Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Continuous flow processes for the S-alkynylation of cysteine-containing peptides and thioglycoside under catalyst-free, oxidant-free and mild conditions

Long-Zhou Qin,^a Xin Yuan,^a Jie Liu,^a Meng-Yu Wu,^a Qi Sun,^a Xiu Duan,^a Xin-Peng Zhang,^a Jiang-Kai Qiu,^{*a,b} and Kai Guo^{*a,b} ^aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China ^bState Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China Correspondence to: E-mail: guok@njtech.edu.cn.

Contents

1.	General information	
2.	General procedure for the synthesis of the substrates	S4
3.	General procedures for the alkynylation reaction	S6
4.	Gram scale experiment	S8
5.	X-ray crystallography structure of compound 2b	
6.	Optimization of reaction conditions	S10
7.	Spectra data	S13
8.	Spectra	S34

1. General Information

Unless otherwise stated, all components as well as reagents and solvents were bought from commercial suppliers (Energy Chemical, *J&K* Chemic and TCI) and used without further purification. Product isolation was performed using silica gel 60 (200-300 mesh). TLC analysis was performed using commercially prepared silica gel plates, and visualization was affected at ultraviolet light (254 nm). NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, and ¹⁹F NMR at 376 MHz. Chemical shifts (δ) were reported in ppm referenced to Tetramethylsilane (TMS) as internal standard. NMR spectra uses the following abbreviations to describe the multiplicity: s = single, d = doublet, t = triplet, q = quartet, m = multiple, dd = double doublet, td = triple doublet. Coupling constants (*J*) were reported in hertz (Hz). NMR data was processed using the MestReNova 9.0.1 software package. High resolution mass spectra were obtained on Agligent Technologies 6520 Accurate Series Q-TOF equipped with ESI.

2. General procedure for the synthesis of the substrates

General procedure 1: preparation of transfer reagent

TMS-alkyne reagents were synthesized by the modification of literature procedure^{1,2}. Prepared by the modification of a literature procedure³. Triflic anhydride (1.2 equiv.) was slowly added at -50 °C to a solution of Phenyl sulfoxide (1.0 equiv.) in DCM. The reaction was stirred for 1 hour at that temperature and then a solution of the desired TMS-alkyne (1.0 equiv.) in DCM (1 mL/mmol) was dropwise added. After this, the reaction mixture was slowly warmed until complete consumption of the starting material (monitored by TLC), the solvent was distilled off under reduced pressure. The resulting crude compound was absorbed on silica gel and purified via column chromatography to obtain corresponding product (DCM/MeOH, varying ratios).

General procedure 2: preparation of peptides

Amino acid derivative (1.0 equiv.) and *p*-toluenethiol (1.0 equiv.) were added to reaction flask under argon atmosphere, then CH_2Cl_2 was added and the flask placed in an ice bath (0°C). Next, DCC (1.0 equiv.) and HOBt (1.0 equiv.) were added together. The reaction was transferred to room temperature and stirred for overnight. The CH_2Cl_2 was distilled off under reduced pressure and filtered, and the filtered cake was washed with ethyl acetate (3×100 mL) and saturated NaHCO₃ (3×30 mL). The obtained filtrate was extracted with ethyl acetate and brine. The organic layer was dried with Na₂SO₄. Depressurization to obtain crude product, then purified by column chromatography (EtOAc/PE, varying ratios) gave the desired intermediates.

L-Cysteine methyl ester HCl (1.0 equiv.) and the thioester derivative obtained from the previous step (1.0 equiv.) were added to MeOH in flask kept under argon atmosphere. Next tributylphopshine (0.6 equiv.) was added and the reaction was stirred at room temperature for 24 hours. The methanol was distilled off under reduced pressure, and then extracted with brine and ethyl acetate (3×100 mL). The organic layer was dried with Na₂SO₄ and concentrated on silica gel under vacuo. Purification by column chromatography (DCM/MeOH, varying ratios) afforded the desired peptides.

General procedure 3: preparation of Boc-Asn-Cys-OMe and Boc-Gln-Cys-OMe

These two dipeptides were prepared according to literature⁴.

References

[1] M. Garreau, F. L. Vaillant and J. Waser, Angew. Int. Ed. Chem., 2019, 58, 8182-8186.

[2] R. Frei, M. D. Wondrich. D. P. Hari, P-A. Hari, C. Chauvier and J. Waser, J. Am. Chem. Soc., 2014, 136, 16563–16573.

[3] B. Waldecker, F. Kraft, C. Golz and M. Alcarazo, Angew. Chem. Int. Ed., 2018, 57, 12538– 12542.

[4] S. Verhoog, C. W. Kee, Y. Wang, T. Khotavivattana, T. C. Wilson, V. Kersemans, S. Smart, M. Tredwell, B. G. Davis and V. Gouverneur, J. Am. Chem. Soc., 2018, 140, 5, 1572–1575.

3. General procedures for the alkynylation reaction

General Procedure A (GPA): alkynylation of cysteine containing peptides

Figure S1 Schematic diagram of a flow set-up for the selective alkynylation of cysteine-containing cysteine dipeptides.

Substrate Boc-Phe-Cys-OMe 1a (0.0764 g, 0.2 mmol, 1.0 equiv.) was dissolved in 2.0 mL of the solvent DMSO. After sufficient mixing, add 42 µL of Et₃N (0.3 mmol, 1.5 equiv.) to the mixture as reaction solution I. Substrate 2a was dissolved in 2.0 mL of DMSO as reaction solution II. The two solutions were transferred into two 5 mL BD introduced into plastic syringes and the microreactor (a high purity perfluoroalkoxyalkane, PFA capillary tubing, ID = 600 μ m) through syringe pump. The two liquid streams were merged with a Y-Mixer before entering the microreactor. The flow rate was set to 0.4 mL/min (0.2 mL/min per syringe), thus resulting in 3.5 min residence time (volume of reactor = 1.4 mL). After reaching steady state, the reaction sample was collected in a glass vial. Solution remaining in the microreactor was then discharged with DMSO (2.0 mL×2) via syringe pump, and was also collected in the same glass vial. The collected reaction solution was extracted with EtOAc (3×25 mL) and brine, and the organic layer was collected, dried with Na₂SO₄ and evaporated under reduced pressure. The resulting crude compound was absorbed on silica gel and purified via column chromatography (EtOAc/PE, varying ratios). The isolated compound was analyzed by HRMS and NMR.

General Procedure B (GPB): alkynylation of protected thioglycoside

Figure S2 Schematic diagram of a flow set-up for the alkynylation of protected thioglycoside

Substrate thioglycoside (0.0728 g, 0.2 mmol, 1.0 equiv.) was dissolved in DMSO (2.0 mL) and then added 42 μ L Et₃N (0.3 mmol, 1.5 equiv.). A second reaction solution was to dissolve the **2a** in DMSO (2.0 mL). The two solutions were transferred into two 5 mL BD plastic syringes and introduced into the microreactor (a high purity perfluoroalkoxyalkane, PFA capillary tubing, ID = 600 μ m) through syringe pump. The two liquid streams were merged with a Y-Mixer before entering the reactor. The flow rate was set to 0.4 mL/min (0.2 mL/min per syringe), thus resulting in 3.5 min residence time (volume of reactor = 1.4 mL). After reaching steady state, the reaction sample was collected in a glass vial. Solution remaining in the microreactor was then discharged with DMSO (2.0 mL×2) via syringe pump, and was also collected in the same glass vial. The collected reaction solution was extracted with EtOAc (3×25 mL) and brine, and the organic layer was collected, dried with Na₂SO₄ and evaporated under reduced pressure. The resulting crude compound was absorbed on silica gel and purified via column chromatography (EtOAc/PE, varying ratios). The isolated compound was analyzed by HRMS and NMR.

Figure S3 Details of the microreactor for the alkynylation of cysteine and thioglycoside

4. Gram scale experiment

Boc-Phe-Cys-OMe (1a, 1.91 g, 5.0 mmol, 1.0 equiv.) was dissolved in DMSO and then added 1041 μ L Et₃N (7.5 mmol, 1.5 equiv.). A second reaction solution was to dissolve the 2a (3.27 g, 7.5 mmol, 1.5 equiv.) in DMSO (The volume of the two reaction solutions were 10.0 mL). The two solutions were transferred into two 10 mL BD plastic syringes and introduced into the microreactor through syringe pump. The two liquid streams were merged with a Y-Mixer before entering the reactor. The flow rate was set to 0.4 mL/min (0.2 mL/min per syringe), thus resulting in 3.5 min residence time (volume of reactor = 1.4 mL). After reaching steady state, the reaction sample was collected in a glass vial. Solution remaining in the microreactor was then discharged with DMSO (2.5 mL×2) via syringe pump, and was also collected in the same glass vial. The collected reaction solution was extracted with EtOAc (3×100 mL) and brine, and the organic layer was collected, dried with Na₂SO₄ and evaporated under reduced pressure. The resulting crude compound was absorbed on silica gel and purified via column chromatography (EtOAc/PE, varying ratios). The isolated compound was analyzed by HRMS and NMR.

