-
5	Fe ₃ C/NC-2C	8	4	180	6	700	2	2	2	-
6	Fe ₃ C/NC-2NTA	4	4	180	6	700	2	2	2	-
7	Fe ₃ C/NC-0.5NTA	4	4	180	6	700	2	2	2	-
8	Fe ₃ C/NC-140	4	2	140	6	700	2	2	2	-
9	Fe ₃ C/NC-220	4	2	220	6	700	2	2	2	-
10	Fe ₃ C/NC-3h	4	2	180	3	700	2	2	2	-
11	Fe ₃ C/NC-9h	4	2	180	9	700	2	2	2	-
12	Fe ₃ C/NC-600	4	2	180	6	600	2	2	2	-
13	Fe ₃ C/NC-650	4	2	180	6	650	2	2	2	-
14	Fe ₃ C/NC-750	4	2	180	6	750	2	2	2	-
15	Fe ₃ C/NC-800	4	2	180	6	800	2	2	2	-
16	Fe ₃ C/NC-1R	4	2	180	6	700	2	1	2	-
17	Fe ₃ C/NC-5R	4	2	180	6	700	2	5	2	-
18	Fe ₃ C/NC-0.5H	4	2	180	6	700	0.5	2	2	-
19	Fe ₃ C/NC-4H	4	2	180	6	700	4	2	2	-
20	NC ^a	4	2	180	6	700	2	2	12	-
21	NC-600 ^a	4	2	180	6	600	2	2	12	-
22	NC-800 ^a	4	2	180	6	800	2	2	12	-
23	H ₂ -100 ^b	4	2	180	6	700	2	2	2	100
24	H ₂ -300 ^b	4	2	180	6	700	2	2	2	300
25	Air-100 ^c	4	2	180	6	700	2	2	2	100
26	Air-200°	4	2	180	6	700	2	2	2	200

Table S1. Summary of the synthetic conditions for the control samples in this work

^a NC, NC-600 and NC-800 were synthesized using a 12 M concentrated HCl solution in the etching process under otherwise identical conditions with Fe₃C/NC, Fe₃C/NC-600 and Fe₃C/NC-800, respectively.

 $^b~~H_2\mbox{-}100$ and $H_2\mbox{-}300$ were prepared by heating Fe_3C/NC under $H_2\mbox{/}Ar$ at 100 and 300 $^\circ\mbox{C}$ for 2 h, respectively.

 $^{\rm c}$ $\,$ Air-100 and Air-200 were prepared by heating Fe_3C/NC in air at 100 and 200 $^{\circ}\!C$ for 2 h, respectively.

Figure S5. XRD patterns of samples prepared under different annealing (a) and solvothermal (b) conditions. All samples possessed similar compositions with Fe₃C/NC except for Fe₃C/NC-0.5NTA, Fe₃C/NC-2NTA, Fe₃C/NC-3h and Fe₃C/NC-9h, which contained additional species of metallic Fe.

Figure S6. SEM images for samples prepared at different annealing temperatures. (a) Fe₃C/NC-600,

(b) Fe₃C/NC-650, (c) Fe₃C/NC, (d) Fe₃C/NC-800.

Figure S7. SEM images for samples prepared at different annealing durations (a-b) or ramp rates (c-d). (a) Fe₃C/NC-0.5H, (b) Fe₃C/NC-4H, (c) Fe₃C/NC-1R, (d) Fe₃C/NC-5R.

Figure S8. SEM images for samples prepared using different dosages of reactants. (a) Fe₃C/NC-0.5Fe, (b) Fe₃C/NC-2Fe, (c) Fe₃C/NC-0.5C, (d) Fe₃C/NC-2C, (e) Fe₃C/NC-0.5NTA, (f) Fe₃C/NC-2NTA.

Figure S9. SEM images for catalysts prepared at different solvothermal temperatures (a-b) and durations (c-d). (a) Fe₃C/NC-140, (b) Fe₃C/NC-220, (c) Fe₃C/NC-3h, (d) Fe₃C/NC-9h.

Figure S10. TG curves of the Fe-NTA complex under Ar with a ramp rate of 10 °C min⁻¹.

Table S2. Origin of weight losses in TG curves of the Fe-NTA complex under Ar.

