Ball-Milling Synthesis of Sulfonyl Quinolines via Coupling of

Haloquinolines with Sulfonic Acids

Xiao-Wen Liu, Jia-Qian Wang, Hui Ma, Qi Zhu, Long-Yong Xie*

College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China

E-mail: longyongxie@yeah.net

Table of Content

1. General information	S2
 2. Experimental Section 3. Characterization data of products 	S2 S3
5. ¹ H and ¹³ C NMR spectra of products	S11

1. General information

Unless otherwise specified, all reagents and solvents were obtained from commercial suppliers and used without further purification. All reagents were weighed and handled in air at room temperature. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 101 MHz by using a Bruker Avance 400 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹H NMR: CDCl₃ 7.26 ppm, ¹³C NMR: CDCl₃ 77.0 ppm). The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Mass spectra were performed on a spectrometer operating on ESI-TOF.

2. Experimental Section

General procedure for the preparation of sulfonyl quinolines

A mixture of halogenated quinolines 1 (0.5 mmol) and sulfonic acids 2 (0.65 mmol) were milled in a stainless steel jar charged with 1 ball (10 mm) of the same material at 20Hz for 10 - 20 min. The resulting powder was direct purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired products sulfonyl quinolines **3**.

Gram-scale synthesis of 3aa

A mixture of 2-chloroquinoline 1a (1.63 g, 10 mmol) and 4-methylbenzenesulfinic acid 2a (2.03 g, 13 mmol) were milled in a stainless steel jar charged with 1 ball (10 mm) of the same material at 20Hz for 10 min. After completion, the resulting powder was direct purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 2.55 gram of **3aa**, isolated yield 88%.

One pot synthesis of 4-quinolinyl ether

A mixture of halogenated 4-chloroquinoline **1j** (0.33 g, 2 mmol) and 4-methylbenzenesulfinic acid **2a** (0.41 g, 2.6 mmol) was milled in a stainless steel jar charged with 1 ball (10 mm) of the same material at 20Hz for 10 min, the resulting powder was then dissolved in DMF (6mL) and transferred to a round bottom flask, 1-phenylethanol (0.29 g, 2.4mmol) and t-BuOk (1M in THF, 2.4 mmol) were added, the mixture was stirred for about 2 hours. After completion, the resulting mixture was extracted with EtOAc (10 mL× 3) and the organic phase was then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 0.37 gram of **4a**, total yield 75%.

Synthesis of sulfonated cloquintocet-mexyl (3wa)

A solution of cloquintocet-mexyl **4b** (0.67 g, 2.0 mmol) in DCM (20 mL) was stirred at 0 °C for 5 min, then 3chloroperbenzoic acid (m-CPBA, 3.0 mmol) was added to the solution in three portions. The mixture was stirred at 25 °C for 12 h and a saturated aqueous NaHCO₃ solution (20 mL) was added. The resulting solution was extracted with DCM (10 mL \times 2). Then it was dried by anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product cloquintocet-mexyl N-oxide and used without further purification.

The above-synthesized crude product cloquintocet-mexyl *N*-oxide was added to a solution of POCl₃ (0.31 g, 2 mmol), and DMF (0.15 g, 2 mmol) in DCM (10 mL) at 0 - 5 °C. The reaction was allowed to stir at room temperature for 6h, after completion, the reaction was quenched with 2M Na₂CO₃ solution (10 mL) and the resulting mixture was extracted with DCM (10 mL× 3). The organic layer was combined and then removed under vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 2-chlorocloquintocet-mexyl **1w**. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 8.8 Hz, 1H), 7.51 (dd, *J* = 11.8, 8.6 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 1H), 5.09 – 4.97 (m, 1H), 4.92 (d, *J* = 2.0 Hz, 2H), 1.57 (dd, *J* = 13.1, 5.0 Hz, 1H), 1.49 – 1.42 (m, 1H), 1.26 – 1.20 (m, 9H), 0.85 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 152.1, 150.9, 140.1, 136.0, 126.5, 126.0, 124.0, 123.4, 111.2, 72.8, 66.5, 35.7, 31.5, 24.9, 22.5, 19.9, 13.9; HRMS (ESI) m/z calcd. for C₁₈H₂₂Cl₂NO₃[M+H]⁺: 370.0971, found 370.0966.

