Supplementary Information (SI)

Transition Pathways Towards Net-Zero Emissions Methanol Production

Muflih A. Adnan^{1,2,+}, M.A. Khan^{1,+}, Pulickel M. Ajayan³, Muhammad M. Rahman³, Jinguang Hu,^{1, *} and Md Golam Kibria^{1, *}

*Equal contribution

¹Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.

²Department of Chemical Engineering, Islamic University of Indonesia, Sleman, Daerah Istimewa Yogyakarta, 55584, Indonesia

³Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX 77030, USA.

*Correspondence: jinguang.hu@ucalgary.ca; md.kibria@ucalgary.ca

1. Process parameters

An emerging Direct Air Capture (DAC) technology is being developed by wide spectrum of communities as reflected by several companies that have focused on commercialization of DAC process (Table S.1). Simultaneously, the studies on power-to-methanol routes significantly grow as presented in Table S.2. Few of them are planned for deployment as a pilot-scale power-tomethanol (Table S.3). A Proton Exchange Membrane (PEM) electrolyzer is used to facilitate H₂O electrolysis in 1st generation, while an alkaline electrolyzer is selected to facilitate CO₂ electrolysis in 2nd generation, Aspen Plus is used to model the CO₂ hydrogenation reactions, gas-liquid separation, compression, and distillation (Table S.4). Detail description of simulation is available in Section 3 of the Supplementary Information. In the hydrogenation reactor, the kinetic parameters are adapted from the Haldor Topsøe MK 101 catalysts¹. Under similar conditions (adiabatic reactor) and feed compositions (H₂ (79.8%), CO (11.4%) and CO₂ (8.8%) at 523.4 K and 30 bar), the model of hydrogenation reaction in this study is in good agreement with the one reported in the literature ². The Soave-Redlich-Kwong (SRK) equation of state is selected as a thermodynamic package in the Aspen Plus simulation given it provides high accuracy in the MeOH production process, as reported in the literature ³⁻⁶. To accommodate liquid-liquid separation for MeOH purification, the Non-Random Two-Liquid (NRTL)-RK is selected in the distillation unit. The capital and operating costs of the Aspen Plus-simulated processes is estimated using Aspen Process Economic Analyzer.

Table S.1 List of companies working to commercialize Direct Air Capture technology.

No.	Company	Capturing agent/process	Capacity	Ref.
1	Carbon Engineering	KOH/CaCO ₃	1 ton per day	7, 8
2	Climeworks	Amine	1000 ton per year	8, 9
3	Global Thermostat	Amine	1000 ton per year	8
4	Infinitree	lon-exchange	Lab-scale	8
5	Skytree	Benzylamines	Appliance	8

Table S.2 List of literature on techno-economic and life cycle analysis on power to methanol synthesis.

		MeOH price		
No.	Process	(\$/ton MeOH)	Remarks	Ref.
1	H ₂ O electrolysis and CO ₂ hydrogenation	670	-Electricity cost = \$0.048/kWh -Natural gas cost = 6 US\$/GJ -CO ₂ cost (post-combustion) = 18 US\$/ton CO ₂ -Life cycle assessment is not reported	10
2	H ₂ O electrolysis and CO ₂ hydrogenation	725	-Electricity cost = \$0.048/kWh -CO ₂ source is post-combustion CO ₂ capture -Life cycle assessment is not reported	11
3	H ₂ O electrolysis and CO ₂	970	-Electricity and CO ₂ are supplied by wind turbine and direct air capture,	12