Temperature (°C)	Origin of weight losses
<175	Evaporation of surface adsorbed moistures
175-350	Partial decomposition of NTA
350-700	Graphitization of the carbon species and formation of Fe and Fe ₃ C

Figure S11. XRD patterns of the annealed sample before (black) and after (red) etching in 2 M HCl for 12 h. The metallic species of Fe were removed by etching.

Figure S12. Photograph of the reactor for NO_3RR with a gas absorption device connected with the outlet to capture and collect the lost NH_3 in the gas phase. 0.05 M H_2SO_4 aqueous solution was used to trap the escaped NH_3 .

Figure S13. Chronoamperometric results for Fe₃C/NC at different potentials.

Figure S14. UV-vis absorption spectra of NH_4^+ standard solutions stained with indophenol blue (a), the corresponding calibration curves (b) and the photograph of the colorimetric assays (inset in b). IC spectra of NH_4^+ standard solutions (c) and the corresponding calibration curves (d). ¹H NMR spectra (400 MHz) of NH_4^+ standard solutions with pH values adjusted to 3 (e) and the corresponding calibration curves (f).

Potential	Yield (mmol· mg ⁻¹ · h ⁻¹)		ng-1. h-1)	FE (%)			Selectivity (%)		
(V vs. RHE)	UV	IC	NMR	UV	IC	NMR	UV	IC	NMR
-0.3	0.37	0.39	0.35	91.2	96.1	85.8	78.1	84.5	73.5
-0.4	0.74	0.75	0.72	95.1	96.8	92.7	78.5	79.8	76.6
-0.5	1.19	1.16	1.16	96.7	94.0	94.1	79.0	76.8	76.9
-0.6	1.44	1.34	1.36	91.7	85.4	86.9	86.5	80.6	82.0
-0.7	1.77	1.80	1.63	90.8	92.5	83.9	86.1	87.7	79.5

Table S3. Yield, faradaic efficiency (FE) and selectivity of NH₃ at different potentials for Fe₃C/NC determined by three methods including the indophenol blue method (UV), the ion chromatography (IC) and ¹H-nuclear magnetic resonance (NMR) spectra.

Figure S15. Quantification of the produced ammonia using $K^{15}NO_3$ as the feeding nitrate. ¹H-NMR spectra (a) and the corresponding calibration curve (b) of the standard solutions of ¹⁵NH₄Cl. For comparison, the ¹H-NMR spectrum and the concentration of ¹⁵NH₄⁺ of our work were also included in (a) and (b), respectively. The electrolysis was performed at -0.5 V for 1 h in aqueous solutions containing 75 mM $K^{15}NO_3$ and 1 M KOH with Fe₃C/NC as the catalyst.

Figure S16. Yield of NH₃ for NC after electrolysis in in aqueous solutions containing 1 M KOH and 75 mM KNO₃ for 1 h at different potentials.

Figure S17. Yield and FE of NH_3 (a) and Raman spectra (b) for $Fe_3C/NC-600$, $Fe_3C/NC-650$, Fe_3C/NC , $Fe_3C/NC-750$ and $Fe_3C/NC-800$. Electrolysis was conducted at -0.5 V for 1 h in aqueous solutions contsianing 1 m KOH and 75 mM KNO₃.

Figure S18. Structural characterizations for carbon supports prepared at different annealing temperatures. XRD patterns (a), SEM and EDS elemental mapping images (b-d) for NC-600 (b), NC (c) and NC-800 (d).

Figure S19. N 1s (a) and O 1s (b) XPS for NC-600, NC and NC-800.

Fable S4 . Contents of N, O and	l C in NC-600, NC and	d NC-800 from XPS analyses	3.
--	-----------------------	----------------------------	----

Sample	C (at%)	N (at%)	O (at%)	N/O
NC-600	80.54	10.85	8.61	1.26
NC	89.07	5.36	5.57	0.96
NC-800	91.52	3.75	4.73	0.79

Figure S20. NO₃RR performances for carbon supports prepared at different annealing temperatures. UV-absorption spectra (a) and the calibration curve (b) of standard NH₄Cl aqueous solutions. Chronoamperometric responses (c), UV-vis absorption spectra (d) and yield (e) and FE (f) of NH₃ for NC-600, NC and NC-800 (d) after electrolysis at -0.5 V for 1 h in aqueous solutions of 1 M KOH and 75 mM KNO₃.