A mixture of 2-chlorocloquintocet-mexyl **1w** (0.19 g, 0.5 mmol) and 4-methylbenzenesulfinic acid **2a** (0.10 g, 0.65 mmol) were milled in a stainless steel jar charged with 1 ball (10 mm) of the same material at 20Hz for 10 min. After completion, the resulting powder was direct purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 0.20 gram of **3wa**, isolated yield 82%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.72 (d, *J* = 8.8 Hz, 1H), 8.29 (d, *J* = 8.8 Hz, 1H), 8.05 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 5.05 – 4.97 (m, 1H), 4.85 (s, 2H), 2.40 (s, 3H), 1.58 (dq, *J* = 12.3, 6.1, 5.2 Hz, 1H), 1.47 (dt, *J* = 14.0, 7.0 Hz, 1H), 1.28 – 1.20 (m, 9H), 0.85 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 158.0, 153.4, 145.0, 140.2, 136.1, 135.6, 129.8, 129.3, 128.8, 127.7, 123.9, 118.6, 114.2, 72.6, 67.6, 35.7, 31.5, 24.9, 22.5, 21.6, 13.9; HRMS (ESI) m/z calcd. for C₂₅H₂₉CINO₅S[M+H]⁺ : 490.1449, found 490.1446.

Characterization data of products

2-tosylquinoline (3aa)1

White solid; 93% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (d, *J* = 8.6 Hz, 1H), 8.18 (t, *J* = 8.2 Hz, 2H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.78 (t, *J* = 7.7 Hz, 1H), 7.65 (t, *J* = 7.1 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.3, 147.4, 144.8, 138.7, 136.1, 130.9, 130.4, 129.7, 129.1, 129.0, 128.7, 127.6, 117.6, 21.6.

2-(phenylsulfonyl)quinoline (3ab)²

White solid; 82% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (d, *J* = 8.5 Hz, 1H), 8.31 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.26 – 7.21 (m, 1H), 2.55 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 147.1, 139.0, 138.6, 137.0, 133.9, 132.4, 130.9, 130.5, 130.3, 129.1, 128.8, 127.7, 126.3, 117.7, 20.7.

2-(o-tolylsulfonyl)quinoline (3ac)³

White solid; 83% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (d, *J* = 8.5 Hz, 1H), 8.31 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.26 – 7.21 (m, 1H), 2.55 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 147.1, 139.0, 138.6, 137.0, 133.9, 132.4, 130.9, 130.5, 130.3, 129.1, 128.8, 127.7, 126.3, 117.7, 20.7.

2-(m-tolylsulfonyl)quinoline (3ad)³

White solid; 84% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (d, *J* = 8.6 Hz, 1H), 8.18 (t, *J* = 8.3 Hz, 2H), 7.92 (d, *J* = 6.1 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.80 – 7.74 (m, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 7.7 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.0, 147.3, 139.3, 138.8, 138.7, 134.5, 130.9, 130.3, 129.1, 129.1, 128.9, 128.7, 127.6, 126.1, 117.7, 21.2.

2-((3-bromophenyl)sulfonyl)quinoline (3ae)²

White solid; 87% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (dd, J = 8.5, 2.7 Hz, 1H), 8.31 – 8.25 (m, 1H), 8.24 – 8.13 (m, 2H), 8.08 (d, J = 7.8 Hz, 1H), 7.89 (dd, J = 8.0, 3.5 Hz, 1H), 7.80 (q, J = 6.6 Hz, 1H), 7.70 (dt, J = 12.7, 6.4 Hz, 2H), 7.41 (td, J = 7.9, 3.6 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.4, 147.4, 140.9, 138.9, 136.8, 131.8, 130.6, 130.4, 129.4, 128.9, 127.7, 127.7, 123.0, 117.6.

2-((4-(tert-butyl)phenyl)sulfonyl)quinoline (3af)⁴

White solid; 92% yield; ¹H NMR (400 MHz, Chloroform-d) δ 8.37 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 8.5 Hz, 2H),

8.06 (d, *J* = 8.6 Hz, 2H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.79 (t, *J* = 8.4 Hz, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 8.6 Hz, 2H), 1.30 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.3, 157.6, 147.4, 138.7, 136.1, 130.9, 130.4, 129.1, 128.8, 128.8, 127.7, 126.2, 117.8, 35.2, 31.0.

