Ball-Milling Synthesis of Sulfonyl Quinolines via Coupling of Haloquinolines with Sulfonic Acids

Xiao-Wen Liu, Jia-Qian Wang, Hui Ma, Qi Zhu, Long-Yong Xie*

College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China

E-mail: longyongxie@yeah.net

Table of Content

1. General information S2
2. Experimental Section S2
3. Characterization data of products S3
4. References S10
5. 1H and 13C NMR spectra of products S11
1. General information

Unless otherwise specified, all reagents and solvents were obtained from commercial suppliers and used without further purification. All reagents were weighed and handled in air at room temperature. 1H NMR spectra were recorded at 400 MHz and 13C NMR spectra were recorded at 101 MHz by using a Bruker Avance 400 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (1H NMR: CDCl$_3$ 7.26 ppm, 13C NMR: CDCl$_3$ 77.0 ppm). The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Mass spectra were performed on a spectrometer operating on ESI-TOF.

2. Experimental Section

General procedure for the preparation of sulfonyl quinolines

\[
\text{N} \quad \text{X} \quad \text{N} \\
\begin{array}{c}
1 \\
2 \\
3
\end{array}
\]

\(X = \text{Cl, Br, I}\)

A mixture of halogenated quinolines 1 (0.5 mmol) and sulfonic acids 2 (0.65 mmol) were milled in a stainless steel jar charged with 1 ball (10 mm) at 20Hz for 10 – 20 min. The resulting powder was direct purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired products sulfonyl quinolines 3.

Gram-scale synthesis of 3aa

\[
\begin{array}{c}
1a, 10\text{mmol} \\
\text{ball milling} \\
3aa, 2.55\text{g, 88%}
\end{array}
\]

A mixture of 2-chloroquinoline 1a (1.63 g, 10 mmol) and 4-methylbenzenesulfinic acid 2a (2.03 g, 13 mmol) were milled in a stainless steel jar charged with 1 ball (10 mm) of the same material at 20Hz for 10 min. After completion, the resulting powder was direct purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 2.55 gram of 3aa, isolated yield 88%.

One pot synthesis of 4-quinolinyl ether

\[
\begin{array}{c}
1j, 2\text{mmol} \\
\text{1) TsH, ball milling, r.t.} \\
\text{2) 1-Phenylethanol, t-BuOK} \\
\text{DMF, r.t.} \\
4a, 0.37\text{g, yield 75%}
\end{array}
\]

A mixture of halogenated 4-chloroquinoline 1j (0.33 g, 2 mmol) and 4-methylbenzenesulfonic acid 2a (0.41 g, 2.6 mmol) was milled in a stainless steel jar charged with 1 ball (10 mm) of the same material at 20Hz for 10 min, the resulting powder was then dissolved in DMF (6mL) and transferred to a round bottom flask, 1-phenylethanol (0.29 g, 2.4mmol) and t-BuOK (1M in THF, 2.4 mmol) were added, the mixture was stirred for about 2 hours. After completion, the resulting mixture was extracted with EtOAc (10 mL×3) and the organic phase was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 0.37 gram of 4a, total yield 75%.
Synthesis of sulfonated cloquintocet-mexyl (3wa)

A solution of cloquintocet-mexyl 4b (0.67 g, 2.0 mmol) in DCM (20 mL) was stirred at 0 °C for 5 min, then 3-chloroperbenzoic acid (m-CPBA, 3.0 mmol) was added to the solution in three portions. The mixture was stirred at 25 °C for 12 h and a saturated aqueous NaHCO₃ solution (20 mL) was added. The resulting solution was extracted with DCM (10 mL × 2). Then it was dried by anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product cloquintocet-mexyl N-oxide and used without further purification.

