Supporting Information

K₂S₂O₈-catalyzed Highly Regioselective Amidoalkylation of Diverse *N*-Heteroaromatics on Water under Visible Light Irradiation

Jiadi Zhou,^{a, c} Quanlei Ren,^b Ning Xu,^b Chaodong Wang,^b Shengjie Song,^b Zhi Chen,^b and Jianjun Li,^{*a, b, c}

^{*a*} Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China. ^{*b*} College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China. ^{*c*} National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China.

*E-mail: lijianjun@zjut.edu.cn

Table of Contents

1. General methods ·····	······S2
2. General procedure	
3. Optimization of the reaction conditions	S3-S4
4. The mechanistic studies	S5-S8
5. Characterization data of 4a and 3a–3as	·····S8-S76
6. References	······S77

1. General methods.

The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. All reactions were monitored by TLC with silica gel-coated plates. ¹H (400 MHz) NMR and ¹³C (101 MHz) NMR spectra were recorded on a Varian spectrometer in CDCl₃ or DMSO-*d*₆ using tetramethylsilane (TMS) as internal standards. Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, bt s = broad singlet. Mass spectra were measured with a HRMS-APCI instrument using ESI ionization. Fluorescence quenching experiments were performed on a Hitachi F-7000 FL Spectrophotometer.

2. General procedure

2.1 General procedure for the amidoalkylation of N-heteroaromatics

A mixture of *N*-heteroaromatics **1** (0.2 mmol, 1.0 equiv.), lactam/amide **2** (1 mmol, 5.0 equiv.), $K_2S_2O_8$ (0.02 mmol, 0.1 equiv.) in a 10 mL Schlenk tube was added H₂O (1.5 mL). The reaction mixture was open to the air and stirred under the irradiation of 3 W blue LEDs at room temperature for 24 h. The reaction mixture was quenched by NaHCO₃ and then extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed by brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate = 6/1 - 1/2, or methylene chloride/methanol = 100/1 - 20/1) on silica get to give the products **3a-3as**.

2.2 Synthesis of starting materials 1

To a suspension of o-arylenediamine (1 equiv.) in ethanol (1 mol/L) was added ethyl 2-oxoacetate (1.1 equiv.). The mixture was stirred at reflux for 1h, then at room temperature overnight. The precipitated solid was filtered and washed with ethanol, then dried to give quinoxalinone **1'**. To a suspension of quinoxalinone **1'** (1 equiv.) in DMF was added potassium carbonate (1.2 equiv.) and the corresponding halogenoalcane (1.6 equiv.). The mixture was stirred at room temperature overnight. Ethyl acetate and water were added, the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with a saturated solution of NH₄Cl then brine, dried over MgSO₄, filtered and evaporated under reduced pressure. The residue is purified by flash chromatography over silica gel to afford the desired product **1**.

3.Optimization of the reaction conditions

N + N -	$K_2S_2O_8$ (0.1 eq) 3W blue LEDs, air, rt, H ₂ O	$\rightarrow (N + N + N + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$
1a 2a		3a
Entry	2a (eq)	Yield (%)
1	10	82
2	5	81
3	3	65
4	1	20

Table S1. Optimization of the ratio of 1a and 2a^{*a*}.

^a Reaction conditions: 1a (0.2 mmol), 2a (1.0 mmol), K₂S₂O₈ (0.02 mmol), water (1.5 mL), air, rt, 24 h, 3 W blue

LEDs.

Table S2. Optimization of solvent conditions ^{*a*}.

N + N -	$K_2S_2O_8$ (0.1 eq) 3W blue LEDs, air, rt, H ₂ O	
1a 2a		3a
Entry	$H_2O(mL)$	Yield (%)
1	3.0	80
2	1.5	81
3	1.0	75

^a Reaction conditions: 1a (0.2 mmol), 2a (1.0 mmol), K₂S₂O₈ (0.02 mmol), air, rt, 24 h, 3 W blue LEDs.

$\begin{array}{c} 7.882\\ 7.7879\\ 7.7879\\ 7.7886\\ 7.7886\\ 7.7886\\ 7.7886\\ 7.7886\\ 7.7886\\ 7.7886\\ 7.7886\\ 7.7886\\ 7.7896\\ 7.7896\\ 7.7396\\ 7.7379$

Figure S1. Determination of the regioselectivity of **3a/3a**' by ¹H NMR spectroscopy of the crude product.

Table S3. Optimization of solvent conditions ^a.