Figure S4 Details of gram scale experiment

5. X-ray crystallography structure of compound 2b

Figure S5 Structure of compound 2b

The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number CCDC 2052127 (**2b**).

6. Optimization of reaction conditions

Boc N	$1a$ SH $\overline{OTf} + $	Et ₃ N Boc	
Entry ^a	Solvent	Residue time (min)	Yield $(\%)^b$
1	THF	3.5	73
2	DMF	3.5	75
3	DMAC	3.5	81
4	DCM	3.5	62
5	DCE	3.5	64
6	DMSO	3.5	86
7	1,4-dioxane	3.5	53
8	MeCN	3.5	80
9	MeOH	3.5	46
10	Acetone	3.5	55
11	DMSO/H ₂ O (1:1)	3.5	38
12	DMSO/PBS (1:1)	3.5	35

Table S1. Screening of Solvents.

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.) and Et₃N (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL); **2a** (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL). The solution was transferred into syringe and introduced into microreactor through syringe pump. The flow rate was set to 0.4 mL/min (0.2 mL/min per syringe). ^{*b*} Isolated yield was based on **1a**.

2	2,6-lutidine	3.5	72
3	DIPEA	3.5	57
4	DABCO	3.5	13
5	TMEDA	3.5	57
6	DMAP	3.5	20
7	DBU	3.5	N.D.
8	None	3.5	34

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.) and Base (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL); **2a** (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL). The solution was transferred into syringe and introduced into microreactor through syringe pump. The flow rate was set to 0.4 mL/min (0.2 mL/min per syringe). ^{*b*} Isolated yield was based on **1a**. *N.D.* = no detected.

Table S3.	Screening	of Flow	Rate.
-----------	-----------	---------	-------

Boc N H O SH	2a	Et ₃ N DMSO Microreactor	
Entry ^a	Rate (mL/min)	Residue time (min)	Yield $(\%)^b$
1	0.2	3.5	86
2	0.15	4.7	86
3	0.3	2.3	80
4^c	-	-	78

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.) and Et₃N (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL); **2a** (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL). The solution was transferred into syringe and introduced into microreactor through syringe pump. ^{*b*} Isolated yield was based on **1a**. ^{*c*} Reaction in batch: Ar atmosphere, rt, 3 h.

Table S4. Screening of Alkynylation Reagents.

	$Boc^{H} \xrightarrow{SH}_{+} Alkynylation reagent} \xrightarrow{DMSO/Et_3N}_{0.2 \text{ mL/min, } t_R} = 3.5 \text{ min}$				
	OTF+	6a		BTF + S S S S S S S S S S S S S S S S S S	
E	untry ^a	Reagent	Residue time (min)	Yield $(\%)^b$	
	1	2a	3.5	86	
	2	6a	3.5	17	
	3	7a	3.5	51	
	4	8a	3.5	56	

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.) and Et_3N (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL); alkynylation reagent (0.3 mmol, 1.5 equiv.) was dissolved in DMSO (2.0 mL). The solution was transferred into syringe and introduced into microreactor through syringe pump. The flow rate was set to 0.4 mL/min (0.2 mL/min per syringe). ^{*b*} Isolated yield was based on **1a**.

7. Spectra data

((Trifluoromethyl)sulfonyl)- λ^1 -oxidane, diphenyl(phenylethynyl)sulfonium salt (2a)

Gray powder (10 mmol scale, 3.48 g, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 – 8.14 (m, 4H), 7.83 – 7.78 (m, 2H), 7.74 – 7.68 (m, 6H), 7.64 – 7.60 (m, 1H), 7.49 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 134.9, 133.7,

133.3, 131.9, 129.6, 129.2, 127.9, 116.9, 111.4, 63.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 78.14. HRMS (ESI) m/z: calcd for C₂₀H₁₅S⁺ [M–OTf]⁺: 287.0889, found: 287.0892.

((Trifluoromethyl)sulfonyl)- λ^1 -oxidane, diphenyl(o-tolylethynyl)sulfonium salt (**2b**)

Gray powder (10 mmol scale, 3.23 g, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 – 8.17 (m, 4H), 7.79 – 7.69 (m, 7H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.35 – 7.28 (m, 2H), 2.52 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.4, 135.0, 134.5,

133.3, 131.9, 130.4, 129.5, 128.0, 126.6, 120.9 (q, J = 318.9 Hz, 1C), 116.8, 111.0, 66.0, 20.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 78.10. HRMS (ESI) m/z: calcd for C₂₁H₁₇S⁺ [M–OTf]⁺: 301.1045, found: 301.1041.

((Trifluoromethyl)sulfonyl)- λ^1 -oxidane,((4-(tert-butyl)phenyl)ethynyl)diphenylsulfoni um salt (**2c**)

Gray powder (10 mmol scale, 3.64 g, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 – 8.14 (m, 4H), 7.78 – 7.67 (m, 8H), 7.51 (d, *J* = 8.5 Hz, 2H), 1.32 (s, 9H). ¹³C NMR

(100 MHz, Chloroform-*d*) δ 157.6, 134.9, 133.7, 131.8, 129.5, 128.1, 126.3, 121.0 (q, J = 318.6 Hz, 1C), 113.7, 112.4, 62.2, 35.5, 30.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 78.09. HRMS (ESI) m/z: calcd for C₂₄H₂₃S⁺ [M–OTf]⁺: 343.1515, found: 343.1519.

Diphenyl((triisopropylsilyl)ethynyl)sulfonium (2d)

Gray powder (10 mmol scale, 3.72 g, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 – 8.12 (m, 4H), 7.77 – 7.69 (m, 6H), 1.32 – 1.25 (m, 3H), 1.14 (d, *J* = 7.2 Hz, 18H). ¹³C NMR

(100 MHz, Chloroform-d) δ 135.1, 131.9, 129.4, 127.5, 122.7, 120.8 (q, *J* = 318.6 Hz, 1C), 18.4, 11.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 78.19. HRMS (ESI) m/z: calcd for C₂₃H₃₁SiS⁺ [M–OTf]⁺: 367.1910, found: 367.1910.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(phenylethynyl)-L-cysteinate (**3aa**)

Light yellow solid (82.9 mg, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (s, 2H), 7.36 – 7.20 (m, 6H), 7.14 – 6.96 (m, 3H), 4.92 (s, 2H), 4.43 (s, 1H), 3.70 (s, 3H), 3.28 (s, 2H), 3.18 – 2.92 (m, 2H), 1.40 (s, 9H). ¹³C NMR

(100 MHz, Chloroform-*d*) δ 171.2, 169.8, 155.4, 136.3, 131.8, 129.2, 128.7, 128.6, 128.5, 127.0, 122.8, 92.8, 80.4, 78.1, 55.7, 52.9, 52.0, 38.1, 37.5, 28.3. HRMS (ESI) m/z: calcd for C₂₆H₃₀N₂O₅SNa [M+Na]⁺: 505.1768, found: 505.1767.

Methyl S-(phenylethynyl)-N-(tosyl-L-phenylalanyl)-L-cysteinate (**3ab**)

Yellow solid (88.0 mg, 82%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (d, J = 8.3 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.34 – 7.26 (m, 4H), 7.18 – 7.09 (m, 5H), 6.88 (d, J =6.4 Hz, 2H), 5.31 (s, 1H), 4.91 – 4.81 (m, 1H), 4.01 (q, J =

7.3 Hz, 1H), 3.69 (s, 3H), 3.24 – 3.08 (m, 2H), 3.01 - 2.88 (m, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 169.6, 143.7, 136.0, 135.1, 131.8, 129.8, 129.2, 128.8, 128.6, 128.5, 127.1(9), 127.1(5), 122.9, 93.1, 78.1, 57.9, 52.9, 52.1, 38.7, 37.4, 21.6. HRMS (ESI) m/z: calcd for C₂₈H₂₈N₂O₅S₂Na [M+Na]⁺: 559.1332, found: 559.1353.