The above-synthesized crude product cloquintocet-mexyl N-oxide was added to a solution of POCl₃ (0.31 g, 2 mmol), and DMF (0.15 g, 2 mmol) in DCM (10 mL) at 0 - 5 °C. The reaction was allowed to stir at room temperature for 6h, after completion, the reaction was quenched with 2M Na₂CO₃ solution (20 mL) and the resulting mixture was extracted with DCM (10 mL × 3). The organic layer was combined and then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 0.20 gram of 3wa. 1H NMR (400 MHz, Chloroform-d) δ 8.47 (d, J = 8.8 Hz, 1H), 7.51 (dd, J = 11.8, 8.6 Hz, 2H), 6.93 (d, J = 8.5 Hz, 1H), 5.09 – 4.97 (m, 1H), 4.92 (d, J = 2.0 Hz, 2H), 1.57 (dd, J = 13.1, 5.0 Hz, 1H), 1.49 – 1.42 (m, 1H), 1.26 – 1.20 (m, 9H), 0.85 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, Chloroform-d) δ 168.1, 152.1, 150.9, 140.1, 136.0, 126.5, 126.0, 124.0, 123.4, 111.2, 72.8, 66.5, 35.7, 31.5, 24.9, 22.5, 19.9, 13.9; HRMS (ESI) m/z calcd. for C₁₈H₁₂Cl₁₄NO₃[M+H]⁺: 370.0971, found 370.0966.

A mixture of 2-chlorocloquintocet-mexyl 1w (0.19 g, 0.5 mmol) and 4-methylbenzenesulfonic acid 2a (0.10 g, 0.65 mmol) were milled in a stainless steel jar charged with 1 ball (10 mm) of the same material at 20Hz for 10 min. After completion, the resulting powder was directly purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 0.20 gram of 3wa, isolated yield 82%. 1H NMR (400 MHz, Chloroform-d) δ 8.72 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 8.8 Hz, 1H), 8.05 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.4 Hz, 1H), 5.05 – 4.97 (m, 1H), 4.85 (s, 2H), 2.40 (s, 3H), 1.58 (dq, J = 12.3, 6.1, 5.2 Hz, 1H), 1.47 (dt, J = 14.0, 7.0 Hz, 1H), 1.28 – 1.20 (m, 9H), 0.85 (t, J = 6.7 Hz, 3H); 13C NMR (101 MHz, Chloroform-d) δ 168.1, 158.0, 153.4, 145.0, 140.2, 136.1, 135.6, 129.8, 129.3, 128.8, 127.7, 123.9, 118.6, 114.2, 72.6, 67.6, 35.7, 31.5, 24.9, 22.5, 21.6, 13.9; HRMS (ESI) m/z calcd. for C₂₉H₂₆Cl₂NO₅S[M+H]⁺: 490.1449, found 490.1446.

Characterization data of products

2-tosylquinoline (3aa)¹

White solid; 93% yield; ¹H NMR (400 MHz, Chloroform-d) δ 8.36 (d, J = 8.6 Hz, 1H), 8.18 (t, J = 8.2 Hz, 2H), 8.02 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.2 Hz, 1H), 7.78 (t, J = 7.7 Hz, 1H), 7.65 (t, J = 7.1 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 158.3, 147.4, 144.8, 138.7, 136.1, 130.9, 130.4, 129.7, 129.1, 129.0, 128.7, 127.6, 117.6, 21.6.

2-(phenylsulfonyl)quinoline (3ab)²

...
White solid; 82% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.39 (d, $J = 8.5$ Hz, 1H), 8.31 (d, $J = 7.8$ Hz, 1H), 8.17 (d, $J = 8.5$ Hz, 1H), 8.10 (d, $J = 8.5$ Hz, 1H), 7.88 (d, $J = 8.1$ Hz, 1H), 7.76 (t, $J = 7.7$ Hz, 1H), 7.65 (t, $J = 7.5$ Hz, 1H), 7.50 (t, $J = 7.9$ Hz, 1H), 7.41 (t, $J = 7.6$ Hz, 1H), 7.26 – 7.21 (m, 1H), 2.55 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.1, 147.1, 139.0, 138.6, 137.0, 133.9, 132.4, 130.9, 130.5, 130.3, 129.1, 128.8, 127.7, 126.3, 117.7, 20.7.

