Supporting Information

Adjusting SiO₂:C mole ratios in rice hull ash (RHA) to control carbothermal reduction to nanostructured SiC, Si₃N₄ or Si₂N₂O composites

Mengjie Yu¹, Eleni Temeche², Sylvio Indris³, and Richard M. Laine*^{1,2}

¹Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA ²Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

³Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen 76344, Germany

Figure S1. XPS wide survey of composites with SiC, Si₃N₄, and Si₂N₂O as the major phase.

Figure S2. XPS a. C 1s, b. Si 2s, and c. Si 2p core-level spectra of SiC composites with 13 wt. % carbon.