Methyl *N*-(((benzyloxy)carbonyl)-L-phenylalanyl)-*S*-(phenylethynyl)-L-cysteinate (**3ac**)

Yellow solid (78.5 mg, 76%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 2H), 7.34 – 7.18 (m, 11H), 7.10 (d, *J* = 5.9 Hz, 2H), 7.02 (s, 1H), 5.36 (s, 1H), 5.11 – 5.00 (s, 2H), 4.96 – 4.84 (m, 1H), 4.53 (s, 1H),

3.67 (s, 3H), 3.23 (d, J = 4.0 Hz, 2H), 3.16 – 2.98 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.9, 169.8, 156.0, 136.2, 131.7, 129.3, 128.7, 128.6, 128.5, 128.2, 128.1, 127.1, 122.8, 93.1, 78.0, 67.2, 56.1, 52.9, 52.1, 38.4, 37.4. HRMS (ESI) m/z: calcd for C₂₉H₂₈N₂O₅SNa [M+Na]⁺: 539.1611, found: 539.1649.

Methyl *N*-((((9H-fluoren-9-yl)methoxy)carbonyl)-L-phenylalanyl)-*S*-(phenylethynyl) -L-cysteinate (**3ad**)

Light yellow solid (51.9 mg, 43%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.55 – 7.48 (m, 2H), 7.43 – 7.35 (m, 4H), 7.34 – 7.23 (m, 8H), 7.17 – 7.03 (m, 2H), 6.85 (s, 1H), 5.25 (s, 1H), 4.99 – 4.83

(m, 1H), 4.54 - 4.37 (m, 2H), 4.33 (s, 1H), 4.18 (t, J = 6.8 Hz, 1H), 3.69 (s, 3H), 3.27 (d, J = 4.1 Hz, 2H), 3.15 - 3.00 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.6, 169.7, 155.8, 143.8, 143.7, 141.3, 136.1, 131.7, 129.2, 128.8, 128.6, 128.5, 127.7, 127.2, 127.1, 125.0, 122.8, 120.0, 93.1, 77.8, 67.2, 56.1, 52.9, 52.1, 47.1, 38.3, 37.4. HRMS (ESI) m/z: calcd for C₃₆H₃₂N₂O₅SNa [M+Na]⁺: 627.1924, found: 627.1954.

Methyl N-((tert-butoxycarbonyl)glycyl)-S-(phenylethynyl)-L-cysteinate (3ae)

Light yellow oil (62.7 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.36 (m, 2H), 7.35 – 7.25 (m, 3H), 7.21 (s, 1H), 5.23 (s, 1H), 5.05 – 4.90 (m, 1H), 3.92 –

3.79 (m, 2H), 3.73 (s, 3H), 3.40 – 3.22 (m, 2H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.1, 169.5, 156.0, 131.6, 128.6, 128.4, 122.8, 92.9, 80.4, 77.9, 53.0, 51.9, 44.2, 37.4, 28.3. HRMS (ESI) m/z: calcd for C₁₉H₂₄N₂O₅SNa [M+Na]⁺: 415.1298, found: 415.1289.

Methyl N-((tert-butoxycarbonyl)-L-alanyl)-S-(phenylethynyl)-L-cysteinate (3af)

Light yellow oil (66.6 mg, 82%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.38 (m, 2H), 7.35 – 7.24 (m, 4H), 5.12 (d, *J* = 7.2 Hz, 1H), 4.99 – 4.90 (m, 1H), 4.25 (s, 1H),

Yellow oil (73.8 mg, 85%). ¹H NMR (400 MHz,

Chloroform-d) δ 7.47 – 7.38 (m, 2H), 7.35 – 7.26 (m,

3.72 (s, 3H), 3.32 (d, J = 3.5 Hz, 2H), 1.46 (s, 9H), 1.35 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.7, 170.1, 155.4, 131.7, 128.5, 128.4, 122.9, 93.0, 80.2, 78.0, 52.9, 51.9, 50.1, 37.5, 28.33, 18.1. HRMS (ESI) m/z: calcd for C₂₀H₂₆N₂O₅SNa [M+Na]⁺: 429.1455, found: 429.1446.

Methyl *N*-((tert-butoxycarbonyl)-L-valyl)-*S*-(phenylethynyl)-L-cysteinate (**3ag**)

3H), 7.05 (s, 1H), 5.07 (d, J = 7.1 Hz, 1H), 5.00 – 4.93 (m, 1H), 4.04 (s, 1H), 3.72 (s, 3H), 3.39 – 3.24 (m, 2H), 2.26 – 2.14 (m, 1H), 1.46 (s, 9H), 0.97 (d, J = 6.7 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.6, 170.1, 155.8, 131.8, 128.6, 128.4, 122.2, 93.2, 80.1, 77.7, 59.8, 52.9, 51.8, 37.5, 30.8, 28.3, 19.2, 17.5. HRMS (ESI) m/z: calcd for C₂₂H₃₀N₂O₅SNa [M+Na]⁺: 457.1768, found: 457.1757.

Methyl *N*-((tert-butoxycarbonyl)-L-leucyl)-*S*-(phenylethynyl)-L-cysteinate (**3ah**)

Light yellow oil (71.7 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.40 (m, 2H), 7.34 – 7.28 (m, 3H), 7.17 (s, 1H), 5.00 – 4.91 (m, 1H), 4.80 (s, 1H), 4.16 (s, 1H), 3.73 (s, 3H), 3.31 (d, *J* = 4.6 Hz, 2H), 1.79 – 1.51 (m,

3H), 1.46 (s, 9H), 0.89 (t, J = 6.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.5, 170.1, 155.6, 131.7, 128.6, 128.4, 122.9, 92.9, 80.3, 78.1, 53.2, 52.9, 52.0, 40.9, 37.5, 28.3, 24.7, 22.9, 21.7. HRMS (ESI) m/z: calcd for C₂₃H₃₂N₂O₅SNa [M+Na]⁺: 471.1924, found: 471.1934.

Methyl *N*-((tert-butoxycarbonyl)-L-alloisoleucyl)-*S*-(phenylethynyl)-L-cysteinate (**3ai**)

Light yellow solid (75.2 mg, 84%).¹H NMR (400 MHz,
Chloroform-*d*)
$$\delta$$
 7.45 – 7.39 (m, 2H), 7.33 – 7.27 (m, 3H),
7.10 (s, 1H), 5.12 (s, 1H), 5.01 – 4.92 (m, 1H), 4.07 (s,
1H), 3.72 (s, 3H), 3.38 – 3.25 (m, 2H), 1.97 – 1.88 (m, 1H), 1.50 – 1.42 (m, 10H),
1.15 – 1.06 (d, *J* = 7.5 Hz, 1H), 0.94 (d, *J* = 6.8 Hz, 3H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C
NMR (100 MHz, Chloroform-*d*) δ 171.6, 170.1, 155.7, 131.7, 128.5, 128.4, 122.8,
93.2, 80.0, 77.8, 59.3, 52.8, 51.8, 37.5, 37.2, 28.3, 24.7, 15.6, 11.5. HRMS (ESI) m/z:
calcd for C₂₃H₃₂N₂O₅SNa [M+Na]⁺: 471.1924, found: 471.1927.

Methyl N-((tert-butoxycarbonyl)-L-methionyl)-S-(phenylethynyl)-L-cysteinate (3aj)

Light yellow solid (76.4 mg, 82%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.39 (m, 2H), 7.34 – 7.25 (m, 4H), 5.24 (s, 1H), 5.00 – 4.93 (m, 1H), 4.35 (s, 1H), 3.73 (s, 3H), 3.37 – 3.26 (m, 2H), 2.56 (t, *J* = 7.2 Hz, 2H), 2.16 –

2.10 (m, 1H), 2.09 (s, 3H), 1.97 - 1.89 (m, 1H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.5, 170.0, 155.5, 131.7, 128.6, 128.4, 122.8, 93.2, 80.3, 77.8, 53.4, 52.9, 51.9, 37.4, 31.5, 30.1, 28.3, 15.2. HRMS (ESI) m/z: calcd for C₂₂H₃₀N₂O₅S₂Na [M+Na]⁺: 489.1488, found: 489.1498.