2-(o-tolylsulfonyl)quinoline (3ac)

White solid; 83% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.39 (d, $J = 8.5$ Hz, 1H), 8.31 (d, $J = 7.8$ Hz, 1H), 8.17 (d, $J = 8.5$ Hz, 1H), 8.10 (d, $J = 8.5$ Hz, 1H), 7.88 (d, $J = 8.1$ Hz, 1H), 7.76 (t, $J = 7.7$ Hz, 1H), 7.65 (t, $J = 7.5$ Hz, 1H), 7.50 (t, $J = 7.9$ Hz, 1H), 7.41 (t, $J = 7.6$ Hz, 1H), 7.26 – 7.21 (m, 1H), 2.55 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.1, 147.1, 139.0, 138.6, 137.0, 133.9, 132.4, 130.9, 130.5, 130.3, 129.1, 128.8, 127.7, 126.3, 117.7, 20.7.

2-(m-tolylsulfonyl)quinoline (3ad)

White solid; 84% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.37 (d, $J = 8.6$ Hz, 1H), 8.18 (t, $J = 8.3$ Hz, 2H), 7.92 (d, $J = 6.1$ Hz, 2H), 7.86 (d, $J = 8.2$ Hz, 1H), 7.80 – 7.74 (m, 1H), 7.64 (t, $J = 7.5$ Hz, 1H), 7.39 (d, $J = 7.7$ Hz, 2H), 2.39 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.0, 147.3, 139.3, 138.8, 138.7, 134.5, 130.9, 130.3, 129.1, 129.1, 128.9, 128.7, 127.6, 126.1, 117.7, 21.2.

2-((3-bromophenyl)sulfonyl)quinoline (3ae)

White solid; 87% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.41 (dd, $J = 8.5$, 2.7 Hz, 1H), 8.31 – 8.25 (m, 1H), 8.24 – 8.13 (m, 2H), 8.08 (d, $J = 7.8$ Hz, 1H), 7.89 (dd, $J = 8.0$, 3.5 Hz, 1H), 7.80 (q, $J = 6.6$ Hz, 1H), 7.70 (dt, $J = 12.7$, 6.4 Hz, 2H), 7.41 (td, $J = 7.9$, 3.6 Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 157.4, 147.4, 140.9, 138.9, 136.8, 131.8, 130.6, 130.4, 129.4, 128.9, 127.7, 127.7, 123.0, 117.6.

2-((4-(tert-butyl)phenyl)sulfonyl)quinoline (3af)

White solid; 92% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.37 (d, $J = 8.5$ Hz, 1H), 8.20 (d, $J = 8.5$ Hz, 2H),
8.06 (d, J = 8.6 Hz, 2H), 7.87 (d, J = 8.2 Hz, 1H), 7.79 (t, J = 8.4 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 8.6 Hz, 2H), 1.30 (s, 9H); 13C NMR (101 MHz, Chloroform-d) δ 158.3, 157.6, 147.4, 138.7, 136.1, 130.9, 130.4, 129.1, 128.8, 128.7, 127.2, 117.8, 35.2, 31.0.

2-((4-methoxyphenyl)sulfonyl)quinoline (3ag)

White solid; 82% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.36 (d, J = 8.5 Hz, 1H), 8.17 (dd, J = 8.5, 4.2 Hz, 2H), 7.86 (d, J = 8.2 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 163.8, 147.4, 138.6, 131.2, 130.9, 130.4, 130.3, 129.0, 128.7, 127.6, 117.5, 114.3, 55.6.

2-((4-fluorophenyl)sulfonyl)quinoline (3ah)

White solid; 86% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.39 (d, J = 8.5 Hz, 1H), 8.23 – 8.10 (m, 4H), 7.88 (d, J = 8.2 Hz, 1H), 7.79 (t, J = 7.7 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 8.5 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ165.9 (d, J_{C-F} = 257.6 Hz), 157.8, 147.3, 138.8, 134.9 (d, J_{C-F} = 4.0 Hz), 131.9 (d, J_{C-F} = 10.1 Hz), 131.1, 130.2, 129.3, 128.8, 127.7, 117.4, 116.4 (d, J_{C-F} = 23.2 Hz); 19F NMR (376 MHz, Chloroform-d) δ -103.3.