2-((4-methoxyphenyl)sulfonyl)quinoline (3ag)⁵

White solid; 82% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (d, *J* = 8.5 Hz, 1H), 8.17 (dd, *J* = 8.5, 4.2 Hz, 2H), 8.07 (d, *J* = 8.8 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.8, 147.4, 138.6, 131.2, 130.9, 130.4, 130.3, 129.0, 128.7, 127.6, 117.5, 114.3, 55.6.

2-((4-fluorophenyl)sulfonyl)quinoline (3ah)⁵

White solid; 86% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (d, J = 8.5 Hz, 1H), 8.23 – 8.10 (m, 4H), 7.88 (d, J = 8.2 Hz, 1H), 7.79 (t, J = 7.7 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 8.5 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9 (d, J_{C-F} = 257.6 Hz), 157.8, 147.3, 138.8, 134.9 (d, J_{C-F} = 4.0 Hz), 131.9 (d, J_{C-F} = 10.1 Hz), 131.1, 130.2, 129.3, 128.8, 127.7, 117.4, 116.4 (d, J_{C-F} = 23.2 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.3. **2-((4-chlorophenyl)sulfonyl)quinoline (3ai)**¹

White solid; 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (d, *J* = 8.5 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 8.08 (d, *J* = 8.6 Hz, 2H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.79 (t, *J* = 7.7 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.50 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.6, 147.4, 140.5, 138.9, 137.4, 131.1, 130.5, 130.2, 129.4, 129.3, 128.8, 127.7, 117.4.

2-((4-bromophenyl)sulfonyl)quinoline (3aj)⁴

White solid; 87% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 8.1 Hz, 1H), 7.80 (t, J = 7.4 Hz, 1H), 7.72 – 7.65 (m, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 157.6, 147.4, 138.9, 138.0, 132.4, 131.1, 130.6, 130.3, 129.4, 129.2, 128.9, 127.7, 117.5.

2-((4-(trifluoromethyl)phenyl)sulfonyl)quinoline (3ak)⁶

N S'

White solid; 81% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.5 Hz, 1H), 8.28 (d, *J* = 8.3 Hz, 2H), 8.24 (s, 1H), 8.13 (d, *J* = 8.6 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.79 (dt, *J* = 7.0, 2.7 Hz, 3H), 7.67 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.2, 147.4, 142.6, 139.0, 135.2 (q, *J*_{C-F} = 33.3 Hz), 131.2, 130.2, 129.6, 129.5, 128.9, 127.7, 126.1 (q, *J*_{C-F} = 3.0 Hz), 123.1 (q, *J*_{C-F} = 273.7 Hz), 117.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 63.2.

ethyl 4-(quinolin-2-ylsulfonyl)benzoate (3al)¹

White solid; 83% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 (d, *J* = 8.5 Hz, 1H), 8.26 – 8.16 (m, 5H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.79 (t, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 4.39 (s, 2H), 1.38 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0, 157.5, 147.4, 142.7, 138.9, 135.0, 131.1, 130.3, 130.1, 129.4, 129.1, 128.9, 127.7, 117.6, 61.7, 14.2.

2-([1,1'-biphenyl]-4-ylsulfonyl)quinoline (3am)²

White solid; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 (d, J = 8.5 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 8.22 – 8.18 (m, 3H), 7.89 (d, J = 8.2 Hz, 1H), 7.80 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.48 – 7.36 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.2, 147.5, 146.7, 139.2, 138.8, 137.6, 131.0, 130.4, 129.6, 129.2, 129.0, 128.9, 128.6, 127.7, 127.7, 127.4, 117.7.

2-(naphthalen-2-ylsulfonyl)quinoline (3an)²

White solid; 84% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 (s, 1H), 8.38 (dd, *J* = 8.3, 3.4 Hz, 1H), 8.27 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 9.9 Hz, 1H), 8.08 (d, *J* = 8.7 Hz, 1H), 8.03 – 7.91 (m, 2H), 7.92 – 7.82 (m, 2H), 7.81 – 7.71 (m, 1H), 7.70 – 7.55 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 147.4, 138.8, 138.7, 136.0, 135.3, 132.1, 131.0, 130.8, 130.3, 129.5, 129.3, 129.2, 128.8, 127.9, 127.7, 127.5, 123.7, 117.8. **2-((3,5-dichlorophenyl)sulfonyl)quinoline (3ao)**⁷

White solid; 81% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 (d, *J* = 8.8 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 9.3 Hz, 1H), 8.01 (d, *J* = 1.9 Hz, 2H), 7.90 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.81 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.69 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.54 (t, *J* = 1.9 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.8, 147.4, 141.8, 139.1, 135.9, 133.7, 131.3, 130.3, 129.6, 129.0, 127.7, 127.3, 117.5.