Methyl *N*-((tert-butoxycarbonyl)-L-tryptophyl)-*S*-(phenylethynyl)-L-cysteinate (**3ak**)

Light yellow solid (95.8 mg, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.42 – 7.23 (m, 6H), 7.20 – 7.13 (m, 1H), 7.12 – 7.05 (m, 1H), 7.04 – 6.87 (m, 2H), 5.20 (s, 1H), 4.83 (s, 1H),

4.51 (s, 1H), 3.61 (s, 3H), 3.38 – 3.03 (m, 4H), 1.42 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.9, 169.8, 155.5, 136.3, 131.7, 128.5, 128.4, 127.5, 123.3, 122.9, 122.2, 119.7, 118.7, 111.4, 110.1, 92.9, 80.3, 78.1, 52.8, 51.8, 37.6, 31.6, 28.3, 22.7,

14.2. HRMS (ESI) m/z: calcd for C₂₈H₃₁N₃O₅SNa [M+Na]⁺: 544.1877, found: 544.1880.

Methyl N-((tert-butoxycarbonyl)-L-tyrosyl)-S-(phenylethynyl)-L-cysteinate (3al)

Light yellow solid (85.1 mg, 85%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.37 (m, 2H), 7.34 – 7.25 (m, 3H), 7.07 (s, 1H), 6.99 – 6.84 (m, 3H), 6.71 (d, J = 7.6 Hz, 2H), 5.14 – 4.99 (m, 1H), 4.91 (s, 1H), 4.37

(s, 1H), 3.69 (s, 3H), 3.31 - 3.19 (m, 2H), 3.07 - 2.86 (m, 2H), 1.42 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 169.9, 155.6, 155.3, 131.7, 130.3, 128.6, 128.5, 127.5, 122.8, 115.7, 93.0, 80.7, 77.9, 55.9, 53.0, 52.0, 37.4, 31.6, 28.3, 22.7, 14.2. HRMS (ESI) m/z: calcd for C₂₆H₃₀N₂O₆SNa [M+Na]⁺: 521.1717, found: 521.1709.

Methyl N-((tert-butoxycarbonyl)-L-seryl)-S-(phenylethynyl)-L-cysteinate (3am)

Methyl N-((tert-butoxycarbonyl)-L-threonyl)-S-(phenylethynyl)-L-cysteinate (3an)

Light yellow solid (54.1 mg, 62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.46 – 7.39 (m, 2H), 7.33 – 7.27 (m, 3H), 5.53 (s, 1H), 5.00 – 4.89 (m, 1H), 4.41 –

4.30 (s, 1H), 4.18 (d, J = 6.8 Hz, 1H), 3.73 (s, 3H), 3.31 (d, J = 5.1 Hz, 2H), 2.04 – 1.86 (s, 1H), 1.46 (s, 9H), 1.19 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.4, 170.1, 156.3, 131.7, 128.6, 128.4, 122.8, 93.4, 80.5, 77.5,

66.9, 58.3, 53.0, 51.8, 37.3, 28.3, 18.1. HRMS (ESI) m/z: calcd for C₂₁H₂₈N₂O₆SNa [M+Na]⁺: 459.1560, found: 459.1566.

(S)-3-((tert-butoxycarbonyl)amino)-4-(((R)-1-methoxy-1-oxo-3-((phenyleth Methyl ynyl)thio) propan-2-yl)amino)-4-oxobutanoate (**3ao**)

9H). ¹³C NMR (100 MHz, Chloroform-d) δ 172.1, 170.7, 169.9, 155.5, 131.7, 128.5, 128.4, 122.9, 93.1, 80.7, 77.8, 52.9, 52.1, 51.9, 50.6, 37.4, 35.9, 28.3. HRMS (ESI) m/z: calcd for $C_{22}H_{28}N_2O_7SNa$ [M+Na]⁺: 487.1509, found: 487.1508.

(S)-4-((tert-butoxycarbonyl)amino)-5-(((R)-1-methoxy-1-oxo-3-((phenyleth Methyl ynyl)thio)propan-2-yl)amino)-5-oxopentanoate (3ap)

Light yellow solid (82.0 mg, 86%). ¹H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.39 (m, 2H), 7.34 – 7.26 (m, 4H), 5.29 (s, 1H), 4.98 – 4.91 (m, 1H), 4.24 (s, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 3.31 (t, *J* = 4.5 Hz, 2H), 2.51 – 2.41

(m, 2H), 2.00 - 1.90 (m, 2H), 1.45 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 173.7, 171.5, 170.0, 155.6, 131.7, 128.5, 128.4, 122.8, 93.2, 80.3, 77.7, 53.7, 52.9, 51.9, 37.4, 30.2, 28.3, 27.7. HRMS (ESI) m/z: calcd for C₂₃H₃₀N₂O₇SNa [M+Na]⁺: 501.1666, found: 501.1663.

Methyl N-((tert-butoxycarbonyl)-L-asparaginyl)-S-(phenylethynyl)-L-cysteinate (3aq)

3H), 3.31 – 3.24 (m, 1H), 3.21 – 3.10 (m, 1H), 2.48 – 2.32 (m, 2H), 1.38 (s, 9H). ¹³C S19

NMR (100 MHz, DMSO-*d*₆) δ 172.5, 171.8, 170.8, 155.6, 131.7, 129.2, 122.8, 93.5, 79.2, 78.7, 52.8, 51.9, 51.6, 37.6, 36.9, 28.6. HRMS (ESI) m/z: calcd for C₂₁H₂₇N₃O₆SNa [M+Na]⁺: 472.1513, found: 472.1492.

Methyl *N*-((tert-butoxycarbonyl)-L-glutaminyl)-*S*-(phenylethynyl)-L-cysteinate (**3ar**)

Light yellow solid (74.1 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.47 – 7.37 (m, 2H), 7.34 – 7.24 (m, 3H), 6.55 (s, 1H), 6.17 (s, 1H), 5.74 (s, 1H), 5.01 – 4.86 (m, 1H), 4.34 – 4.22 (m, 1H), 3.72 (s, 3H),

3.38 - 3.18 (m, 2H), 2.43 - 2.33 (m, 2H), 2.11 - 1.96 (m, 2H), 1.43 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.7, 172.0, 170.7, 155.9, 131.7, 128.5, 128.4, 122.9, 93.5, 80.2, 77.8, 53.6, 52.9, 51.9, 37.2, 31.7, 29.0, 28.3. HRMS (ESI) m/z: calcd for C₂₂H₂₉N₃O₆SNa [M+Na]⁺: 486.1669, found: 486.1627.

Methyl N-(N^2 -acetyl- N^6 -(tert-butoxycarbonyl)-L-lysyl)-S-(phenylethynyl)-L-cystein ate (**3as**)

Light yellow solid (71.7 mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.36 (m, 3H), 7.33 – 7.27 (m, 3H), 6.48 (s, 1H), 4.97 – 4.86 (m, 1H), 4.82 – 4.70 (m, 1H), 4.58 – 4.50 (m, 1H), 3.74 (s, 3H), 3.30 (d, *J* = 4.7 Hz, 2H), 3.14 – 3.03 (m, 2H), 2.10 – 2.05 (m, 1H), 2.00 (s, 3H), 1.90 – 1.82 (m, 1H), 1.72 – 1.63 (m, 1H), 1.48 – 1.38 (m, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 170.4, 170.1, 156.2, 131.6, 128.5, 128.4, 122.8, 93.4, 79.1, 77.8, 53.0, 52.9, 51.9, 39.9, 37.3, 31.9, 29.6, 28.4, 23.1, 22.3. HRMS (ESI) m/z: calcd for C₂₅H₃₅N₃O₆SNa [M+Na]⁺: 528.2139, found: 528.2151.

Methyl *N*-(tert-butoxycarbonyl)glycyl-L-prolyl-*S*-(phenylethynyl)-L-cysteinate (**3at**)

7.34 – 7.24 (m, 3H), 5.46 (s, 1H), 4.96 – 4.78 (m, 1H), 4.64 (d, J = 7.4 Hz, 1H), 4.05 – 3.84 (m, 2H), 3.72 (s, 3H), 3.56 – 3.46 (m, 1H), 3.43 – 3.35 (m, 1H), 3.30 (d, J = 5.2 Hz, 2H), 2.43 – 2.30 (m, 1H), 2.16 – 1.82 (m, 4H), 1.44 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.9, 170.2, 168.8, 155.8, 131.6, 128.4(3), 128.3(7), 93.3, 79.7, 60.1, 52.8, 51.8, 46.2, 43.1, 37.3, 28.3, 27.5, 24.5. HRMS (ESI) m/z: calcd for C₂₄H₃₁N₃O₆SNa [M+Na]⁺: 512.1826, found: 512.1804.

