Supporting Information

Insoluble Small-Molecule Organic Cathodes for Highly Efficient Pure Organic Li-Ion Batteries

Xinxin Wang^a, Wu Tang^a, Yang Hu^a, Wenqiang Liu^a, Yichao Yan^b, Liang Xu^c and Cong Fan^{*a}

- a. School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
- b. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, P. R. China
- c. Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China

Figure S1. ¹H NMR spectrum of PTCDI-DAQ.

Figure S2. TGA analysis of PTCDI-DAQ.

Figure S3. FT-IR spectroscopy of PTCDI-DAQ powder, pure DOL/DME and soaked DOL/DME (immersing PTCDI-DAQ powder into DOL/DME for 7 days), respectively.

Figure S4. The (a-d) SEM images, (e-h) mapping and (i) energy dispersive spectrometer (EDS) images of C, N, O elements for pure PTCDI-DAQ.

Figure S5. The image of electrodes after cycling for 1 month using 1M LiTFSI in DOL/DME and 3M LiTFSI in DOL/DME, respectively.

Figure S6. (a) The charge-discharge profile of KB/La133 (3:1) electrode; (b) The C-rate profile of KB/La133 (3:1) electrode.

Figure S7. The charge-discharge curves of PTCDI-DAQ half cells at various current densities.

Figure S8. The EIS tests for PTCDI-DAQ cathodes after cycling.

Figure S9. The (a) SEM image and (b-e) the mapping images of C, O, N elements for pristine and cycled PTCDI-DAQ electrodes.

GITT test: A constant current density of 0.5 C for 3 min and then relaxing for 30 min at open circuit (1 C corresponds to the current density of 200 mA g^{-1}) was exploited. Afterwards, the Li-ion diffusion coefficients based on the GITT results were calculated using the following equation:

$$D_{Li^{+}} = \frac{4}{\pi} (\frac{n_m V_m}{S})^2 (\frac{\Delta E_s}{\tau (dE_\tau/d\sqrt{\tau})})^2 = \frac{4}{\pi} (\frac{V}{S})^2 (\frac{\Delta E_s}{\tau (dE_\tau/d\sqrt{\tau})})^2 \approx \frac{4}{\pi \tau} (L)^2 (\frac{\Delta E_s}{\Delta E_\tau})^2$$

In this equation, \mathbf{n}_{m} is the mole number of the active materials; \mathbf{V}_{m} is the molar volume of active materials; \mathbf{S} is the effective area of the electrode (1.13 cm²); τ is the relaxation time (1800 s); \mathbf{L} is the average thickness of PTCDI-DAQ electrode (58.66 µm); $\Delta \mathbf{E}_{s}$

is the potential change between neighboring relaxation end time; ΔE_{τ} is the potential change caused by every constant current charge/discharge process.

Figure S10. The thickness of PTCDI-DAQ electrode.

Table S1. Li-ion diffusion coefficient (D) of the representative cathodes in LIBs reported to date.

Cathode ^[a]	Technique ^[b]	$\mathbf{D}_{\mathbf{Li}}^{+[\mathbf{c}]}$	Ref.
PTCCDI-DAQ	GITT	1.21 x 10 ⁻⁸	This work
m-TP4OLi (O)	GITT	6.76 x 10 ⁻⁸	[S1]
BP4OLi (O)	GITT	1.88 x 10 ⁻⁸	[S2]
$LiMn_2O_4(I)$	GITT	2.5 x 10 ⁻¹¹	[S3]
$Li_{1.12}[Ni_{0.5}Co_{0.2}Mn_{0.3}]_{0.89}O_2(I)$	GITT	10-10-10-16	[S4]
LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ (I)	GITT	2.78 x 10 ⁻⁸	[S5]
Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ (I)	GITT	3.0 x 10 ⁻¹⁰	[S6]
LiVO ₃	GITT	10 ⁻⁸ -10 ^{-9.5}	[S7]
$Li_{0.8}CoO_2$ (I)	GITT	6.4 x 10 ⁻⁴	[S8]
LiNi _{3/8} Co _{2/8} Mn _{3/8} O ₂ (I)	GITT	10-12-10-16	[S9]
LiFePO ₄ (I)	GITT	1.8 x 10 ⁻¹⁵	[S10]

[a] O=organic electrode, I=inorganic electrode; [b] GITT=galvanostatic intermittent titration technique; [c] D_{Li}^+ = Li-ion diffusion coefficient and the unit is cm² s⁻¹.