Figure S21. NO₃RR performances for samples prepared under different annealing (a) and solvothermal (b) conditions.

Figure S22. Chronoamperometric responses during the recycling test for Fe_3C/NC at -0.5 V vs. RHE in an aqueous solution containing 1 M KOH and 75 mM KNO₃

Figure S23. TEM images (a) and XRD patterns (b) for Fe₃C/NC after recycling for 13 runs.

Figure S24. IC spectra (a, c) and the corresponding calibration curves (b, d) of NO_2^- (a-b) and NO_3^-

(c-d) standard solutions.

Figure S25. Time-dependent concentrations of NO_3^- , NO_2^- and NH_4^+ (a) and the corresponding selectivity (c), yield and faradaic efficiency (d) of NH_4^+ during the continuous long-term electrolysis for 13 h at -0.5 V. Potential-dependent yield and faradaic efficiency of NO_2^- after chronoamperometric electrolysis for 1 h in 1 M KOH and 75 mM KNO₃ (b).

Figure S26. Determination of the possible by-product of N_2H_4 using the Watt-Chrisp method. (a) UV-vis absorption spectra, (b) the calibration curve and (c) the photograph of N_2H_4 standard solutions after color development. (d) UV-vis absorption spectra of the catholytes with the addition of the color reagent after electrolysis in 1 M KOH and 75 mM KNO₃ for 1 h at different potentials.

Figure S27. Gas chromatography (GC, Agilent Technologies, 7890B) spectra of the products after electrolysis at different potentials in 1 M KOH aqueous solutions without KNO₃ using Fe₃C/NC as the catalyst. The peaks appeared at about 1.06 min can be assigned to H_2 , which was probably another by-product of NO₃RR. The corresponding peak areas (A) increased as the potentials became more negative, indicating the increase of the amount of generated H_2 .

Figure S28. Determination of the possible escaped NH_3 in the gas phase. UV-vis absorption spectra (a) and the corresponding calibration curve (b) of the standard solutions of NH_4Cl stained with indophenol blue. UV-vis absorption spectra (c) and the calculated yields (d) of the trapped NH_4^+ in the 0.05 M H₂SO₄ solution connected with the outlet of the reactor.

Figure S29. XRD patterns for Air-200, Air-100, H₂-100, H₂-300 and the pristine sample of Fe₃C/NC.

Figure S30. Raman spectra of H₂-300, Air-200 and the pristine sample of Fe₃C/NC.

Figure S31. SEM images for Air-200 (a), Air-100 (b), H_2 -100 (c) and H_2 -300 (d).

Figure S32. TEM images for Air-200 (a), Air-100 (b), H₂-100 (c) and H₂-300 (d).

Cl.	ICP-MS		EA	Calculated	
Sample	Fe (wt%)	C (wt%)	N (wt%)	H (wt%)	O (wt%)
Air-200	35.6	45.4	4.9	1.0	13.1
Air-100	33.8	47.9	4.8	1.5	12
Pristine	33.6	46.9	4.8	1.3	13.6
H ₂ -100	33.2	45.1	4.5	1.4	15.8
H ₂ -300	33.4	47.0	4.8	1.2	13.6

Table S5. Contents of Fe, C, N, H and O elements in the as-synthesized samples

Figure S33. LSV curves for H_2 -300 (a), H_2 -100 (b), Air-100 (c) and Air-200 (d) in 1 M KOH aqueous solutions with or without 75 mM KNO₃.

Figure S34. Chronoamperometric responses at different potentials for Air-200 (a), Air-100 (b), H₂-100 (c) and H₂-300 (d) in aqueous solutions containing 1 M KOH and 75 mM KNO₃.

Figure S35. UV-vis absorbance spectra of the indophenol blue-stained catholytes after electrolysis at given potentials with Air-200 (a), Air-100 (b), H_2 -100 (c) and H_2 -300 (d) as the catalysts, respectively.

Figure S36. Yield (a) and FE (b) of NH₃ at different potentials for Air-200, Air-100, H₂-100 and H₂-300. For comparison, the data for the pristine sample of Fe₃C/NC was also included.