	hydrogenation		respectively	
			-Life cycle assessment is not reported	
4	H_2O electrolysis and CO_2	735 – 1955 (grid) 1155 (onshore wind)	-Electricity (grid) cost: 0.045 – 0.162 \$/kWh -Electricity (onshore wind) cost:	13
	nydrogenation		\$0.050/kWh	
			biogas process emission	
			-Cradle-to-gate CO_2 emission (net) = – 868 kg-CO ₂ /ton-MeOH	
5	H ₂ O electrolysis and CO ₂	1,105	-Electricity (grid) cost: \$0.05/kWh -CO ₂ cost (post-combustion) = \$53/ton	14
	nydrogenation		-Life cycle assessment is not reported	
6	Direct CO ₂ -to-	1600	$-CO_2 \cos t = $ \$60/ton CO_2	15
	electrolvsis		-Cradle-to-gate CO_2 emission (net) =	
			512 kg-CO ₂ /ton-MeOH	
7	H ₂ O electrolysis	850	$-CO_2 \cos t = $ \$60/ton CO_2 = Electricity cost = \$0.04/kWb	15
	hydrogenation		-Cradle-to-gate CO_2 emission (net) =	
	, ,		558 kg-CO ₂ /ton-MeOH	
8	H_2O electrolysis,	1000	$-CO_2 \cos t = $ \$60/ton CO_2 -Electricity cost = \$0.04/kWh	15
	electrolysis and		-Cradle-to-gate CO_2 emission (net) =	
	CO		470 kg-CO ₂ /ton-MeOH	
	hydrogenation			

Table S.3 Pilot-scale power to methanol

No.	Company	Process	Methanol production	Ref.
1	MefCO ₂ consortium	H ₂ O electrolyzer and	1 ton per day	16
		CO ₂ hydrogenation		
2	Carbon Recycling	H ₂ O electrolyzer and	4000 ton per year	17
	International (CRI)	CO ₂ hydrogenation		
3	Consortium (Engie,	Undisclosed	8000 ton per year	18
	Fluxys, Indaver,		(scheduled start in 2022)	
	Inovyn, Oiltanking,			
	Port of Antwerp and			
	the PMV (Flemish			
	Government))			
4	Shunli and Carbon	Undisclosed	110,000 ton per year	19
	Recycling International		(scheduled start by end of	
			2021)	

Table S.4 Summar	y of the key	parameters o	of air-to-MeOH	routes
------------------	--------------	--------------	----------------	--------

Description	1 st generation (Two-step air-to-MeOH)	2 nd generation (Single-step air-to-MeOH)
Main feeds	CO ₂ H ₂ O	CO ₂ H ₂ O

Preparation	Preparation					
Equipment	H ₂ O electrolyzer	Not applicable				
Reaction	R1	Not applicable				
Aspen Plus	External ¹⁾	Not applicable				
Operating Conditions	See Table 2	Not applicable				
Utilities	Electricity	Not applicable				
MeOH synthesis						
Equipment	CO ₂ hydrogenation	CO ₂ electrolyzer				
Reaction	R2, R3, R4	R6				
Aspen Plus	RPLUG ²⁾	External ¹⁾				
Operating Conditions	See Table S.5	See Table 2				
Utilities	Natural gas	Electricity				
Product purification						
Equipment	Distillation	Distillation				
Aspen Plus	RadFrac ⁴⁾	RadFrac ³⁾				
Utilities	Natural gas Cooling water	Natural gas Cooling water				
Energy consumption	~38 GJ/ton MeOH ²⁰	~60 GJ/ton MeOH ²¹				

¹⁾ Please refer to Section 2 for the detail description of external calculation
 ²⁾ Please refer to Section 3 for the kinetic parameters of hydrogenation reaction
 ³⁾ Total condenser
 ⁴⁾ Partial vapor-liquid condenser

2. Electrochemical reaction

We select the CO_2 electrolysis for methanol production as an example. We specified the production rate of 46,481 kg methanol/hour is produced by the CO_2 electrolysis with the faradaic efficiency of 90%. With the molecular weight of methanol of 32 kg/kmol, the flowrate of methanol production is 403.5 mol/s. The Faraday constants is 96,480 C/s. Based on the reaction of electroreduction of CO_2 into methanol (S.1), we note that the number of required electrons for completing the reaction is 6 electrons.

$$CO_{2(q)} + 6H^{+} + 6e^{-} \leftrightarrow CH_{3}OH_{(1)} + 3H_{2}O_{(1)}$$
(S.1)

Thus, the required current (*I*) can be estimated as follow:

$$I = \frac{(6)(96,480 \text{ C/s})(403.5 \text{ mol/s})}{(90\%)}$$
(S.2)

$$I = 259,521,010 \text{ A}$$
(S.3)

Based the calculated current density in Eq. (S.3), we estimate the mass balance of the electrolyzer.