Electrode kinetics: The reaction kinetics of PTCDI-DAQ electrode were analyzing according to the following equations:

$$i = av^b$$
 Equation 1

$$\log i = b \log v + \log a$$
 Equation 2

In the above equations where i is the peak current of six redox peaks, v is the sweep rates, a and b are adjustable parameters. The b value could be acquired through the slope of linear fitting results in the log plot between peak current and scan rates. If b value is 0.5, the electrode is dominated by diffusion (battery behavior), whereas the process is capacity controlled (capacity behavior) when the b value is close to 1. Notably, when the b value exists between 0.5 and 1, the electrode kinetics are the hybridization of diffusion and capacitive behavior. The capacitive contribution can also be measured according to the equations below:

$$i = k_1 v + k_2 v^{\frac{1}{2}}$$
Equation 3
$$\frac{i}{v^{\frac{1}{2}}} = k_1 v^{\frac{1}{2}} + k_2$$
Equation 4

 k_1 and k_2 are two variables, which were only related to the potential under the condition of negligible voltage polarization change between various scan rates.

According to the variable-scan CV results, in the reduction process, the b values of peak A was 0.769, which was between 0.5 and 1, meaning that the reduction of PTCDI-DAQ was diffusion and pseudocapacitance collectively controlled. Meanwhile, the b value of peak B corresponding to the oxidation process was 0.852. The result unveiled that redox procedure of PTCDI-DAQ was dominated by synergistic battery (low test currents) and pseudocapacitance (high test currents) behaviors.

Figure S11. (a) The CV curves at the scan rates around 1 mV s-1; (b) The pseudocapacitance contribution at 1 mV s-1 for PTCDI-DAQ; (c) The pseudocapacitance contribution at various scan rates.

Figure S12. (a) The charge-discharge curves of H_2TP (Li₂TP) in Li-ion half cells; (b) The redox mechanism for Li₂TP in half cells.

Figure S13. (a) The 1500-cycle profile and (b) The charge-discharge curves for the full cells at 100 mA g^{-1} .

References

- 1. Q. Yu, W. Tang, Y. Hu, J. Gao, M. Wang, S. Liu, H. Lai, L. Xu and C. Fan, *Chem. Eng. J.*, 2021, **415**, 128509-128517.
- Q. Yu, Z. Yao, J. Shi, W. Tang, C. Wang, D. Li and C. Fan, *Org. Electron.*, 2020, 81, 105661-105668.
- 3. J. Xie, K. Kohno, T. Matsumura, N. Imanishi, A. Hirano, Y. Takeda and O. Yamamoto, *Electrochim. Acta*, 2008, **54**, 376-381.
- 4. Y. Bai, X. Wang, X. Zhang, H. Shu, X. Yang, B. Hu, Q. Wei, H. Wu and Y. Song, *Electrochim. Acta*, 2013, **109**, 355-364.
- 5. A. Yaqub, Y.-J. Lee, M. J. Hwang, S. A. Pervez, U. Farooq, J.-H. Choi, D. Kim, H.-Y. Choi, S.-B. Cho and C.-H. Doh, *J. Mater. Sci.*, 2014, **49**, 7707-7714.
- K. M. Shaju, G. V. S. Rao and B. V. R. Chowdari, *J. Electrochem. Soc.*, 2004, 151, A1324-A1332.
- X. M. Jian, J. P. Tu, Y. Q. Qiao, Y. Lu, X. L. Wang and C. D. Gu, J. Power Sources, 2013, 236, 33-38.
- 8. J. Xie, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda and O. Yamamoto, *Solid State Ionics*, 2008, **179**, 362-370.
- 9. J. Li, X. He, R. Zhao, C. Wan, C. Jiang, D. Xia and S. Zhang, *J. Power Sources*, 2006, **158**, 524-528.
- 10. Y. Zhu, Y. Xu, Y. Liu, C. Luo and C. Wang, *Nanoscale*, 2013, 5, 780-787.