Figure S37. Potential-dependent energy efficiencies for nitrate reduction to ammonia over Air-200, H₂-300 and the pristine sample of Fe₃C/NC.

Figure S38. N_2 adsorption-desorption isotherms for Air-100 (a) and H_2 -100 (b) and the corresponding pore size distributions (insets).

Figure S39. Cyclic voltammertry curves at scan rates from 10 to 100 mV s⁻¹ for Air-200 (a), Air-100 (b), pristine sample of Fe₃C/NC (c), H₂-100 (d) and H₂-300 (e) and the derived double layer capacitances (C_{dl} , f).

Figure S40. Linear fitting plots of $\ln C_0/C_t$ vs. reaction time t based on the pseudo first order kinetic equation for H₂-300 with different initial nitrate concentrations in the electrolytes at -0.5 V vs. RHE. (a) 30 mM, (b) 50 mM, (c) 60 mM, (d) 100 mM.

Figure S41. Linear fitting plots of $\ln C_0/C_t vs$. reaction time t based on the pseudo first order kinetic equation for the pristine sample of Fe₃C/NC with different initial nitrate concentrations in the electrolytes at -0.5 V vs. RHE. (a) 30 mM, (b) 50 mM, (c) 60 mM, (d) 100 mM.

Figure S42. Linear fitting plots of $\ln C_0/C_t$ vs. reaction time t based on the pseudo first order kinetic equation for Air-200 with different initial nitrate concentrations in the electrolytes at -0.5 V vs. RHE. (a) 30 mM, (b) 50 mM, (c) 60 mM, (d) 100 mM.

Figure S43. Fe 2p (a), C 1s (b), N 1s (c) and O 1s (d) XPS for the pristine sample of Fe₃C/NC and the control samples of H₂-300, H₂-100, Air-100 and Air-200.

Table S6. The ratio of Fe^{3+}/Fe^{2+} obtained by XPS analysis.

Sample	$Fe^{2+} 2p_{3/2}$	Fe ³⁺ 2p _{3/2}	$Fe^{2+}2p_{1/2}$	$Fe^{3+}2p_{1/2}$	Fe ³⁺ /Fe ²⁺
H ₂ -300	0.237	0.193	0.178	0.106	0.720
H ₂ -100	0.218	0.209	0.196	0.127	0.812
Pristine	0.195	0.192	0.157	0.127	0.908
Air-100	0.194	0.219	0.156	0.153	1.050
Air-200	0.207	0.229	0.136	0.154	1.118

Figure S44. Secondary electron cutoff regions of UPS for Air-200, Air-100, pristine sample of Fe₃C/NC, H₂-100 and H₂-300 (a) and the corresponding work functions (Φ , b).

Figure S45. Contact angles for H_2 -300 (a, d), Fe₃C/NC (b, e) and Air-200, (c, f) before (a-c) and after (d-f) chronamperometric electrolysis at -0.5 V vs. RHE for 1 h.

Figure S46. Nyquist plots for Air-200, Air-100, H_2 -100, H_2 -300 and the pristine sample of Fe₃C/NC at -0.5 V vs. RHE in the frequency range from 0.1 Hz to 100 kHz with an amplitude of 0.05 V.

Figure S47. Time-dependent concentrations of nitrate ions in the electrolytes for H_2 -300, Air-200 and the pristine sample of Fe₃C/NC after electrolysis at -0.5 V vs. RHE in 1 M KOH and 75 mM KNO₃ for 1 h.

Figure S48. Temperature-dependent partial current densities of ammonium for H_2 -300, Air-200 and the pristine sample of Fe₃C/NC after electrolysis at -0.5 V vs. RHE in 1 M KOH and 75 mM KNO₃ for 1 h.