The required flowrate of CO_2 in the cathode side can be estimated by Eq. (S.4).

$$F_{CO_2} = \frac{(259,521,010 \text{ A})(90\%)}{(6)(96,480 \text{ C/s})} = 403.5 \frac{\text{mol}}{\text{s}} = 63,912 \frac{\text{kg}}{\text{h}}$$
(S.4)

Considering the CO_2 conversion of 50%, the CO_2 flowrate entering the electrolyzer is calculated in Eq. (S.5).

$$F_{CO_2 \text{ in}} = \frac{63,912 \frac{\text{kg}}{\text{h}}}{50\%} = 127823 \frac{\text{kg}}{\text{h}}$$
(S.5)

Thus, the CO₂ outlet stream of the electrolyzer is calculated as follow:

$$F_{CO_2 out} = \left(127823 \, \frac{\text{kg}}{\text{h}}\right)(50\%) = 63,912 \, \frac{\text{kg}}{\text{h}}$$
 (S.6)

Please note that the faradaic efficiency of the electrolyzer in 90%. This indicates that 10% of electrons promotes H_2 formation. The flowrate of H_2 is calculated in Eq. (S.7).

$$F_{H_2 out} = \frac{(259,521,010 \text{ A})(10\%)}{(6)(96,480 \text{ C/s})} = 134 \frac{\text{mol}}{\text{s}} = 968 \frac{\text{kg}}{\text{h}}$$
(S.7)

Besides H_2 , H_2O is also produced in the cathode side Eq. (S.8).

$$F_{H_2O out} = \frac{(259,521,010 \text{ A})(90\%)}{(6)(96,480 \text{ C/s})} = 403.5 \frac{\text{mol}}{\text{s}} = 26,146 \frac{\text{kg}}{\text{h}}$$
(S.8)

The flowrate of H₂O enters the anode side is calculated as follows:

$$F_{H_2O} = \frac{(259,521,010 \text{ A})(100\%)}{(2)(96,480 \text{ C/s})} = 1,345 \frac{\text{mol}}{\text{s}} = 87,156 \frac{\text{kg}}{\text{h}}$$
(S.9)

The flowrate of O₂ product from the anode side is calculated as follow:

$$F_{O_2} = \frac{(259,521,010 \text{ A})(100\%)}{(4)(96,480 \text{ C/s})} = 672 \frac{\text{mol}}{\text{s}} = 77,469 \frac{\text{kg}}{\text{h}}$$
(S.10)

3. Process Simulation

3.1. Hydrogenation reaction

The hydrogenation reactor is simulated in the Aspen Plus as RPlug with the specification as mentioned in Table S.5.

Operating conditions	Values
Temperature (K)	323 – 511
Pressure (bar)	69 (in) – 67 (out)
Length (cm)	1200
Number of tubes	4650
Tube diameter (cm)	4.6
Feed specification	$m = (nH_2 - nCO_2)/(nCO + nCO_2) = 2$
Conversion	H ₂ = 19%; CO = 82%; CO ₂ = 48%
Heating fluid temperature (K)	511
Thermal conductivity (W m ⁻² K ⁻¹)	600 W m ⁻² K ⁻¹

Table S.5 Operating conditions for the hydrogenation reactor

The kinetic parameters are taken from Graaf et. al.¹. The following reactions occur in the hydrogenation reactor:

$$CO + 2H_2 \Leftrightarrow CH_3OH$$
(S.11)

$$CO_2 + H_2 \Leftrightarrow CO + H_2O$$
(S.12)

$$CO_2 + H_2 \Leftrightarrow CO + H_2O$$
 (S.12)

$$CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O \tag{S.13}$$

Aspen Plus software has standard form for the rate of reaction equation. Thus, one should rearrange the rate equation in Graaf et. al. ¹ to satisfy the Aspen Plus standard. The rearranged rate of reaction equation for reactions Eq. (S.11) to Eq. (S.13) are:

For S.11:

$$r'_{CH_{3}OH, A3} = \frac{k_{A}K_{CO}\left(f_{CO}f_{H_{2}}^{3/2} - \frac{1}{K_{C1}}\frac{f_{CH_{3}OH}}{f_{H_{2}}^{1/2}}\right)}{\left(f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}f_{H_{2}O} + K_{CO}c_{CO}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO}f_{CO}f_{H_{2}O} + K_{CO_{2}}f_{CO_{2}}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}O} + K_{CO_{2}}f_{CO_{2}}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}O} + K_{CO_{2}}f_{CO_{2}}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}O} + K_{CO_{2}}f_{CO_{2}}f_{H_{2}O} + K$$

For S.12:

$$r'_{CH_{3}OH, B2} = \frac{k_{B}K_{CO_{2}}\left(f_{CO_{2}}f_{H_{2}} - \frac{1}{K_{C2}}f_{H_{2}O}f_{CO}\right)}{\left(f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}f_{H_{2}O} + K_{CO}f_{CO}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO}f_{CO}f_{H_{2}O} + K_{CO_{2}}f_{CO_{2}}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}}^{1/2}$$

$$r'_{CH_{3}OH, C3} = \frac{k_{C}K_{CO_{2}}\left(f_{CO_{2}}f_{H_{2}}^{3/2} - \frac{1}{K_{C3}}\frac{f_{CH_{3}OH}f_{H_{2}O}}{f_{H_{2}}^{3/2}}\right)}{\left(f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}f_{H_{2}O} + K_{CO}f_{CO}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO}f_{CO}f_{H_{2}O} + K_{CO_{2}}f_{CO_{2}}f_{H_{2}}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}O}^{1/2} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}O}^{1/2}} + \frac{K_{H_{2}O}}{K_{H_{2}}^{1/2}}K_{CO_{2}}f_{CO_{2}}f_{H_{2}O}^{1/2} + \frac{K_{H_$$

The values in the following tables is used in the Aspen Plus for determining the kinetic parameter of hydrogenation reaction (RPLUG).

Table S.6 The value of kinetic factor

Reaction	k, kmol/(s kg)	E, kJ/kmol
S.11	4.89×10 ⁻¹	-113000
S.12	3048426	-152900
S.13	0.00109	-87500

Table S.7	The	value	of	driving	force
-----------	-----	-------	----	---------	-------

	Term-1		Terr	n-2
Reaction	А	В	А	В
S.11	-22.26	5629	29.83	-6204
S.12	-25.68	7421	-30.35	12194
S.13	-25.68	7421	21.74	361

Table S.8 The value of adsorption constant

Term no.	1	2	3	4	5	6
Coefficient A	0	-24.63	-22.26	-46.88	-25.68	-50.31
Coefficient B	0	0	0	0	0	0

The model in this study is in close agreement with the experiment data under the similar operating conditions, as reported elsewhere ². In this regard, the gas mixture of H₂ (79.8%), CO (11.4%) and CO₂ (8.8%) was directed various ratio of volumetric flow rate to the catalysts weight (\emptyset_v/w) to the adiabatic fixed bed reactor (Haldor Topsoe MK 101 catalysts) at 523.4 K and 30 bar. The comparison between our model and the literature ² is presented in Figure S.1.

Figure S.1. The mole fraction of methanol in the reactor outlet

3.2. Gas-liquid separation

The mixture of liquid products (MeOH and water) and gas products (CO, CO₂, and H₂) is separated using Flash2 block in Aspen Plus) at 311 K and 67 bars. Under this condition, the gas products are discharged from the top side, while liquid products are dispensed from the bottom side.

3.3. Distillation unit

The liquid products from gas-liquid separation are directed to the distillation unit for product purification. The top and bottom products of distillation unit is MeOH (99 wt.%) and water, respectively. The specification of distillation unit is presented in Table S.9.