2-((4-chlorophenyl)sulfonyl)quinoline (3ai)

White solid; 88% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.39 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.6 Hz, 1H), 8.08 (d, J = 8.6 Hz, 2H), 7.88 (d, J = 8.1 Hz, 1H), 7.79 (t, J = 7.7 Hz, 1H), 7.50 (d, J = 8.6 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 157.6, 147.4, 140.5, 138.9, 137.4, 131.1, 130.5, 130.2, 129.4, 129.3, 128.8, 127.7, 117.4.

2-((4-bromophenyl)sulfonyl)quinoline (3aj)

White solid; 87% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.40 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 8.1 Hz, 1H), 7.80 (t, J = 7.4 Hz, 1H), 7.72 – 7.65 (m, 3H); 13C NMR (101 MHz, Chloroform-d) δ 157.6, 147.4, 138.9, 138.0, 132.4, 131.1, 130.6, 130.3, 129.4, 129.2, 128.9, 127.7, 117.5.

2-((4-(trifluoromethyl)phenyl)sulfonyl)quinoline (3ak)

White solid; 82% yield;

2-(4-methoxyphenyl)sulfonyl)quinoline (3ag)

White solid; 82% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.36 (d, J = 8.5 Hz, 1H), 8.17 (dd, J = 8.5, 4.2 Hz, 2H), 8.07 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.2 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.3, 157.6, 147.4, 138.7, 136.1, 130.9, 130.4, 129.1, 128.8, 128.7, 127.7, 117.8, 35.2, 31.0.
White solid; 81% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.42 (d, $J = 8.5$ Hz, 1H), 8.28 (d, $J = 8.3$ Hz, 2H), 8.24 (s, 1H), 8.13 (d, $J = 8.6$ Hz, 1H), 7.89 (d, $J = 8.2$ Hz, 1H), 7.79 (dt, $J = 7.0$, 2.7 Hz, 3H), 7.67 (t, $J = 7.5$ Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 157.2, 147.4, 142.6, 139.0, 135.2 (q, $J_{C-F} = 33.3$ Hz), 131.2, 130.2, 129.6, 129.5, 128.9, 127.7, 126.1 (q, $J_{C-F} = 3.0$ Hz), 123.1 (q, $J_{C-F} = 273.7$ Hz), 117.5; 19F NMR (376 MHz, Chloroform-d) δ -63.2.

ethyl 4-(quinolin-2-ylsulfonyl)benzoate (3al)

White solid; 83% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.40 (d, $J = 8.5$ Hz, 1H), 8.26 – 8.16 (m, 5H), 8.14 (d, $J = 8.6$ Hz, 1H), 7.89 (d, $J = 8.2$ Hz, 1H), 7.79 (t, $J = 7.7$ Hz, 1H), 7.67 (t, $J = 7.5$ Hz, 1H), 4.39 (s, 2H), 1.38 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 165.0, 157.5, 147.4, 142.7, 138.9, 135.0, 131.1, 130.3, 130.1, 129.4, 129.1, 128.9, 127.7, 117.6, 61.7, 14.2.

2-([1,1'-biphenyl]-4-ylsulfonyl)quinoline (3am)

White solid; 80% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.40 (d, $J = 8.5$ Hz, 1H), 8.24 (d, $J = 8.5$ Hz, 1H), 8.22 – 8.18 (m, 3H), 7.89 (d, $J = 8.2$ Hz, 1H), 7.80 (ddd, $J = 8.4$, 6.9, 1.4 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.67 (t, $J = 7.5$ Hz, 1H), 7.61 – 7.54 (m, 2H), 7.48 – 7.36 (m, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.2, 147.5, 146.7, 139.2, 138.8, 137.6, 131.0, 130.4, 129.6, 129.2, 129.0, 128.9, 128.6, 127.7, 127.4, 117.7.