Catalyst	Electrolyte	Selectivity (%)	Yield (mmol h ⁻¹ cm ⁻² / mmol h ⁻¹ mg ⁻¹)	Potential (V)	Ref.
Fe ₃ C/NC	1 M KOH + 75 mM NO ₃ ⁻	86.5	0.4760/1.1900	-0.50 ^a	This work
Cu/Cu ₂ O NWs	0.5 M Na ₂ SO ₄ + 3.2 mM NO ₃ ⁻	81.2	0.2449/-	-0.85 ^a	1
TiO _{2-x}	$0.5 \text{ M Na}_2 \text{SO}_4 + 0.8 \text{ mM NO}_3^-$	87.1	0.0225/0.0450	-1.60 ^b	2
nZVI/BC12	groundwater + 0.8 mM NO3-	39.5	0.0010/-	-0.21 ^a	3
FeN-NC-140	$0.1 \text{ M Na}_2\text{SO}_4 + 1.6 \text{ mM NO}_3^-$	< 10.0	0.0001/0.00004	-1.30 ^b	4
nZVI@OMC-400	0.02 M NaCl + 3.2 mM NO3 ⁻	26.0	0.0011/-	-1.30 ^b	5
Fe ⁰ @Fe ₃ O ₄	0.4 M NaCl + 0.8 mM NO3 ⁻	< 20.0	0.0009/-	5 °	6
FeNC/MC	$0.1 \text{ M Na}_2 \text{SO}_4 + 3.2 \text{ mM NO}_3^-$	19.0	0.0005/-	-1.30 ^b	7
Co ₃ O ₄ -TiO ₂ /Ti	$0.1 \text{ M Na}_2 \text{SO}_4 + 0.8 \text{ mM NO}_3^-$	24.0	0.0008/-	-10 °	8
Fe/Cu Composite	0.05 M Na ₂ SO ₄ + 1.6 mM NO ₃ -	70.0	0.0600/-	-25 °	9
Fe/Fe ₃ C-NCNF-2	1.6 mM NO3 ⁻ +0.01 M Na2SO4	68.0	0.0015/0.0004	-1.30 ^b	10
Sn _{0.8} Pd _{0.2} /SS	0.1 M HClO ₄ + 8 mM NO ₃ ⁻	14.0	0.0013/-	-40 °	11
C0 ₃ O ₄	1600 mM NO ₃ ⁻ + 0.1 M K ₂ SO ₄	33.6	0.8540/-	-0.65 ª	12
Bi ₂ O ₃ /CC	$0.5 \text{ M Na}_2 \text{SO}_4 + 0.8 \text{ mM NO}_3^-$	80.3	0.0027/-	-10 °	13
PdCu@OMC	$0.1 \text{ M Na}_2 \text{SO}_4 + 8 \text{ mM NO}_3^-$	24.5	0.0053/	-1.30 ^b	14
P _{2.1} -Co ₃ O ₄	$0.5 \text{ M Na}_2 \text{SO}_4 + 0.8 \text{ mM NO}_3^-$	80.0	0.0005/-	-1.30 ^b	15
Cu/rGO/GP	20 mM NaCl + 20 mM NO3 ⁻	19.4	0.0145/-	-1.40 ^b	16
Cu ₄₉ Fe ₁	$0.1 \ M \ K_2 SO_4 + 3.2 \ mM \ NO_3^-$	86.8	0.2300/-	-0.70 ^a	17
Ru-ST-12	1M KOH + 100 mM KNO ₃	99.0	1.1700/5.56	-0.20 ^a	18
Cu NS	1M KOH +10 mM KNO ₃	99.7	0.4000/0.0229	-0.15 ^a	19
Co/CoO NAs	$0.1 \text{ M Na}_2\text{SO}_4 + 3.2 \text{ mM NO}_3^-$	91.2	0.1940/-	-1.30 ^b	20
Pd _{10%} -Cu _{2.5%} /CeO ₂	0.05 M Na ₂ SO ₄ + 0.8 mM NO ₃ ⁻	37.0	0.0019/-	-5 °	21
Pd _{0.4} Cu _{0.6}	0.01 M NaClO ₄ +0.8 mM NO ₃ -	49.0	0.0002/-	-0.3 ^b	22
CL-Fe@C	0.1 M Na ₂ SO ₄ + 1.6 mM NO ₃ ⁻	58.0	0.0007/0.00018	-1.30 ^b	23
Fe-ppy SACs	0.1 M KOH + 100 mM NO ₃ -	98.0	0.1618/0.6738	-0.70 ª	24
Fe SAC	0.1 M Na ₂ SO ₄ + 500 mM NO ₃ ⁻	69.0	0.4600/1.1765	-0.66 ^a	25

Table S7. Comparison of ammonia yield and selectivity from nitrate electroreduction over Fe_3C/NC with literature results.