	N 2a	K ₂ S ₂ O ₈ (0.5 eq)	
Entry		Solvent	Yield [%]
1		H ₂ O	trace
2		CH ₃ OH	trace
3		CH_2Cl_2	trace
4		EtOAc	trace

THF

DMSO

THF/H₂O

DMSO/H₂O

NMP

^a Reaction conditions:	auinolone (0.4)	mmol) 2a	(2.0 mmol)	$K_2S_2O_2$ ((0.2mmol)	solvent (1.5 mL)	air rt	24 h 3

trace

trace

trace

trace

55

W blue LEDs.

5

6

7

8

9

4. The mechanistic studies

80 60 Yields (%) 40 20 On On 0 5 9 7 2 3 4 6 8 10 Time (h)

4.1. On/off light experiments

Figure S2. On/off light experiments for the model reaction.

4.2 Fluorescence quenching (Stern-Volmer) experiments

All **1a** solutions were irradiated at 350 nm approximately and the emission intensity from 300 nm to 600 nm was recorded by F-7000 FL Spectrophotometer. A 1 mL solution of **1a** in CH₃CN (0.002 mmol/mL) was added NMP (0.000 mmol, 0.002 mmol, 0.004 mmol, 0.006 mmol, 0.008 mmol, and 0.010 mmol in turn), emission spectra of the sample were collected instantly after each addition.

Figure S4. Fluorescence quenching of 1a by KPS.

All **1a** solutions were irradiated at 350 nm approximately and the emission intensity from 300 nm to 600 nm was recorded by F-7000 FL Spectrophotometer. A 1 mL solution of **1a** in H₂O (0.002 mmol/mL) was added $K_2S_2O_8$ (KPS) (0.000 mmol, 0.002 mmol, 0.004 mmol, 0.006 mmol, 0.008 mmol, and 0.010 mmol in turn), emission spectra of the sample were collected instantly after each addition.

Figure S5. Fluorescence intensity of **1a** in H₂O and CH₃CN respectively All **1a** solutions were irradiated at 350 nm approximately and the emission intensity from 300 nm to 600 nm was recorded by F-7000 FL Spectrophotometer. A 1 mL

solution of 1a in H₂O or CH₃CN respectively (0.002 mmol/mL), emission spectra of the sample were collected instantly after each addition.

4.3 The mechanistic studies of oxidative side reaction

Scheme S1. Control experiments.

Several control reactions were carried out to elucidate the possible reaction pathway. Firstly, radical scavenger, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or phenol was added to the reaction system under the standard conditions, respectively. The present transformation was completely inhibited, these results suggested that the reaction likely proceeded through a free-radical pathway (Scheme S1 a). More oxidation by-product 1-methyl-1,4-dihydroquinoxaline-2,3-dione (**4a**) was detected under an oxygen atmosphere than air or nitrogen atmosphere (Scheme S1 b, c, and d). No corresponding product (**4a**) was generated without $K_2S_2O_8$, indicating that singlet oxygen ($^{1}O_2$) could not directly participate in the production of **4a** (Scheme S1 e).

Scheme S2. Plausible mechanism.

Based on these above-mentioned control experiment results and previous literature reports, a plausible mechanism is depicted in Scheme S2.

Path a:^[1] At first, sulfate radical anion generated in situ selectively attack on the C3position of **1a** to produce nitrogen-centred radical **5**. Then, the intermediate **5** is attacked by water to generate intermediate **6**, which coupled with sulfate radical anion to afford 3-hydroxy1-methylquinoxalin-2(1H)-one **7** with the release of bisulfate anion. Finally, compound **7** rapidly tautomerized to form the more stable product **4a**. **Path b:** Firstly, HOO⁻ from template reaction may selectively attack on the C3position of **1a** to produce intermediate **8**, a transformation between intermediate **9** and intermediate **8** might be exist. Then, intermediate **9** may occur homolytic cleavage^[2] under visible-light irradiation to generate **4a** and hydroxyl radicals.

5.1 Characterization data of 4a

Yellow solid; ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.03 (s, 1H), 7.36 – 7.34 (m, 1H), 7.22 – 7.16 (m, 3H), 3.51 (s, 3H); ¹³**C NMR** (101 MHz, DMSO- d_6) δ 155.3, 153.6, 127.2, 125.6, 123.6, 123.3, 115.4, 115.1, 29.7; **HRMS** (ESI) calcd for C₉H₉N₂O₂ [M+H]⁺: 177.0659, found 177.0665.