2-(naphthalen-2-ylsulfonyl)quinoline (3an)

White solid; 84% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.75 (s, 1H), 8.38 (dd, $J = 8.3$, 3.4 Hz, 1H), 8.27 (d, $J = 8.5$ Hz, 1H), 8.22 – 8.18 (m, 3H), 8.16 (d, $J = 9.9$ Hz, 1H), 8.08 (d, $J = 8.7$ Hz, 1H), 8.03 – 7.91 (m, 2H), 7.92 – 7.82 (m, 2H), 7.81 – 7.71 (m, 1H), 7.70 – 7.55 (m, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.1, 147.4, 138.8, 138.7, 136.0, 135.3, 132.1, 131.0, 130.8, 130.3, 129.5, 129.3, 129.2, 128.8, 127.9, 127.7, 127.5, 123.7, 117.8.

2-((3,5-dichlorophenyl)sulfonyl)quinoline (3ao)

White solid; 81% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.42 (d, $J = 8.8$ Hz, 1H), 8.20 (d, $J = 8.5$ Hz, 1H), 8.16 (d, $J = 9.3$ Hz, 1H), 8.01 (d, $J = 1.9$ Hz, 2H), 7.90 (dd, $J = 8.2$, 1.1 Hz, 1H), 7.81 (ddd, $J = 8.5$, 6.9, 1.5 Hz, 1H), 7.69 (ddd, $J = 8.2$, 6.9, 1.2 Hz, 1H), 7.54 (t, $J = 1.9$ Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 156.8, 147.4, 141.8, 139.1, 135.9, 133.7, 131.3, 130.3, 129.6, 129.0, 127.7, 127.3, 117.5.

2-((3-chloro-4-fluorophenyl)sulfonyl)quinoline (3ap)

White solid; 81% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.42 (d, $J = 8.8$ Hz, 1H), 8.20 (d, $J = 8.5$ Hz, 1H), 8.16 (d, $J = 9.3$ Hz, 1H), 8.01 (d, $J = 1.9$ Hz, 2H), 7.90 (dd, $J = 8.2$, 1.1 Hz, 1H), 7.81 (ddd, $J = 8.5$, 6.9, 1.5 Hz, 1H), 7.69 (ddd, $J = 8.2$, 6.9, 1.2 Hz, 1H), 7.54 (t, $J = 1.9$ Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 156.8, 147.4, 141.8, 139.1, 135.9, 133.7, 131.3, 130.3, 129.6, 129.0, 127.7, 127.3, 117.5.
White solid; 87% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.41 (d, $J = 8.5$ Hz, 1H), 8.24 – 8.18 (m, 2H), 8.15 (d, $J = 8.6$ Hz, 1H), 8.06 (ddd, $J = 8.6$, 4.4, 2.3 Hz, 1H), 7.90 (d, $J = 8.2$ Hz, 1H), 7.81 (t, $J = 7.7$ Hz, 1H), 7.68 (t, $J = 7.5$ Hz, 1H), 7.50 (t, $J = 8.5$ Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 161.3 (d, $J_{C-F} = 259.6$ Hz), 157.3, 147.4, 139.0, 135.9 (d, $J_{C-F} = 3.9$ Hz), 132.0 (d, $J_{C-F} = 1.6$ Hz), 131.2, 130.2, 129.8 (d, $J_{C-F} = 8.9$ Hz), 129.4, 128.9, 127.7, 122.5 (d, $J_{C-F} = 19.0$ Hz), 117.4 (d, $J_{C-F} = 22.6$ Hz), 117.3; 19F NMR (376 MHz, Chloroform-d) δ -105.5.

3-methyl-2-tosylquinoline (3ba)8

White solid; 82% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.05 (s, 1H), 7.96 – 7.89 (m, 3H), 7.75 (d, $J = 7.9$ Hz, 1H); 13C NMR (101 MHz, Chloroform-d) δ 157.0, 144.7, 144.5, 139.8, 135.8, 129.9, 129.7, 129.4, 129.1, 128.9, 128.5, 126.6, 21.7, 18.8.

4-methyl-2-tosylquinoline (3ca)9

White solid; 83% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.17 (d, $J = 8.4$ Hz, 1H), 8.07 – 7.98 (m, 4H), 7.76 (t, $J = 7.7$ Hz, 1H), 7.66 (t, $J = 7.6$ Hz, 1H), 7.32 (d, $J = 8.1$ Hz, 2H), 2.86 (s, 3H), 2.39 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 157.9, 147.9, 147.2, 144.7, 136.2, 131.0, 130.5, 129.7, 129.0, 128.8, 128.7, 123.8, 118.1, 118.1, 21.6, 19.2.