^a The numbers were potentials relative to the reversible hydrogen electrode (RHE).

^b The numbers were potentials relative to the saturated calomel electrode (SCE).

^c The numbers were current densities (mA cm⁻²) at which the constant current electrolysis were performed and the performances were assessed.

Reference

- 1 Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Angew. Chem. Int. Ed., 2020, 59, 5350-5354.
- 2 R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal., 2020, 10, 3533-3540.
- 3 A. Wei, J. Ma, J. Chen, Y. Zhang, J. Song and X. Yu, *Chem. Eng. J.*, 2018, **353**, 595-605.
- 4 J. Wang, L. Ling, Z. Deng and W.-x. Zhang, Sci. Bull., 2020, 65, 926-933.
- 5 W. Teng, N. Bai, Y. Liu, Y. Liu, J. Fan and W.-x. Zhang, *Environ. Sci. Technol.*, 2018, **52**, 230-236.
- 6 Z. A. Jonoush, A. Rezaee and A. Ghaffarinejad, J. Clean. Prod., 2020, 242, 118569.
- 7 W. Teng, J. Fan and W.-x. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 28091-28099.
- 8 J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang, N. Oturan and M. A. Oturan, *Appl. Catal. B: Environ.*, 2019, **254**, 391-402.
- 9 Y. Zhang, Y. Zhao, Z. Chen, L. Wang, L. Zhou, P. Wu, F. Wang and P. Ou, J. Electrochem. Soc., 2018, 165, E420-E428.
- 10 Y. Lan, J. Chen, H. Zhang, W.-x. Zhang and J. Yang, J. Mater. Chem. A, 2020, 8, 15853-15863.
- 11 J. F. Su, W.-F. Kuan, H. Liu and C. P. Huang, Appl. Catal. B: Environ., 2019, 257, 117909.
- 12 Y. Wang, Y. Yu, R. Jia, C. Zhang and B. Zhang, Natl. Sci. Rev., 2019, 6, 730-738.
- 13 M. Chen, J. Bi, X. Huang, T. Wang, Z. Wang and H. Hao, *Chemosphere*, 2021, 278, 130386.
- 14 J. Fan, H. Xu, M. Lv, J. Wang, W. Teng, X. Ran, X. Gou, X. Wang, Y. Sun and J. Yang, New J. Chem., 2017, 41, 2349-2357.
- 15 J. Gao, B. Jiang, C. Ni, Y. Qi and X. Bi, Chem. Eng. J., 2020, 382, 123034.
- 16 D. Yin, Y. Liu, P. Song, P. Chen, X. Liu, L. Cai and L. Zhang, *Electrochimica Acta*, 2019, **324**, 134846.
- 17 C. Wang, Z. Liu, T. Hu, J. Li, L. Dong, F. Du, C. Li and C. Guo, *ChemSusChem*, 2021, 14, 1825-1829.
- 18 J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S.-X. Dou, L. Zhang and J. C. Yu, *J. Am. Chem. Soc.*, 2020, **142**, 7036-7046.
- 19 X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski and Y. Kang, *Appl. Mater. Today*, 2020, **19**, 100620.
- 20 Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, Sci. China Chem., 2020, 63, 1469-1476.
- 21 C. Chen, H. Zhang, K. Li, Q. Tang, X. Bian, J. n. Gu, Q. Cao, L. Zhong, C. K. Russell, M. Fan and J. Jia, J. Catal., 2020, 392, 231-243.
- 22 J. F. Su, I. Ruzybayev, I. Shah and C. P. Huang, Appl. Catal. B: Environ., 2016, 180, 199-209.
- 23 L. Su, D. Han, G. Zhu, H. Xu, W. Luo, L. Wang, W. Jiang, A. Dong and J. Yang, *Nano Lett.*, 2019, 19, 5423-5430.
- 24 P. Li, Z. Jin, Z. Fang and G. Yu, Energy Environ. Sci., 2021, 14, 3522-3531.
- 25 Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat. Commun.*, 2021, **12**, 2870.