Methyl *N*-(tert-butoxycarbonyl)valyl-L-prolyl-*S*-(phenylethynyl)-L-cysteinate (**3au**)

Light yellow oil (84.9 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (s, 1H), 7.43 – 7.37 (m, 2H), 7.32 – 7.26 (m, 3H), 5.30 (s, 1H), 4.91 – 4.83 (m, 1H),

4.70 – 4.60 (m, 1H), 4.37 – 4.24 (m, 1H), 3.75 – 3.67 (m, 4H), 3.62 – 3.56 (m, 1H), 3.36 – 3.22 (m, 2H), 2.34 (d, J = 9.6 Hz, 1H), 2.10 – 1.93 (m, 4H), 1.43 (s, 9H), 1.03 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.7, 171.1, 170.1, 155.9, 131.6, 128.4, 128.3, 123.0, 93.1, 79.6, 77.9, 60.0, 56.8, 52.8, 51.9, 47.6, 37.5, 31.6, 28.3, 27.4, 25.1, 19.7, 17.4. HRMS (ESI) m/z: calcd for C₂₇H₃₇N₃O₆SNa [M+Na]⁺: 554.2295, found: 554.2247.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-((4-fluorophenyl)ethynyl)-L-cyst einate (**3ba**)

Light yellow solid (80.1 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.37 (m, 2H), 7.30 – 7.22 (m, 3H), 7.13 (d, *J* = 7.0 Hz, 2H), 7.05 – 6.96 (m, 3H), 4.99 (s, 1H), 4.94 – 4.89 (m, 1H), 4.44 (s, 1H),

3.69 (s, 3H), 3.26 (d, J = 4.8 Hz, 2H), 3.16 – 2.97 (m, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.9, 162.6 (d, J = 248.8 Hz, 1C), 155.3, 136.4, 133.9, 133.8, 129.3, 128.7, 127.0, 119.0 (d, J = 3.3 Hz, 1C), 115.9, 115.7, 91.9, 80.4, 77.8, 55.6, 52.8, 51.9, 38.1, 37.4, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 109.97. HRMS (ESI) m/z: calcd for C₂₆H₂₉FN₂O₅SNa [M+Na]⁺: 523.1673, found: 523.1638.

Methyl S-((4-bromophenyl)ethynyl)-N-((tert-butoxycarbonyl)-L-phenylalanyl)-L-cyst einate (3bb)

Light yellow solid (72.7 mg, 65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.5 Hz, 2H), 7.30 – 7.22 (m, 5H), 7.12 (d, J = 7.0 Hz, 2H), 6.92 (s, 1H), 4.99 – 4.83 (m, 2H), 4.47 – 4.34 (m, 1H), 3.70 (s, 3H), 3.27 (d, J = 4.7 Hz, 2H), 3.15 - 2.98 (m, 2H), 1.41 (s, 9H). ¹³C NMR (100 MHz,

Chloroform-d) § 171.2, 169.7, 155.3, 133.3, 133.1, 131.7, 129.2, 128.7, 127.1, 122.8, 121.8, 91.9, 80.5, 79.6, 76.7, 55.7, 52.9, 52.0, 37.5, 34.0, 28.2. HRMS (ESI) m/z: calcd for C₂₆H₂₉BrN₂O₅SNa [M+Na]⁺: 583.0873, found: 583.0883.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-((4-(trifluoromethyl)phenyl)ethyn yl)-L-cysteinate (3bc)

Light yellow solid (90.2 mg, 82%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.30 - 7.22 (m, 3H), 7.13 (d, J =6.9 Hz, 2H), 7.02 (s, 1H), 4.95 (d, J = 25.7 Hz, 2H),

4.44 (s, 1H), 3.71 (s, 3H), 3.30 (d, J = 4.7 Hz, 2H), 3.16 – 3.00 (m, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 171.3, 169.8, 155.4, 136.3, 131.5, 129.9 (d, J =32.6 Hz, 1C), 129.2, 128.7, 127.0, 126.7, 125.3(8) (d, J = 38.5 Hz, 1C), 125.3(7) (q, J = 3.8 Hz, 2C), 122.5, 91.8, 81.5, 80.4, 55.7, 52.7, 51.9, 38.1, 37.5, 28.2. ¹⁹F NMR (376 MHz, Chloroform-d) δ 62.82. HRMS (ESI) m/z: calcd for C₂₇H₂₉F₃N₂O₅SNa [M+Na]⁺: 573.1641, found: 573.1619.

N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-((4-cyanophenyl)ethynyl)-L-Methyl cysteinate (3bd)

Yellow solid (68.6 mg, 68%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 7.15 (d, J = 6.9 Hz, 2H), 6.87 (s, 1H), 4.99 – 4.86 (m, 2H), 4.41 (s, 1H), 3.71 (s, 3H), 3.30 (d, J = 3.7 Hz, 2H), 3.09 (d, J = 6.2 Hz, 2H), 1.41 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.7, 155.3, 136.2, 132.1, 131.5, 129.2, 128.8, 127.7, 127.1, 118.4, 111.4, 91.8, 84.1, 80.5, 55.7, 52.9, 51.9, 38.1, 37.6, 28.2. HRMS (ESI) m/z: calcd for C₂₇H₂₉N₃O₅SNa [M+Na]⁺: 530.1720, found: 530.1686.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(p-tolylethynyl)-L-cysteinate (**3be**)

Light yellow solid (79.4 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (d, J = 8.0 Hz, 2H), 7.27 – 7.20 m, 3H), 7.13 – 7.07 (m, 4H), 7.06 – 7.01 (m, 1H), 4.99 – 4.87 (m, 2H), 4.42 (s, 1H), 3.70 (s, 3H), 3.26 (d, J = 4.5

Hz, 2H), 3.17 - 3.11 (m, 1H), 3.00 - 2.90 (m, 1H), 2.35 (s, 3H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.8, 155.3, 138.9, 136.4, 131.9, 129.2(6), 129.2(5), 128.7, 127.0, 119.8, 93.0, 80.4, 55.7, 52.9, 52.0, 38.1, 37.5, 28.2, 21.5. HRMS (ESI) m/z: calcd for C₂₇H₃₂N₂O₅SNa [M+Na]⁺: 519.1924, found: 519.1944

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-((4-ethylphenyl)ethynyl)-Lcysteinate (**3bf**)

Light yellow solid (75.4 mg, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (d, J = 8.0 Hz, 2H), 7.27 – 7.21 (m, 3H), 7.14 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 6.9 Hz, 2H), 7.03 (s, 1H), 4.98 – 4.83 (m, 2H), 4.42 (s,

1H), 3.70 (s, 3H), 3.27 (d, J = 4.5 Hz, 2H), 3.18 – 3.11 (m, 1H), 3.00 – 2.90 (m, 1H), 2.64 (q, J = 7.6 Hz, 2H), 1.40 (s, 9H), 1.22 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.8, 155.3, 145.2, 136.4, 131.9, 129.2, 128.7, 128.1, 127.0, 120.0, 93.0, 80.4, 55.7, 52.9, 52.1, 38.1, 37.5, 28.8, 28.2, 15.3. HRMS (ESI) m/z: calcd for C₂₈H₃₄N₂O₅SNa [M+Na]⁺: 533.2081, found: 533.2060.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-((4-(tert-butyl)phenyl)ethynyl)-L-

cysteinate (3bg)

Light yellow solid (84.7 mg, 79%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.30 (m, 4H), 7.28 – 7.20 (m, 3H), 7.13 – 7.02 (m, 3H), 4.92 (s, 2H), 4.43 (s, 1H), 3.71 (s, 3H), 3.27 (d, *J* = 4.3 Hz, 2H), 3.20 –

3.12 (m, 1H), 3.01 - 2.88 (m, 1H), 1.40 (s, 9H), 1.30 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.9, 155.3, 152.0, 136.5, 131.7, 129.2, 128.7, 127.0, 125.5, 119.8, 93.3, 80.4, 55.7, 52.9, 52.1, 38.1, 37.5, 34.8, 31.2, 28.2. HRMS (ESI) m/z: calcd for C₃₀H₃₉N₂O₅SNa [M+Na]⁺: 561.2394, found: 561.2360.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-((4-methoxyphenyl)ethynyl)-Lcysteinate (**3bh**)

Light yellow solid (58.2 mg, 57%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 8.7 Hz, 2H), 7.28 (s, 1H), 7.25 – 7.21 (m, 2H), 7.09 (d, J = 7.3 Hz, 2H), 7.00 (d, J = 7.3 Hz, 1H), 6.86 – 6.80 (m,

2H), 4.98 - 4.83 (m, 2H), 4.41 (s, 1H), 3.81 (s, 3H), 3.70 (s, 3H), 3.25 (d, J = 4.3 Hz, 2H), 3.17 - 3.11 (m, 1H), 3.02 - 2.92 (m, 1H), 1.41 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.1, 169.9, 160.0, 136.4, 133.8, 129.2, 128.7, 127.0, 114.9, 114.1, 92.9, 80.4, 76.2, 55.7, 55.3, 52.8, 52.1, 38.1, 37.5, 28.2. HRMS (ESI) m/z: calcd for C₂₇H₃₂N₂O₆SNa [M+Na]⁺: 535.1873, found: 535.1835.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(o-tolylethynyl)-L-cysteinate (**3bi**)