Parameters	Value	
Condenser	Partial-Vapor-Liquid	
Reboiler	Kettle	
Valid phases	Vapor-Liquid	
Reflux ratio	3.5	
Number of stages	26	
Feed stage (from top side)	20	
Condenser temperature	323.15 K	
Condenser pressure	1.01 bar	
Property method	NRTL-RK	
Free-water phase properties	STEAMNBS	

Table S.9 The specification of the distillation unit (RadFrac)

3.4. Compressor

Compressors are important to increase the stream pressure given the hydrogenation reactor operate at elevated pressure. Compressor is simulated using Compr block with the typical specification as listed in Table S.10.

Parameters	Value
Туре	Polytropic using ASME method
Polytropic efficiency	85%
Mechanical efficiency	99%
Compression ratio	3

Table S.10 The s	specification of th	ne compressors ((Compr))
------------------	---------------------	------------------	---------	---

4. Mass balance

			S3			S14						S12	MaOH	
S1	A	node	S2	•					S13				MeOH	
	→ Ca	athode		S5	S 6	→ MS	SR -	S7	S 10	→ Dis	tillation	S11	· Water	
<u>S4</u>														
						S8	;	•		S9		•	Purge	
Stream number	S1	S2	S3	S4	S5	S6	S 7	S8	S9	S10	S11	S12	S13	S14
Temperature (K)	298	323	323	298	408	323	511	311	311	312	346	323	313	422
Pressure (bar)	1	30	30	1	69	69	67	67	67	2	1	1	2	70
CO (kg/h)	0	0	0	0	0	4,077	4,081	4,076	4	1	0	0	0	1
H ₂ (kg/h)	0	8628.8	0	0	8,629	66,568	57,997	57,932	58	7	0	0	0	7
H ₂ O (kg/h)	77,098	0	0	0	0	487	26,021	487	0	25,533	25,533	0	0	0
CO_2 (kg/h)	0	0	0	62,777	62,777	95,500	33,125	32,510	33	593	0	368	11	213
CH ₃ OH (kg/h)	0	0	0	0	0	3,283	48,692	3,276	3	45,740	1,341	44,065	328	7
CH_4 (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N ₂ (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
O2 (kg/h)	0	0	68,469	0	0	0	0	0	0	0	0	0	0	0
Total flows (kg/h)	77,098	8629	68,469	62,777	71,406	169,915	169,915	98,281	98	71,874	26,874	44,433	339	228

Figure S.2 The mass balance of 1nd generation (please note that pressure and heat changers may exists between streams)

Stream number	S 1	S2	S3	S4	S5	S6	S 7	S 8	S9	S10
Temperature (K)	298	298	298	298	298	298	363	323	298	339
Pressure (bar)	1	1	1	1	1	2	1	180	2	1
H ₂ (kg/h)	0	0	0	2,179	0	0	0	0	2,179	0
H ₂ O (kg/h)	0	60,995	0	0	30,988	0	30,988	0	0	0
CO ₂ (kg/h)	63,912	0	127,824	63,912	0	63,912	0	0	0	0
CH3OH (kg/h)	0	0	0	0	46,481	0	11	0	0	46,470
O ₂ (kg/h)	0	0	0	0	0	0	0	77,469	0	0
Total flows (kg/h)	63,912	60,995	127,824	66,091	77,469	63,912	30,999	77,469	2,179	46,470

Figure S.3 The mass balance of 2nd generation (please note that pressure and heat changers may exists between streams)

5. Economic calculation

The capital cost and operating cost of the Aspen Plus-simulated process such as hydrogenation reactor, distillation, and compression are estimated using Aspen Economic Analyzer. One should note that the capital cost and operating cost covers every single expense in plant construction and operation. In the following texts, we presented the calculation of capital cost and operating cost of electrolyzer, silicon photovoltaic (Si-PV), and direct air capture (DAC).