2-((3-chloro-4-fluorophenyl)sulfonyl)quinoline (3ap)⁷

White solid; 87% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (d, J = 8.5 Hz, 1H), 8.24 – 8.18 (m, 2H), 8.15 (d, J = 8.6 Hz, 1H), 8.06 (ddd, J = 8.6, 4.4, 2.3 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 8.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.3 (d, J_{C-F} = 259.6 Hz), 157.3, 147.4, 139.0, 135.9 (d, J_{C-F} = 3.9 Hz), 132.0 (d, J_{C-F} = 1.6 Hz), 131.2, 130.2, 129.8 (d, J_{C-F} = 8.9 Hz), 129.4, 128.9, 127.7, 122.5 (d, J_{C-F} = 19.0 Hz), 117.4 (d, J_{C-F} = 22.6 Hz), 117.3; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.5. **3-methyl-2-tosylquinoline (3ba)**⁸

White solid; 82% yield; ¹H NMR (400 MHz,) δ 8.05 (s, 1H), 7.96 – 7.89 (m, 3H), 7.75 (d, J = 7.9 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.36 (d, J = 7.8 Hz, 2H), 2.86 (s, 3H), 2.46(s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 157.0, 144.7, 144.5, 139.8, 135.8, 129.9, 129.7, 129.4, 129.1, 128.9, 128.5, 126.6, 21.7, 18.8.

White solid; 83% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, J = 8.4 Hz, 1H), 8.07 – 7.98 (m, 4H), 7.76 (t, J = 7.7 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 2.78 (s, 3H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.9, 147.9, 147.2, 144.7, 136.2, 131.0, 130.5, 129.7, 129.0, 128.8, 128.7, 123.8, 118.1, 21.6, 19.2.

4-chloro-2-tosylquinoline (3da)1

White solid; 86% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (s, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.2 Hz, 2H), 7.83 (t, J = 7.1 Hz, 1H), 7.75 (t, J = 7.3 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 148.1, 145.2, 135.5, 131.7, 130.8, 130.1, 129.9, 129.1, 127.0, 124.2, 117.9, 21.7.

6-methoxy-2-tosylquinoline (3ea)²

White solid; 81% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.6 Hz, 1H), 8.05 (d, J = 9.3 Hz, 1H), 8.00 (d, J = 8.3 Hz, 2H), 7.41 (dd, J = 9.3, 2.7 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 2.7 Hz, 1H), 3.94 (s, 3H), 2.40 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.7, 155.7, 144.6, 143.6, 136.8, 136.5, 131.8, 130.3, 129.7, 128.9, 124.2, 118.2, 104.5, 55.7, 21.6.

6-fluoro-2-tosylquinoline(3fa)¹⁰

White solid; 84% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (d, J = 8.6 Hz, 1H), 8.21 – 8.11 (m, 2H), 7.99 (d, J = 8.2 Hz, 2H), 7.55 – 7.43 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.7 (d, J = 253.5 Hz), 157.7, 144.9, 144.3, 138.0 (d, J = 5.9 Hz), 135.8, 132.9 (d, J = 9.5 Hz), 129.7, 129.6 (d, J = 11.1 Hz), 128.9, 121.5 (d, J = 26.3 Hz), 118.4, 110.7 (d, J = 22.1 Hz), 21.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.3.

6-chloro-2-tosylquinoline (3ga)¹

White solid; 84% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.3 (d, J = 8.6 Hz, 1H), 8.2 (d, J = 8.6 Hz, 1H), 8.1 (d, J = 9.1 Hz, 1H), 8.0 (d, J = 8.3 Hz, 2H), 7.9 (d, J = 2.2 Hz, 1H), 7.7 (dd, J = 9.1, 2.2 Hz, 1H), 7.3 (d, J = 8.1 Hz, 2H), 2.4 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.6, 145.7, 145.0, 137.7, 135.7, 135.2, 132.0, 131.9, 129.8, 129.3, 129.1, 126.3, 118.6, 21.7.