2H), 3.17 – 3.09 (m, 1H), 3.02 – 2.90 (m, 1H), 2.41 (s, 3H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.9, 155.4, 140.6, 136.4, 132.1, 129.6, 129.3,

128.7, 128.6, 127.0, 125.7, 122.7, 91.9, 81.5, 80.4, 55.7, 52.8, 52.0, 38.1, 37.8, 28.3, 20.7. HRMS (ESI) m/z: calcd for $C_{27}H_{32}N_2O_5SNa$ [M+Na]⁺: 519.1924, found: 519.1901.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(m-tolylethynyl)-*L*-cysteinate (**3bj**)

2.30 (s, 3H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.9, 155.4, 138.2, 136.4, 132.3, 129.5, 129.2, 128.9, 128.7, 128.4, 127.0, 93.1, 80.3, 77.7, 55.7, 52.9, 52.1, 38.1, 37.5, 28.2, 21.2. HRMS (ESI) m/z: calcd for C₂₇H₃₂N₂O₅SNa [M+Na]⁺: 519.1924, found: 519.1899.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(mesitylethynyl)-L-cysteinate (**3bk**)

3H), 3.34 - 3.19 (m, 2H), 3.17 - 3.10 (m, 1H), 2.93 - 2.83 (m, 1H), 2.38 (s, 6H), 2.27 (s, 3H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.4. 169.9, 155.4, 140.8, 138.2, 136.4, 129.2, 128.7, 127.8, 127.0, 119.7, 90.9, 84.4, 80.4, 76.8, 55.8, 52.7, 52.1, 38.1, 28.2, 21.4, 21.0. HRMS (ESI) m/z: calcd for C₂₉H₃₆N₂O₅SNa [M+Na]⁺: 547.2237, found: 547.2208.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-((triisopropylsilyl)ethynyl)-Lcysteinate (**3bl**)

Light yellow solid (94.3 mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (t, *J* = 7.2 Hz, 2H), 7.25 (d, *J* = 7.1 Hz, 1H), 7.20 (d, J = 7.0 Hz, 2H), 6.76 (s, 1H), 5.02 (s, 1H), 4.84 - 4.76 (m, 1H), 4.48 - 4.32 (m, 1H), 3.75 (s,

3H), 3.28 – 3.11 (m, 1H), 3.15 – 3.06 (m, 3H), 1.41 (s, 9H), 1.07 (s, 21H). ¹³C NMR (100 MHz, Chloroform-d) & 171.2, 169.9, 155.3, 136.3, 129.3, 128.7, 127.0, 98.2, 94.1, 80.3, 55.5, 52.8, 51.7, 38.1, 28.3, 18.6, 11.3. HRMS (ESI) m/z: calcd for C₂₉H₄₆SiN₂O₅SNa [M+Na]⁺: 585.2789, found: 585.2757.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(oct-1-yn-1-yl)-L-cysteinate (**3bm**)

Colorless oil, (33.3 mg, 34%). ¹H NMR (400 MHz, Chloroform-d) δ 7.32 – 7.28 (m, 2H), 7.26 – 7.19 (m, 3H), 6.70 (s, 1H), 5.00 (s, 1H), 4.81 – 4.74 (m, 1H), 4.40 (s, 1H), 3.74 (s, 3H), 3.25 – 3.15 (m, 2H), 3.14 – 2.99 (m, 4H), 2.23

-2.16 (m, 2H), 1.54 - 1.47 (m, 2H), 1.41 (s, 9H), 1.37 - 1.30 (m, 4H), 0.90 (t, J = 7.0Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 171.1, 170.8, 155.3, 136.5, 129.4, 128.7, 127.0, 124.8, 84.8, 74.6, 55.6, 52.6, 51.7, 38.2, 33.2, 31.1, 28.4, 28.3, 22.2, 20.4, 18.8, 14.0. HRMS (ESI) m/z: calcd for C₂₆H₃₈N₂O₅SNa [M+Na]⁺: 513.2394, found: 513.2359.

N-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(cyclohex-1-en-1-ylethynyl)-L-Methvl cysteinate (3bn)

3.75 (s, 3H), 3.20 - 3.01 (m, 4H), 2.12 - 2.05 (m, 4H), 1.63 - 1.53 (m, 4H), 1.41 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.1, 169.9, 155.3, 136.4, 136.2, 129.3, 128.7, 127.0, 124.8, 120.7, 94.9, 80.4, 74.6, 55.6, 52.8, 52.0, 38.2, 37.5, 29.1, 28.2,

25.7, 22.2, 21.4. HRMS (ESI) m/z: calcd for C₂₆H₃₄N₂O₅SNa [M+Na]⁺: 509.2081, found: 509.2134.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-S-(naphthalen-1-ylethynyl)-Lcysteinate (**3bo**)

(m, 3H), 7.11 - 7.04 (m, 1H), 7.01 (d, J = 6.6 Hz, 2H), 5.06 - 4.80 (m, 2H), 4.42 (s, 1H), 3.65 (s, 3H), 3.45 - 3.33 (m, 2H), 3.16 - 3.07 (m, 1H), 2.96 - 2.83 (m, 1H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 169.8, 155.4, 136.3, 133.4, 133.2, 130.9, 129.2, 129.1, 128.7, 128.4, 127.1, 127.0, 126.6, 126.1, 125.3, 120.5, 91.0, 82.9, 80.4, 55.7, 52.9, 52.2, 37.9, 28.2. HRMS (ESI) m/z: calcd for $C_{30}H_{32}N_2O_5SNa$ [M+Na]⁺: 555.1924, found: 555.1915.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-S-(thiophen-2-ylethynyl)-Lcysteinate (**3bp**)

2H), 4.42 (s, 1H), 3.72 (s, 3H), 3.32 - 3.23 (m, 2H), 3.18 - 3.11 (m, 1H), 3.04 - 2.94 (m, 1H), 1.41 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.1, 169.7, 155.3, 136.3, 133.7, 129.2, 128.7, 128.5, 127.1, 127.0, 123.0, 85.6, 82.7, 80.5, 55.6, 52.9, 52.0, 38.0, 37.6, 28.2. HRMS (ESI) m/z: calcd for C₂₄H₂₈N₂O₅S₂Na [M+Na]⁺: 511.1332, found: 511.1314.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-((phenylethynyl)thio)tetrahydro-2H-pyran-3,4, 5-triyl triacetate (**5a**)

Light yellow solid (61.1 mg, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.47 (m, 2H), 7.37 – 7.29 (m, 3H), 5.36 – 5.25 (m, 2H), 5.15 (t, *J* = 9.6 Hz, 1H), 4.63 (d, *J* =

9.3 Hz, 1H), 4.30 - 4.24 (m, 1H), 4.22 - 4.16 (m, 1H), 3.83 - 3.77 (m, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.2, 169.4, 169.1, 132.1, 128.9, 128.3, 122.6, 97.1, 84.4, 76.5, 73.9, 72.5, 69.8, 67.8, 62.0, 20.7(3), 20.6(9), 20.6(2), 20.5(9). HRMS (ESI) m/z: calcd for C₂₂H₂₄O₉SNa [M+Na]⁺: 487.1032, found: 487.1032.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-((p-tolylethynyl)thio)tetrahydro-2H-pyran-3,4, 5-triyl triacetate (**5b**)

4.62 (d, J = 9.2 Hz, 1H), 4.30 – 4.23 (m, 1H), 4.22 – 4.15 (m, 1H), 3.84 – 3.75 (m, 1H), 2.36 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.7 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.2, 169.4, 169.0, 139.2, 132.2, 129.1, 119.5, 97.3, 84.5, 76.5, 73.9, 71.6, 69.8, 67.9, 62.0, 21.6, 20.7(3), 20.6(8), 20.6(2), 20.5(8). HRMS (ESI) m/z: calcd for C₂₃H₂₆O₉SNa [M+Na]⁺: 501.1190, found: 501.1143.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-((o-tolylethynyl)thio)tetrahydro-2H-pyran-3,4, 5-triyl triacetate (**5c**)

Light yellow solid (69.2 mg, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, J = 7.5 Hz, 1H), 7.27 – 7.18 (m, 2H), 7.14 (t, J = 7.2 Hz, 1H), 5.36 – 5.25 (m, 2H), 5.12 (d, J