A. Electrolyzer

In the regard of capital cost of electrolyzer, the CO₂ electrolyzer in 2nd generation is taken as an example. Based on the literature²², the capital cost of alkaline electrolyzer (1 MW system) is 130 \$/kW in the present days, with the reference current density and cell voltage of the given alkaline electrolyzer is 0.3 A/cm² and 2.00 V, respectively. The stack cost of the electrolyzer in \$/kW is converted into \$/m² by considering the reference performance of the alkaline electrolyzer under the given scenario (0.2 A/cm², 1.68 V²²). The optimistic scenario is selected as the example.

Stack cost in power (C_w) = \$130/kW

Current density $(I_d) = 0.2 \text{ A/cm}^2$

Cell voltage (V_c) = 1.68 V

The stack cost in specific area (C_a) is calculated as follow:

$$C_{a} = \left(130 \frac{\$}{\text{kW}}\right) \left(\frac{1}{1000} \frac{\text{kW}}{\text{W}}\right) \left(0.2 \frac{\text{A}}{\text{cm}^{2}}\right) \left(\frac{10^{4} \text{cm}^{2}}{1 \text{ m}^{2}}\right)$$
$$= 439 \frac{\$}{\text{m}^{2}}$$
(S.14)

Under the optimistic scenario, the current density of CO_2 electrolyzer is predicted to be 300 mA/cm². The electrolyzer area (A_e) can be calculated as follow:

$$A_e = \frac{259,521,010 \text{ A}}{0.3 \frac{\text{A}}{\text{cm}^2}} = 86,507 \text{ m}^2$$
(S.15)

The total stack cost (C_{ts}) is estimated as follow:

$$C_{ts} = (86,507 \text{ m}^2) \left(439 \frac{\$}{\text{m}^2} \right)$$

= \$23,253,083 (S.16)

The power required by the electrolysis system is calculated based on the as follow:

$$W = 259,521,010 \text{ A} \times 2 \text{ V}$$

= 519,042,021 W (S.17)

The balance of plant of the electrolyzer (BOP_e) is 43% of the total stack cost. In this regard, the cost in kW is used given the BOPs majorly relates to electrical equipment.

$$BOP_e = (519,042,021 \text{ W})(1 \text{ kW}/1000 \text{ W})(\$60/\text{kW})(43\%)$$

= $\$31,324,641$ (S.18)

The installation cost of the electrolyzer (IC_e) is 10% of the total stack cost.

$$IC_e = (\$54,577,724)(10\%)$$

= \\$5,457,772 (S.19)

The total installed cost of CO_2 electrolyzer including BOP (C_{te}):

$$C_{te} = \$23,253,083 + \$31,324,641 + \$5,457,772$$

= \\$60,035,496 (S.20)

The annual operating and maintenance cost of CO_2 electrolyzer (OM_e) is 2.5% of the total installed cost.

$$OM_e = (\$60,035,496)(2.5\%)$$

= \$1,500,887/year (S.20)

B. Silicon photovoltaic (Si-PV)

The 2nd generation route is selected as the example. The capital cost of silicon photovoltaic (Si-PV) is in the optimistic scenario as listed in Table 2.

Required power = 563,900 kW

Module and tracker cost = \$300/kW

Labor, permissting and installation cost = \$50/kW

Design, permitting and fee = \$50/kW

Total installed Si-PV cost (C_{tpv}) is calculated as follow:

$$C_{tpv} = (300 \ \text{kW} + 50 \ \text{kW} + 50 \ \text{kW}) (563,900 \ \text{kW})$$

= \\$225,560,075 (S.21)

The annual operation and maintenance cost of Si-PV (OM_{pv}) is calculated as follow:

$$OM_{pv} = \left(10.4 \frac{\$}{\text{kW}}\right) (563,900 \text{ kW})$$

= \$5,864,562 (S.22)

C. Direct air capture (DAC)

The 2nd generation route is selected as the example. The capital cost of DAC in the optimistic scenario (Table 2) is selected for calculation.