4-chloro-2-tosylquinoline (3da)1

White solid; 86% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.28 (s, 1H), 8.25 (d, $J = 8.4$ Hz, 1H), 8.19 (d, $J = 8.4$ Hz, 1H), 8.01 (d, $J = 8.2$ Hz, 2H), 7.83 (t, $J = 7.1$ Hz, 1H), 7.75 (t, $J = 7.3$ Hz, 1H), 7.34 (d, $J = 8.1$ Hz, 2H), 2.41 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.1, 148.1, 145.2, 135.5, 131.7, 130.8, 130.1, 129.9, 129.1, 127.0, 124.2, 117.9, 21.7.

6-methoxy-2-tosylquinoline (3ea)2

White solid; 81% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.21 (d, $J = 8.5$ Hz, 1H), 8.14 (d, $J = 8.6$ Hz, 1H), 8.05 (d, $J = 9.3$ Hz, 1H), 8.00 (d, $J = 8.3$ Hz, 2H), 7.41 (dd, $J = 9.3$, 2.7 Hz, 1H), 7.32 (d, $J = 8.1$ Hz, 2H), 7.08 (d, $J = 2.7$ Hz, 1H), 3.94 (s, 3H), 2.40 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 159.7, 155.7, 144.6, 143.6, 136.8, 136.5, 131.8, 130.3, 129.7, 128.9, 124.2, 118.2, 104.5, 55.7, 21.6.

6-fluoro-2-tosylquinoline (3fa)10
White solid; 84% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.30 (d, $J = 8.6$ Hz, 1H), 8.21 – 8.11 (m, 2H), 7.99 (d, $J = 8.2$ Hz, 2H), 7.55 – 7.43 (m, 2H), 7.31 (d, $J = 8.0$ Hz, 2H), 2.37 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 161.7 (d, $J = 253.5$ Hz), 157.7, 144.9, 144.3, 138.0 (d, $J = 5.9$ Hz), 135.8, 132.9 (d, $J = 9.5$ Hz), 129.7, 129.6 (d, $J = 11.1$ Hz), 128.9, 121.5 (d, $J = 26.3$ Hz), 118.4, 110.7 (d, $J = 22.1$ Hz), 21.5; 19F NMR (376 MHz, Chloroform-d) δ -108.3.

6-chloro-2-tosylquinoline (3ga)1

White solid; 84% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.3 (d, $J = 8.6$ Hz, 1H), 8.2 (d, $J = 8.6$ Hz, 1H), 8.1 (d, $J = 9.1$ Hz, 1H), 8.0 (d, $J = 8.3$ Hz, 2H), 7.9 (d, $J = 2.2$ Hz, 1H), 7.3 (d, $J = 8.1$ Hz, 2H), 2.4 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.6, 145.7, 145.0, 137.7, 135.7, 135.2, 132.0, 131.9, 129.8, 129.3, 129.1, 126.3, 118.6, 21.7.

6-bromo-2-tosylquinoline (3ha)7

White solid; 82% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.28 (d, $J = 8.6$ Hz, 1H), 8.21 (d, $J = 8.6$ Hz, 1H), 8.05 – 8.01 (m, 3H), 7.99 (s, 1H), 7.84 (dd, $J = 9.0$, 2.1 Hz, 1H), 7.34 (d, $J = 8.1$ Hz, 2H), 2.41 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 158.7, 145.9, 145.0, 137.6, 135.7, 134.5, 131.9, 129.8, 129.3, 129.1, 123.5, 118.6, 21.7.

8-bromo-2-tosylquinoline (3ia)3

White solid; 81% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.29 (d, $J = 8.5$ Hz, 1H), 8.20 – 8.13 (m, 1H), 8.06 (d, $J = 8.0$ Hz, 2H), 7.99 (t, $J = 7.4$ Hz, 1H), 7.75 (d, $J = 7.6$ Hz, 1H), 7.40 (t, $J = 7.6$ Hz, 1H), 7.28 (d, $J = 7.8$ Hz, 2H), 2.35 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 159.3, 145.0, 144.4, 139.2, 135.2, 134.5, 129.9, 129.8, 129.5, 129.3, 127.4, 125.8, 117.7, 21.7.