6-bromo-2-tosylquinoline (3ha)⁷

White solid; 82% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, *J* = 8.6 Hz, 1H), 8.21 (d, *J* = 8.6 Hz, 1H), 8.05 – 8.01 (m, 3H), 7.99 (s, 1H), 7.84 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.7, 145.9, 145.0, 137.6, 135.7, 134.5, 131.9, 129.8, 129.7, 129.1, 123.5, 118.6, 21.7.

8-bromo-2-tosylquinoline (3ia)³

White solid; 81% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, *J* = 8.5 Hz, 1H), 8.20 – 8.13 (m, 1H), 8.06 (d, *J* = 8.0 Hz, 2H), 7.99 (t, *J* = 7.4 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3, 145.0, 144.4, 139.2, 135.2, 134.5, 129.9, 129.8, 129.5, 129.3, 127.4, 125.8, 117.7, 21.7.

1-tosylisoquinoline (3ja)³

White solid; 85% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.20 – 9.13 (m, 1H), 8.43 (d, *J* = 5.5 Hz, 1H), 7.97 (d, *J* = 8.2 Hz, 2H), 7.94 – 7.86 (m, 1H), 7.80 – 7.72 (m, 3H), 7.35 (d, *J* = 8.1 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.3, 144.7, 140.5, 137.7, 136.0, 131.1, 129.6, 129.2 (d, *J* = 5.1 Hz), 127.5, 125.3, 124.9, 124.3, 77.3, 77.0, 76.7, 21.7.

4-tosylquinoline (3ka)11

White solid; 90% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.11 (d, J = 4.3 Hz, 1H), 8.65 (d, J = 8.4 Hz, 1H), 8.22 – 8.11 (m, 2H), 7.88 (d, J = 8.3 Hz, 2H), 7.77 (t, J = 8.2 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.31 (d, J = 8.2 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.6, 149.3, 145.1, 145.1, 137.1, 130.5, 130.3, 130.1,

128.8, 128.0, 124.2, 122.1, 121.0, 21.6.

6-fluoro-4-tosylquinoline (3la)³

White solid; 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.07 (d, J = 4.4 Hz, 1H), 8.31 (dd, J = 10.2, 2.7 Hz, 1H), 8.19 (dd, J = 10.2, 5.0 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.54 (ddd, J = 9.3, 7.9, 2.8 Hz, 1H), 7.33 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.3 (d, $J_{C-F} = 253.5$ Hz), 148.9 (d, $J_{C-F} = 3.0$ Hz), 146.6, 145.4, 144.8 (d, $J_{C-F} = 253.5$ Hz), 136.7, 133.1 (d, $J_{C-F} = 10.1$ Hz), 130.2, 128.0, 123.1 (d, $J_{C-F} = 11.1$ Hz), 121.8, 120.8 (d, $J_{C-F} = 25.3$ Hz), 108.5 (d, $J_{C-F} = 25.3$ Hz), 21.6; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.9. **6-bromo-4-tosylquinoline (3ma)**³

Br

White solid; 85% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.10 (d, J = 4.4 Hz, 1H), 8.86 (d, J = 1.8 Hz, 1H), 8.14 (d, J = 4.3 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.84 (dd, J = 9.0, 2.0 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9, 147.8, 145.5, 144.5, 136.7, 134.1, 132.0, 130.2, 128.1, 126.7, 123.5, 123.1, 121.7, 21.7.

7-chloro-4-tosylquinoline (3na)³

White solid; 81% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.10 (d, J = 4.4 Hz, 1H), 8.62 (d, J = 9.2 Hz, 1H), 8.17 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 4.4 Hz, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.59 (dd, J = 9.2, 2.1 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.8, 149.7, 145.5, 145.4, 136.8, 136.5, 130.1, 129.7, 129.4, 128.0, 125.6, 121.0, 120.5, 21.6.

7-bromo-4-tosylquinoline (30a)¹¹

White solid; 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.09 (d, J = 4.4 Hz, 1H), 8.54 (d, J = 9.1 Hz, 1H), 8.36 (d, J = 2.0 Hz, 1H), 8.13 (d, J = 4.4 Hz, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.73 (dd, J = 9.1, 2.0 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.7, 149.8, 145.6, 145.4, 136.8, 132.7, 130.2, 128.0, 125.6, 124.8, 121.2, 120.8, 21.6.

