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Figure S1. 1H NMR spectrum of PTCDI-DAQ.
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Figure S2. TGA analysis of PTCDI-DAQ.

3600 3000 2400 1800 1200 600

PTCDI-DAQ in DOL/DME

Pure DOL/DME

PTCDI-DAQ

In
te

ns
ity

 (a
.u

.)

Wavenumber (cm-1)
Figure S3. FT-IR spectroscopy of PTCDI-DAQ powder, pure DOL/DME and soaked 
DOL/DME (immersing PTCDI-DAQ powder into DOL/DME for 7 days), respectively.
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Figure S4. The (a-d) SEM images, (e-h) mapping and (i) energy dispersive 
spectrometer (EDS) images of C, N, O elements for pure PTCDI-DAQ.
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Figure S5. The image of electrodes after cycling for 1 month using 1M LiTFSI in 
DOL/DME and 3M LiTFSI in DOL/DME, respectively.
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Figure S6. (a) The charge-discharge profile of KB/La133 (3:1) electrode; (b) The C-
rate profile of KB/La133 (3:1) electrode.
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Figure S7. The charge-discharge curves of PTCDI-DAQ half cells at various current 
densities.
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Figure S8. The EIS tests for PTCDI-DAQ cathodes after cycling.

 

Figure S9. The (a) SEM image and (b-e) the mapping images of C, O, N elements for 
pristine and cycled PTCDI-DAQ electrodes.

GITT test: A constant current density of 0.5 C for 3 min and then relaxing for 30 min 
at open circuit (1 C corresponds to the current density of 200 mA g-1) was exploited. 
Afterwards, the Li-ion diffusion coefficients based on the GITT results were calculated 
using the following equation:
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In this equation, nm is the mole number of the active materials; Vm is the molar volume 
of active materials; S is the effective area of the electrode (1.13 cm2 ); τ is the relaxation 

time (1800 s); L is the average thickness of PTCDI-DAQ electrode (58.66 μm); △Es 
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is the potential change between neighboring relaxation end time; △Eτ is the potential 

change caused by every constant current charge/discharge process.

Figure S10. The thickness of PTCDI-DAQ electrode.

Table S1. Li-ion diffusion coefficient (D) of the representative cathodes in LIBs 
reported to date.

[a] O=organic electrode, I=inorganic electrode; [b] GITT=galvanostatic intermittent 
titration technique; [c] DLi

+= Li-ion diffusion coefficient and the unit is cm2 s -1.

Electrode kinetics: The reaction kinetics of PTCDI-DAQ electrode were analyzing 
according to the following equations:

                        Equation 1𝑖 = 𝑎𝑣𝑏

                  Equation 2log 𝑖 = 𝑏 𝑙𝑜𝑔𝑣 + 𝑙𝑜𝑔𝑎

Cathode[a] Technique[b] DLi
+[c] Ref.

PTCCDI-DAQ GITT 1.21 x 10-8 This work
m-TP4OLi (O) GITT 6.76 x 10-8 [S1]

BP4OLi (O) GITT 1.88 x 10-8 [S2]
LiMn2O4 (I) GITT 2.5 x 10-11 [S3]

Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 (I) GITT 10-10-10-16 [S4]
LiNi0.6Co0.2Mn0.2O2 (I) GITT 2.78 x 10-8 [S5]

Li(Ni1/3Co1/3Mn1/3)O2 (I) GITT 3.0 x 10-10 [S6]
LiVO3 GITT 10-8-10-9.5 [S7]

Li0.8CoO2 (I) GITT 6.4 x 10-4 [S8]
LiNi3/8Co2/8Mn3/8O2 (I) GITT 10-12-10-16 [S9]

LiFePO4 (I) GITT 1.8 x 10-15 [S10]
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In the above equations where i is the peak current of six redox peaks, v is the sweep 
rates, a and b are adjustable parameters. The b value could be acquired through the 
slope of linear fitting results in the log plot between peak current and scan rates. If b 
value is 0.5, the electrode is dominated by diffusion (battery behavior), whereas the 
process is capacity controlled (capacity behavior) when the b value is close to 1. 
Notably, when the b value exists between 0.5 and 1, the electrode kinetics are the 
hybridization of diffusion and capacitive behavior. The capacitive contribution can also 
be measured according to the equations below:

                    Equation 3𝑖 = 𝑘1𝑣 + 𝑘2𝑣
1
2

                     Equation 4

𝑖

𝑣
1
2

= 𝑘1𝑣
1
2 + 𝑘2

k1 and k2 are two variables, which were only related to the potential under the condition 
of negligible voltage polarization change between various scan rates.

According to the variable-scan CV results, in the reduction process, the b values 
of peak A was 0.769, which was between 0.5 and 1, meaning that the reduction of 
PTCDI-DAQ was diffusion and pseudocapacitance collectively controlled. Meanwhile, 
the b value of peak B corresponding to the oxidation process was 0.852. The result 
unveiled that redox procedure of PTCDI-DAQ was dominated by synergistic battery 
(low test currents) and pseudocapacitance (high test currents) behaviors.
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Figure S11. (a) The CV curves at the scan rates around 1 mV s-1; (b) The 
pseudocapacitance contribution at 1 mV s-1 for PTCDI-DAQ; (c) The 
pseudocapacitance contribution at various scan rates.
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Figure S12. (a) The charge-discharge curves of H2TP (Li2TP) in Li-ion half cells; (b) 
The redox mechanism for Li2TP in half cells.
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Figure S13. (a) The 1500-cycle profile and (b) The charge-discharge curves for the full 
cells at 100 mA g-1.
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