CO₂ production capacity = 506,182 ton-CO₂/year

Capital cost = $174/(ton-CO_2/year)$

The total DAC capital cost (C_{tdac}) is estimated as follow:

$$C_{tdac}$$
 = (506,182 ton-CO₂/year)(\$174/(ton-CO₂/year))
= \$88,075,698 (S.23)

For the electricity consumption, one should note that the DAC is operated with grid electricity for 18 hours (CPV runs for 6 hours).

Natural gas consumption = 2,044,197 GJ/year

Grid electricity consumption = 78,847,608 kWh/year

Operation and maintenance cost excluding electricity and natural gas = \$26/ton-CO₂

Natural gas price = \$4/GJ

Grid electricity price = 3 cents/kWh

The total operating and maintenance cost of DAC (OM_{dac}) is calculated as follow:

$$OM_{dac} = (\$26/ton-CO_2)(506,182 ton-CO_2/year) + (\$4/GJ)(2,044,197 GJ/year)$$

+ (3 cents/kWh)(78,847,608 kWh/year)

= \$13,160,737/year + \$8,176,789/year + \$2,365,428/year

6. CO₂ emissions

The emission factor of grid electricity in various countries is shown in Table S.11. Figure S.4 illustrates the projection of CO_2 emission of methanol production from 1st and 2nd generation routes. Under the optimistic scenario, a grid CO_2 emission of less than ~240 and ~200 kg CO_2 /MWh are required to be comparable with the CO_2 emission of the conventional route. The breakdown of emission when the non-intermittent renewables are utilized to substitute the electricity is shown in Figure S.5. The emission factor of renewable electricity is summarized in Table S.12.

	· · · · · · · · · · · · · · · · · · ·		
	Emission factor		
Country	(kg-CO ₂ /MWh)	Reported year	Reference
Saudi Arabia	732	2019	23
India	708	2018	23
China	555	2018	23
Japan	506	2018	23
United States	453	2018	23
Russia	325	2019	23
European Union (EU)	242	2018	24
United states	241	Projection 2050	25
Canada	130	2018	23
European Union (EU)	87	Projection 2040	24
Sweden	50	2019	23
Iceland	8.3	2020	26

Table S.11 The average grid emission in various countries

Figure S.4. Net CO_2 emissions from air-to-MeOH production pathways under the optimistic scenario. The blue dashed lines are representative of average electricity emission intensity in various jurisdictions (see Table S.11). The brown dashed lines indicate the range of CO_2 emissions from conventional MeOH synthesis route.²⁷

Figure S.5 The breakdown of CO_2 emissions in (a) 1st generation and (b) 2nd generation routes under the base scenario.

Electricity	Emission factor	
source	(kg-CO ₂ /MWh)	Reference
Geothermal	82	28
Hydro	19	29
On shore wind	18	30
Nuclear	12	31