1-tosylisoquinoline (3ja)3

White solid; 85% yield; 1H NMR (400 MHz, Chloroform-d) δ 9.20 – 9.13 (m, 1H), 8.43 (d, $J = 5.5$ Hz, 1H), 7.97 (d, $J = 8.2$ Hz, 2H), 7.94 – 7.86 (m, 1H), 7.80 – 7.72 (m, 3H), 7.35 (d, $J = 8.1$ Hz, 2H), 2.43 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 157.3, 144.7, 140.5, 137.7, 136.0, 131.1, 129.6, 129.2 (d, $J = 5.1$ Hz), 127.5, 125.3, 124.9, 124.3, 77.3, 77.0, 76.7, 21.7.

4-tosylquinoline (3ka)11

White solid; 90% yield; 1H NMR (400 MHz, Chloroform-d) δ 9.11 (d, $J = 4.3$ Hz, 1H), 8.65 (d, $J = 8.4$ Hz, 1H), 8.22 – 8.11 (m, 2H), 7.88 (d, $J = 8.3$ Hz, 2H), 7.77 (t, $J = 8.2$ Hz, 1H), 7.65 (t, $J = 7.8$ Hz, 1H), 7.31 (d, $J = 8.2$ Hz, 2H), 2.38 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 149.6, 149.3, 145.1, 145.1, 137.1, 130.5, 130.3, 130.1,
White solid; 88% yield; 1H NMR (400 MHz, Chloroform-d) δ 9.07 (d, $J = 4.4$ Hz, 1H), 8.31 (d, $J = 10.2$, 2.7 Hz, 1H), 8.19 (dd, $J = 10.2$, 5.0 Hz, 2H), 7.87 (d, $J = 8.3$ Hz, 2H), 7.54 (dd, $J = 9.3$, 7.9, 2.8 Hz, 1H), 7.33 (d, $J = 8.2$ Hz, 2H), 2.39 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 161.3 (d, $J_{C-F} = 253.5$ Hz), 148.9 (d, $J_{C-F} = 3.0$ Hz), 146.6, 145.4, 144.8 (d, $J_{C-F} = 253.5$ Hz), 136.7, 133.1 (d, $J_{C-F} = 10.1$ Hz), 130.2, 128.0, 123.1 (d, $J_{C-F} = 11.1$ Hz), 121.8, 120.8 (d, $J_{C-F} = 25.3$ Hz), 108.5 (d, $J_{C-F} = 25.3$ Hz), 21.6; 19F NMR (376 MHz, Chloroform-d) δ -106.9.

6-bromo-4-tosylquinoline (3ma)

White solid; 85% yield; 1H NMR (400 MHz, Chloroform-d) δ 9.10 (d, $J = 4.4$ Hz, 1H), 8.86 (d, $J = 1.8$ Hz, 1H), 8.14 (d, $J = 4.3$ Hz, 1H), 8.05 (d, $J = 9.0$ Hz, 1H), 7.88 (d, $J = 8.2$ Hz, 2H), 7.84 (dd, $J = 9.0$, 2.0 Hz, 1H), 7.34 (d, $J = 8.1$ Hz, 2H), 2.40 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 149.9, 147.8, 145.5, 145.4, 136.7, 134.1, 132.0, 130.2, 128.1, 126.7, 123.5, 123.1, 121.7, 21.7.

7-chloro-4-tosylquinoline (3na)

White solid; 81% yield; 1H NMR (400 MHz, Chloroform-d) δ 9.10 (d, $J = 4.4$ Hz, 1H), 8.62 (d, $J = 9.2$ Hz, 1H), 8.17 (d, $J = 2.0$ Hz, 1H), 8.10 (d, $J = 4.4$ Hz, 1H), 7.86 (d, $J = 8.3$ Hz, 2H), 7.31 (d, $J = 8.1$ Hz, 2H), 2.38 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 150.8, 149.7, 145.5, 145.4, 136.8, 136.5, 130.1, 129.7, 129.4, 128.0, 125.6, 121.0, 120.5, 21.6.