= 9.4 Hz, 1H), 4.62 (d, J = 9.3 Hz, 1H), 4.31 – 4.24 (m, 1H), 4.22 – 4.15 (m, 1H), 3.85 – 3.77 (m, 1H), 2.46 (s, 3H), 2.10 (s, 3H), 2.07 – 2.00 (m, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.2, 169.3, 169.0, 140.7, 132.3, 129.5, 128.8, 125.6, 122.5, 96.0, 84.4, 76.5, 76.1, 73.8, 69.9, 67.8, 62.0, 20.7(3), 20.7(0), 20.6(7), 20.6(2), 20.5(8). HRMS (ESI) m/z: calcd for C₂₃H₂₆O₉SNa [M+Na]⁺: 501.1190, found: 501.1167.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-((m-tolylethynyl)thio)tetrahydro-2H-pyran-3,4 ,5-triyl triacetate (**5d**)

Light yellow solid (70.4 mg, 74%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, J = 8.3 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 7.4 Hz, 1H), 5.35 – 5.24 (m, 2H),

5.15 (t, J = 9.4 Hz, 1H), 4.62 (d, J = 9.1 Hz, 1H), 4.30 – 4.23 (m, 1H), 4.22 – 4.15 (m, 1H), 3.84 – 3.76 (m, 1H), 2.34 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.1 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.2, 169.4, 138.0, 132.6, 129.8, 129.2, 128.2, 122.4, 97.2, 84.5, 76.5, 73.9, 72.1, 69.8, 67.9, 62.0, 21.2, 20.7(2), 20.6(8), 20.6(2), 20.5(8). HRMS (ESI) m/z: calcd for C₂₃H₂₆O₉SNa [M+Na]⁺: 501.1190, found: 501.1162.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-((mesitylethynyl)thio)tetrahydro-2H-pyran-3,4 ,5-triyl triacetate (**5e**)

1H), 4.19 - 4.14 (m, 1H), 3.82 - 3.77 (m, 1H), 2.41 (s, 6H), 2.28 (s, 3H), 2.09 (s, 3H), 2.04 (d, J = 5.8 Hz, 6H), 2.01 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.3, 169.3, 169.0, 140.9, 138.4, 131.1, 129.3, 127.6, 124.8, 119.6, 94.9, 84.5, 79.1, 76.4, 73.8, 69.9, 67.8, 62.0, 21.4, 21.0, 20.7(0), 20.6(7), 20.6(2), 20.5(9). HRMS (ESI) m/z: calcd for C₂₅H₃₀O₉SNa [M+Na]⁺: 529.1503, found: 529.1482.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(((4-methoxyphenyl)ethynyl)thio)tetrahydro-2 H-pyran-3,4,5-triyl triacetate (**5f**)

Yellow oil (26.2 mg, 27%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.37 – 5.24 (m, 2H), 5.14 (t, J = 9.5 Hz,

1H), 4.59 (d, J = 9.4 Hz, 1H), 4.29 – 4.23 (m, 1H), 4.21 – 4.15 (m, 1H), 3.82 (s, 3H), 3.80 – 3.76 (m, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.7 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.3, 169.4, 169.1, 160.2, 134.1, 114.7, 114.0, 97.2, 84.5, 73.9, 70.7, 69.7, 67.9, 62.0, 55.3, 20.7(4), 20.7(1), 20.6(2), 20.5(9). HRMS (ESI) m/z: calcd for C₂₃H₂₆O₁₀SNa [M+Na]⁺: 517.1139, found: 517.1094.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(((4-fluorophenyl)ethynyl)thio)tetrahydro-2Hpyran-3,4,5-triyl triacetate (**5g**)

J = 9.5 Hz, 1H), 4.30 – 4.23 (m, 1H), 4.22 – 4.16 (m, 1H), 3.84 – 3.77 (m, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.6 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.6, 170.2, 169.4, 169.0, 164.1, 161.4, 134.4, 134.3, 118.7 (d, J = 5.1 Hz, 1C), 115.8, 115.3, 96.1, 84.2, 76.5, 73.9, 72.2, 69.7, 67.8, 62.0, 20.7(1), 20.6(7), 20.6(0), 20.5(7). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 109.49. HRMS (ESI) m/z: calcd for C₂₂H₂₃FO₉SNa [M+Na]⁺: 505.0939, found: 505.0900.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(((4-bromophenyl)ethynyl)thio)tetrahydro-2Hpyran-3,4,5-triyl triacetate (**5h**)

Yellow solid (70.3 mg, 65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4Hz, 2H), 5.36 – 5.24 (m, 2H), 5.14 (t, J = 9.5 Hz, 1H),

4.61 (d, J = 9.3 Hz, 1H), 4.30 – 4.23 (m, 1H), 4.21 – 4.15 (m, 1H), 3.84 – 3.77 (m, 1H), 2.10 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.7 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.2, 169.4, 169.0, 133.5, 131.6, 123.3, 121.5, 96.2, 84.3,

76.6, 74.0, 73.9, 69.7, 67.8, 62.0, 20.7(5), 20.6(8), 20.6(2), 20.5(9). HRMS (ESI) m/z: calcd for C₂₂H₂₃BrO₉SNa [M+Na]⁺: 565.0138, found: 565.0112.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(((4-(trifluoromethyl)phenyl)ethynyl)thio)tetra hydro-2H-pyran-3,4,5-triyl triacetate (**5i**)

-4.24 (m, 1H), 4.19 (d, J = 11.4 Hz, 1H), 3.86 -3.78 (m, 1H), 2.10 (s, 3H), 2.08 -2.01 (m, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.6, 170.2, 169.4, 169.0, 132.0, 130.3 (q, J = 32.5 Hz, 1C), 126.4, 125.3 (q, J = 3.7 Hz, 2C), 123.8 (q, J = 270.8 Hz, 1C), 95.9, 84.2, 76.6, 75.8, 73.8, 69.7, 67.8, 61.9, 20.7, 20.6(3), 20.5(8), 20.5(5). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 62.88. HRMS (ESI) m/z: calcd for C₂₃H₂₃F₃O₉SNa [M+Na]⁺: 555.0907, found: 555.0876.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(((4-cyanophenyl)ethynyl)thio)tetrahydro-2Hpyran-3,4,5-triyl triacetate (**5j**)

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(((4-(tert-butyl)phenyl)ethynyl)thio)tetrahydro -2H-pyran-3,4,5-triyl triacetate (**5**k)

Light yellow solid (72.9 mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 5.36 – 5.24 (m, 2H), 5.13 (t, J = 9.5 Hz,

1H), 4.62 (d, J = 9.3 Hz, 1H), 4.29 – 4.23 (m, 1H), 4.21 – 4.15 (m, 1H), 3.83 – 3.76 (m, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.9 Hz, 6H), 1.31 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.2, 169.3, 169.0, 152.4, 132.1, 125.4, 119.6, 97.3, 84.5, 76.5, 73.9, 71.6, 69.8, 67.9, 62.0, 34.9, 31.1, 20.7(4), 20.6(9), 20.6(2), 20.5(8). HRMS (ESI) m/z: calcd for C₂₆H₃₂O₉SNa [M+Na]⁺: 543.1659, found: 543.1628.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(((4-ethylphenyl)ethynyl)thio)tetrahydro-2H-p yran-3,4,5-triyl triacetate (**5**l)

AcO
AcO
AcO
AcOLight yellow solid (57.0 mg, 58%). ¹H NMR (400 MHz,
Chloroform-d) δ 7.43 (d, J = 8.1 Hz, 2H), 7.16 (d, J =
8.1 Hz, 2H), 5.35 - 5.24 (m, 2H), 5.14 (t, J = 9.6 Hz,

1H), 4.61 (d, J = 9.3 Hz, 1H), 4.29 – 4.23 (m, 1H), 4.22 – 4.15 (m, 1H), 3.84 – 3.75 (m, 1H), 2.65 (q, J = 7.6 Hz, 2H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (d, J = 5.7 Hz, 6H), 1.23 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.7, 170.3, 169.4, 169.1, 145.6, 132.3, 127.9, 119.8, 97.3, 84.5, 76.5, 73.9, 71.6, 69.8, 67.9, 62.0, 28.9, 20.7(5), 20.7(0), 20.6(3), 20.5(9), 15.4. HRMS (ESI) m/z: calcd for C₂₄H₂₈O₉SNa [M+Na]⁺: 515.1346, found: 515.1324.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(oct-1-yn-1-ylthio)tetrahydro-2H-pyran-3,4,5triyl triacetate (**5m**)

4.17 – 4.12 (m, 1H), 3.74 – 3.69 (m, 1H), 3.56 (dt, J = 16.0, 2.3 Hz, 1H), 3.31 (dt, J = 16.1, 2.4 Hz, 1H), 2.23 – 2.18 (m, 2H), 2.09 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.54 – 1.48 (q, J = 7.1 Hz, 2H), 1.39 – 1.31 (m, 4H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C