Table S.12 The emission factor of renewable electricity

References

- 1. G. H. Graaf, H. Scholtens, E. J. Stamhuis and A. A. C. M. Beenackers, *Chemical Engineering Science*, 1990, **45**, 773-783.
- 2. G. H. Graaf, J. G. M. Winkelman, E. J. Stamhuis and A. A. C. M. Beenackers, *Chemical Engineering Science*, 1988, **43**, 2161-2168.
- 3. G. H. Graaf, P. J. J. M. Sijtsema, E. J. Stamhuis and G. E. H. Joosten, *Chemical Engineering Science*, 1986, **41**, 2883-2890.
- 4. K. M. Vanden Bussche and G. F. Froment, *Journal of Catalysis*, 1996, **161**, 1-10.
- 5. J. Liu, Z. Qin and J. Wang, *Industrial & Engineering Chemistry Research*, 2001, **40**, 3801-3805.
- 6. T. Blumberg, G. Tsatsaronis and T. Morosuk, *Fuel*, 2019, **256**, 115824.
- 7. D. W. Keith, G. Holmes, D. St. Angelo and K. Heidel, *Joule*, 2018, **2**, 1573-1594.
- 8. E. National Academies of Sciences, and Medicine *Negative Emissions Technologies and Reliable Sequestration: A Research Agenda*, The National Academies Press, Washington, DC, 2019.
- 9. <u>https://www.climeworks.com/</u>, (accessed July 29th, 2020).
- 10. L. R. Clausen, N. Houbak and B. Elmegaard, *Energy*, 2010, **35**, 2338-2347.
- 11. C. Bergins, K.-C. Tran, E.-I. Koytsoumpa, E. Kakaras, T. Buddenberg and Ó. Sigurbjörnsson, 2015.
- 12. M. J. Bos, S. R. A. Kersten and D. W. F. Brilman, *Applied Energy*, 2020, **264**, 114672.
- 13. C. Hank, S. Gelpke, A. Schnabl, R. J. White, J. Full, N. Wiebe, T. Smolinka, A. Schaadt, H.-M. Henning and C. Hebling, *Sustainable Energy & Fuels*, 2018, **2**, 1244-1261.
- 14. K. Atsonios, K. D. Panopoulos and E. Kakaras, *International Journal of Hydrogen Energy*, 2016, **41**, 2202-2214.
- 15. M. A. Adnan and M. G. Kibria, *Applied Energy*, 2020, **278**, 115614.
- 16. Project Progress, <u>http://www.mefco2.eu/project_progress.php#TOUR</u>, (accessed December 13th, 2020).
- 17. B. Stefansson, *CO*₂-to-methanol: commercial scale technology ready to meet future climate challenges, Carbon Recycling International.
- J. Sampson, Consortium established to build 'power-to-methanol' plant, <u>https://www.gasworld.com/consortium-established-to-build-power-to-methanol-plant/2019069.article</u>, (accessed April 4th, 2021).
- 19. M. Burgess, Major milestone reached at "world's first" commercial CO2-to-methanol plant, <u>https://www.gasworld.com/major-milestone-achieved-at-co2-to-methanol-plant-in-</u> <u>china/2020547.article</u>, (accessed April 4th, 2021).
- 20. W. A. Smith, T. Burdyny, D. A. Vermaas and H. Geerlings, *Joule*, 2019, **3**, 1822-1834.
- 21. M. Jouny, W. Luc and F. Jiao, *Industrial & Engineering Chemistry Research*, 2018, **57**, 2165-2177.
- 22. M. Ruth, A. Mayyas and M. Mann, 2017.
- 23. Country Specific Electricity Grid Greenhouse Gas Emission Factors <u>https://www.carbonfootprint.com/docs/2020_06_emissions_factors_sources_for_2020_electricity_v1_1.pdf</u>).
- 24. Average CO₂ emissions intensity of hourly electricity supply in the European Union, 2018 and 2040 by scenario and average electricity demand in 2018, <u>https://www.iea.org/data-and-statistics/charts/average-co2-emissions-intensity-of-hourly-electricity-supply-in-the-european-union-2018-and-2040-by-scenario-and-average-electricity-demand-in-2018, (accessed October 7th, 2020).</u>
- 25. Annual Energy Outlook 2020 with projections to 2050, <u>https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf</u>, (accessed September 9th, 2020).

- 26. Environmental data Reykjavik Energy 2015-2020, https://annualreport2020.or.is/documents/612/EN_Environmental_data_of_the_OR_Group_20 20.pdf, (accessed July 26th, 2021).
- 27. J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow and W. Leitner, *Chemical Reviews*, 2018, **118**, 434-504.
- 28. A. Holm, D. Jennejohn and L. Blodgett, *Journal*, 2012.
- 29. Study shows hydropower's greenhouse gas footprint, <u>https://www.hydropower.org/news/study-shows-hydropower%E2%80%99s-carbon-footprint</u>, (accessed August 29th, 2020).
- 30. R. C. Thomson and G. P. Harrison, *Journal*, 2015.
- 31. How can nuclear combat climate change?, <u>https://www.world-nuclear.org/nuclear-</u> <u>essentials/how-can-nuclear-combat-climate-change.aspx</u>, (accessed September 16th, 2020).