7-bromo-4-tosylquinoline (3oa)

White solid; 88% yield; 1H NMR (400 MHz, Chloroform-d) δ 9.09 (d, $J = 4.4$ Hz, 1H), 8.54 (d, $J = 9.1$ Hz, 1H), 8.36 (d, $J = 2.0$ Hz, 1H), 8.13 (d, $J = 4.4$ Hz, 1H), 7.86 (d, $J = 8.3$ Hz, 2H), 7.31 (d, $J = 8.1$ Hz, 2H), 2.39 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 150.7, 149.8, 145.4, 136.8, 132.7, 130.2, 128.0, 125.6, 124.8, 121.2, 120.8, 21.6.

6,7-dimethoxy-4-tosylquinoline (3pa)

White solid; 94% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.87 (d, $J = 4.6$ Hz, 1H), 7.99 (d, $J = 4.6$ Hz, 1H), 7.93 – 7.80 (m, 3H), 7.45 (s, 1H), 7.29 (d, $J = 8.1$ Hz, 2H), 4.11 – 3.93 (m, 6H), 2.37 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 152.7, 151.1, 147.2, 147.1, 145.0, 142.7, 137.4, 129.9, 127.7, 118.9, 118.2, 108.7, 101.9, 56.2, 56.1, 21.6.

4-(1-phenylethoxy)quinoline (4a)
White solid; 75% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.58 (d, $J = 5.3$ Hz, 1H), 8.38 (d, $J = 9.3$ Hz, 1H), 8.02 (d, $J = 8.4$ Hz, 1H), 7.71 (ddd, $J = 8.4, 6.9, 1.4$ Hz, 1H), 7.55 (ddd, $J = 8.1, 7.0, 1.1$ Hz, 1H), 7.42 – 7.32 (m, 4H), 7.29 (t, $J = 7.1$ Hz, 1H), 6.57 (d, $J = 5.3$ Hz, 1H), 5.58 (q, $J = 6.4$ Hz, 1H), 1.81 (s, 3H); 13C NMR (101 MHz, Chloroform-d) δ 160.4, 151.0, 149.1, 141.7, 128.8, 128.7, 127.9, 125.6, 125.2, 122.0, 121.7, 102.6, 76.7, 24.3.

4. References
5. 1H and 13C NMR spectra of products

1H spectrum of 3aa

13C spectrum of 3aa
1H spectrum of 3ab

13C spectrum of 3ab
3^1H spectrum of 3ac

13C spectrum of 3ac
^{1}H spectrum of 3ad

^{13}C spectrum of 3ad
^{1}H spectrum of 3ae

^{13}C spectrum of 3ae
H spectrum of 3af

C spectrum of 3af

H spectrum of 3af

C spectrum of 3af
1H spectrum of 3ah

13C spectrum of 3ah
1H spectrum of 3ai
13C spectrum of 3ai

1H spectrum of 3aj
13C spectrum of 3aj

1H spectrum of 3ak
13C spectrum of 3ak

19F spectrum of 3ak
\(^1^H\) spectrum of 3al

\(^{13}\)C spectrum of 3al
^{1}H spectrum of 3am

^{13}C spectrum of 3am
1H spectrum of 3ap

13C spectrum of 3ap
1H spectrum of 3ba

1F spectrum of 3ap
13C spectrum of 3ba

1H spectrum of 3ca
^{13}C spectrum of 3ca

^1H spectrum of 3da
13C spectrum of 3fa

19F spectrum of 3fa
1H spectrum of 3ga

13C spectrum of 3ga
1H spectrum of 3ia

13C spectrum of 3ia
1H spectrum of 3ja

13C spectrum of 3ja
H spectrum of 3ka

C spectrum of 3ka
H spectrum of 3la

C spectrum of 3la

H spectrum of 3la

C spectrum of 3la
19F spectrum of 3la

1H spectrum of 3ma
13C spectrum of 3ma

1H spectrum of 3na
13C spectrum of 4a

1H spectrum of 1w
13C spectrum of 3wa