NMR (100 MHz, Chloroform-d) δ 170.7, 170.3, 169.5, 169.4, 84.6, 82.2, 75.9, 74.3, 73.9, 69.8, 68.3, 62.0, 31.1, 28.4, 22.2, 20.7(8), 20.7(3), 20.6(6), 20.6(2), 18.8, 18.4, 14.0. HRMS (ESI) m/z: calcd for C₂₂H₃₂O₉SNa [M+Na]⁺: 495.1659, found: 495.1629.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((cyclohex-1-en-1-ylethynyl)thio)tetrahydro-2 H-pyran-3,4,5-triyl triacetate (5n)

Chloroform-d) δ 6.26 – 6.19 (m, 1H), 5.28 – 5.22 (m, 2H), 5.16 - 5.11 (m, 1H), 4.55 - 4.50 (m, 1H), 4.28 - 4.23 (m,

1H), 4.19 – 4.15 (m, 1H), 3.79 – 3.74 (m, 1H), 2.18 – 2.11 (m, 4H), 2.09 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.69 - 1.59 (m, 4H). ¹³C NMR (100 MHz, Chloroform-d) & 170.7, 170.3, 169.4, 169.0, 137.3, 120.6, 99.1, 84.5, 76.4, 73.9, 69.7, 69.0, 67.9, 62.0, 28.9, 25.8, 22.2, 21.4, 20.8, 20.7, 20.6(5), 20.6(2). HRMS (ESI) m/z: calcd for C₂₂H₂₈O₉SNa [M+Na]⁺: 491.1346, found: 491.1348.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((triisopropylsilyl)ethynyl)thio)tetrahydro-2H -pyran-3,4,5-triyl triacetate (50)

Light yellow solid (77.4 mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.26 (d, *J* = 4.1 Hz, 2H), 5.10 (d, *J* = 8.3 Hz, 1H), 4.62 - 4.51 (m, 1H), 4.31 - 4.22 (m, 1H), 4.13 (d, J =

12.1 Hz, 1H), 3.76 (d, J = 6.1 Hz, 1H), 2.08 (s, 6H), 2.02 (d, J = 6.8 Hz, 6H), 1.10 (s, 21H). ¹³C NMR (100 MHz, Chloroform-d) δ 170.7, 170.3, 169.3, 168.9, 102.3, 88.8, 84.9, 76.5, 73.8, 69.9, 67.8, 62.0, 20.7, 20.6(2), 20.6(1), 20.5(7), 18.5(9), 18.5(8), 11.3. HRMS (ESI) m/z: calcd for C₂₅H₄₀SiO₉SNa [M+Na]⁺: 567.2055, found: 567.2023.

8. Spectra

¹H NMR of 2a (400 MHz, CDCl₃)

¹³C NMR of **2a** (100 MHz, CDCl₃)

¹⁹F NMR of **2a** (376 MHz, CDCl₃)

¹H NMR of **2b** (400 MHz, CDCl₃)

¹⁹F NMR of **2b** (376 MHz, CDCl₃)

¹H NMR of **2c** (400 MHz, CDCl₃)

¹³C NMR of **2c** (100 MHz, CDCl₃)

¹⁹F NMR of **2c** (376 MHz, CDCl₃)

¹H NMR of 2d (400 MHz, CDCl₃)

¹H NMR of **3aa** (400 MHz, CDCl₃)

¹³C NMR of 3aa (100 MHz, CDCl₃)

¹H NMR of **3ab** (400 MHz, CDCl₃)

¹³C NMR of **3ab** (100 MHz, CDCl₃)

¹³C NMR of **3ac** (100 MHz, CDCl₃)

¹³C NMR of **3ad** (100 MHz, CDCl₃)

¹³C NMR of **3ae** (100 MHz, CDCl₃)

¹³C NMR of **3af** (100 MHz, CDCl₃)

¹³C NMR of **3ag** (100 MHz, CDCl₃)

¹³C NMR of **3ah** (100 MHz, CDCl₃)

¹H NMR of **3ai** (400 MHz, CDCl₃)

¹³C NMR of **3ai** (100 MHz, CDCl₃)

¹H NMR of **3aj** (400 MHz, CDCl₃)

¹³C NMR of **3aj** (100 MHz, CDCl₃)

¹H NMR of **3ak** (400 MHz, CDCl₃)

¹³C NMR of **3ak** (100 MHz, CDCl₃)

¹³C NMR of **3al** (100 MHz, CDCl₃)

¹³C NMR of **3am** (100 MHz, CDCl₃)

¹³C NMR of **3an** (100 MHz, CDCl₃)

¹³C NMR of **3ao** (100 MHz, CDCl₃)

¹H NMR of **3ap** (400 MHz, CDCl₃)

¹³C NMR of **3ap** (100 MHz, CDCl₃)

¹H NMR of **3aq** (400 MHz, DMSO-*d*₆)

 $^{13}\mathrm{C}$ NMR of **3aq** (100 MHz, DMSO- d_6)

¹³C NMR of **3ar** (100 MHz, CDCl₃)

¹³C NMR of **3as** (100 MHz, CDCl₃)

¹H NMR of **3at** (400 MHz, CDCl₃)

¹³C NMR of **3at** (100 MHz, CDCl₃)

¹³C NMR of **3au** (100 MHz, CDCl₃)

¹³C NMR of **3ba** (100 MHz, CDCl₃)

¹⁹F NMR of **3ba** (376 MHz, CDCl₃)

¹H NMR of **3bb** (400 MHz, CDCl₃)

¹³C NMR of **3bb** (100 MHz, CDCl₃)

¹H NMR of **3bc** (400 MHz, CDCl₃)

¹³C NMR of **3bc** (100 MHz, CDCl₃)

¹³C NMR of **3bd** (100 MHz, CDCl₃)

¹H NMR of **3be** (400 MHz, CDCl₃)

¹³C NMR of **3be** (100 MHz, CDCl₃)

¹H NMR of **3bg** (400 MHz, CDCl₃)

¹³C NMR of **3bg** (100 MHz, CDCl₃)

¹³C NMR of **3bh** (100 MHz, CDCl₃)

¹³C NMR of **3bi** (100 MHz, CDCl₃)

¹H NMR of **3bj** (400 MHz, CDCl₃)

¹³C NMR of **3bj** (100 MHz, CDCl₃)

¹³C NMR of **3bk** (100 MHz, CDCl₃)

¹H NMR of **3bl** (400 MHz, CDCl₃)

¹³C NMR of **3bl** (100 MHz, CDCl₃)

¹H NMR of **3bm** (400 MHz, CDCl₃)

¹³C NMR of **3bm** (100 MHz, CDCl₃)

¹³C NMR of **3bn** (100 MHz, CDCl₃)

¹H NMR of **3bo** (400 MHz, CDCl₃)

¹³C NMR of **3bo** (100 MHz, CDCl₃)

¹³C NMR of **3bp** (100 MHz, CDCl₃)

¹H NMR of **5a** (400 MHz, CDCl₃)

¹³C NMR of **5a** (100 MHz, CDCl₃)

¹H NMR of **5b** (400 MHz, CDCl₃)

¹³C NMR of **5b** (100 MHz, CDCl₃)

¹H NMR of **5c** (400 MHz, CDCl₃)

¹³C NMR of **5c** (100 MHz, CDCl₃)

¹³C NMR of **5d** (100 MHz, CDCl₃)

¹H NMR of **5e** (400 MHz, CDCl₃)

¹³C NMR of **5e** (100 MHz, CDCl₃)

¹³C NMR of **5f** (100 MHz, CDCl₃)

¹³C NMR of **5**g (100 MHz, CDCl₃)

¹⁹F NMR of **5g** (376 MHz, CDCl₃)

 1 H NMR of **5h** (400 MHz, CDCl₃)

¹³C NMR of **5h** (100 MHz, CDCl₃)

¹H NMR of 5i (400 MHz, CDCl₃)

¹³C NMR of **5i** (100 MHz, CDCl₃)

¹⁹F NMR of **5i** (376 MHz, CDCl₃)

¹³C NMR of **5j** (100 MHz, CDCl₃)

¹³C NMR of **5**k (100 MHz, CDCl₃)

¹³C NMR of **5l** (100 MHz, CDCl₃)

¹H NMR of **5m** (400 MHz, CDCl₃)

¹³C NMR of **5m** (100 MHz, CDCl₃)

¹H NMR of **5n** (400 MHz, CDCl₃)

¹³C NMR of **5n** (100 MHz, CDCl₃)

¹³C NMR of **50** (100 MHz, CDCl₃)