6,7-dimethoxy-4-tosylquinoline (3pa)³

White solid; 94% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87 (d, *J* = 4.6 Hz, 1H), 7.99 (d, *J* = 4.6 Hz, 1H), 7.93 – 7.80 (m, 3H), 7.45 (s, 1H), 7.29 (d, *J* = 8.1 Hz, 2H), 4.11 – 3.93 (m, 6H), 2.37 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.7, 151.1, 147.2, 147.1, 145.0, 142.7, 137.4, 129.9, 127.7, 118.9, 118.2, 108.7, 101.9, 56.2, 56.1, 21.6.

4-(1-phenylethoxy)quinoline (4a)¹²

White solid; 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (d, J = 5.3 Hz, 1H), 8.38 (d, J = 9.3 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.71 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.55 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.42 – 7.32 (m, 4H), 7.29 (t, J = 7.1 Hz, 1H), 6.57 (d, J = 5.3 Hz, 1H), 5.58 (q, J = 6.4 Hz, 1H), 1.81 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.4, 151.0, 149.1, 141.7, 128.8, 128.7, 127.9, 125.6, 125.2, 122.0, 121.7, 102.6, 76.7, 24.3.

4. References

- 1. L.-Y. Xie, Y.-J. Li, J. Qu, Y. Duan, J. Hu, K.-J. Liu, Z. Cao and W.-M. He, *Green Chem.*, 2017, 19, 5642-5646.
- 2. L.-Y. Xie, S. Peng, F. Liu, G.-R. Chen, W. Xia, X. Yu, W.-F. Li, Z. Cao and W.-M. He, *Org. Chem. Front.*, 2018, 5, 2604-2609.
- 3. L.-Y. Xie, S. Peng, J.-X. Tan, R.-X. Sun, X. Yu, N.-N. Dai, Z.-L. Tang, X. Xu and W.-M. He, ACS Sustainable Chem. Eng., 2018, 6, 16976-16981.
- 4. K. Sun, X.-L. Chen, X. Li, L.-B. Qu, W.-Z. Bi, X. Chen, H.-L. Ma, S.-T. Zhang, B.-W. Han, Y.-F. Zhao and C.-J. Li, *Chem. Commun.*, 2015, 51, 12111-12114.
- 5. B. Du, P. Qian, Y. Wang, H. Mei, J. Han and Y. Pan, *Org. Lett.*, 2016, 18, 4144-4147.
- M. Jiang, Y. Yuan, T. Wang, Y. Xiong, J. Li, H. Guo and A. Lei, *Chem. Commun.*, 2019, 55, 13852-13855.
- L.-Y. Xie, T.-G. Fang, J.-X. Tan, B. Zhang, Z. Cao, L.-H. Yang and W.-M. He, *Green Chem.*, 2019, 21, 3858-3863.
- 8. V. D. Nguyen, V. T. Nguyen, G. C. Haug, H. T. Dang, H. D. Arman, W. C. Ermler and O. V. Larionov, *ACS Catal.*, 2019, 9, 4015-4024.
- 9. S. Peng, Y.-X. Song, J.-Y. He, S.-S. Tang, J.-X. Tan, Z. Cao, Y.-W. Lin and W.-M. He, *Chin. Chem. Lett.*, 2019, 30, 2287-2290.
- 10. L. Sumunnee, C. Buathongjan, C. Pimpasri and S. Yotphan, *Eur. J. Org. Chem.*, 2017, 2017, 1025-1032.
- 11. P. Bao, L. Wang, Q. Liu, D. Yang, H. Wang, X. Zhao, H. Yue and W. Wei, *Tetrahedron Lett.*, 2019, 60, 214-218.
- N. D. Patel, X. Wei, D. Byrne, B. A. Narayanan, S. Pennino, M. Sarvestani, A. Saha, N. Haddad,
 S. Kapadia, J. C. Lorenz, P. DeCroos, A. Ye, H. Lee, N. Grinberg, A. Hossain, C. A. Busacca, N. K.
 Yee and C. H. Senanayake, *J. Org. Chem.*, 2020, 85, 8339-8351.

5. ¹H and ¹³C NMR spectra of products

¹³C spectrum of **3aa**

 ^{1}H spectrum of **3ai**

¹³C spectrum of **3an**

¹H spectrum of **3ba**

¹⁹F spectrum of **3fa**

9.07 9.07 9.06 9.06 9.20

¹H spectrum of **3ma**

¹H spectrum of 1w