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of **4a**

5.2 Characterization data of products 3a-3aq

1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3a)

Yellow solid, mp: 153.6-155.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.37 – 7.32 (m, 2H), 5.16 (dd, *J* = 8.6, 2.6 Hz, 1H), 3.70 (s, 3H), 2.84 (s, 3H), 2.56 – 2.47 (m, 2H), 2.43 – 2.34 (m, 1H), 2.01 – 1.95 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 157.1, 154.2, 133.2, 132.4, 130.8, 130.6, 124.1, 113.8, 61.0, 29.6, 29.1, 29.0, 24.1; **HRMS** (ESI) calcd for C₁₄H₁₆N₃O₂ [M+H]⁺: 258.1237, found 258.1230.

1-ethyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3b)

Gray solid, mp: 134.8-136.7 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 8.2, 1.4 Hz, 1H), 7.58 (td, J = 8.0, 1.6 Hz, 1H), 7.37 – 7.34 (m, 2H), 5.19 (dd, J = 8.8, 3.2 Hz, 1H), 4.34 (qd, J = 7.2, 1.6 Hz, 2H), 2.87 (s, 3H), 2.61 – 2.48 (m, 2H), 2.45 – 2.37 (m, 1H), 2.04 – 1.97(m, 1H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 157.2, 153.7, 132.8, 132.2, 130.9, 130.8, 123.9, 113.7, 61.0, 37.4, 29.6, 29.1, 24.2, 12.6; **HRMS** (ESI) calcd for C₁₅H₁₈N₃O₂ [M+H]⁺: 272.1394, found 272.1390.

Yellow solid, mp: 148.9-150.4 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 1.6 Hz, 1H), 7.55 (td, J = 7.8, 2.0 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 5.17 (dd, J = 9.2, 2.8 Hz, 1H), 5.08 – 4.98 (m, 2H), 4.26 (q, J = 7.0 Hz, 2H), 2.87 (s, 3H), 2.58 – 2.48 (m, 2H), 2.45 – 2.37 (m, 1H), 2.08 – 1.98 (m, 1H), 1.29 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 167.0, 157.1, 153.8, 132.5, 132.4, 131.0, 131.0, 124.4, 113.2, 62.4, 61.0, 43.5, 29.6, 29.1, 24.1, 14.2; **HRMS** (ESI) calcd for C₁₇H₂₀N₃O₄ [M+H]⁺: 330.1448, found 330.1448.

Tert - butyl 2-(3-(1-methyl-5-oxopyrrolidin-2-yl)-2-oxoquinoxalin-1(2H)-yl) acetate (3d)

Yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (dd, J = 7.8, 1.4 Hz, 1H), 7.55 (td, J = 8.0, 1.4 Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz, 1H), 7.09 (d, J = 8.8 Hz, 1H), 5.17 (dd, J = 9.0, 3.0 Hz, 1H), 4.94 (d, J = 2.8 Hz, 2H), 2.87 (s, 3H), 2.60 – 2.48 (m, 2H), 2.45 – 2.37 (m, 1H), 2.06 – 1.98 (m, 1H), 1.47 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.2, 166.0, 157.1, 153.8, 132.5, 132.5, 130.9, 124.3, 113.3, 83.6, 61.0, 44.2, 29.6, 29.1, 28.1, 24.1; **HRMS** (ESI) calcd for C₁₉H₂₄N₃O₄ [M+H]⁺: 358.1761, found 358.1762.

1-benzyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3e) Yellow solid, mp: 200.6-202.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 7.8, 1.4 Hz, 1H), 7.47 (td, J = 7.8, 1.6 Hz, 1H), 7.35 – 7.27 (m, 5H), 7.24 (d, J = 6.8 Hz, 2H), 5.51 (s, 2H), 5.25 (dd, J = 8.6, 2.6Hz, 1H), 2.91 (s, 3H), 2.62 – 2.52 (m, 2H), 2.48 – 2.40 (m, 1H), 2.10 – 2.02 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.2, 157.4, 154.3, 135.1, 132.8, 132.7, 130.8, 130.8, 129.1, 128.0, 127.0, 124.2, 114.6, 61.1, 46.0, 29.7, 29.1, 24.3; **HRMS** (ESI) calcd for C₂₀H₂₀N₃O₂ [M+H]⁺: 334.1550, found 334.1552.

1-allyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3f)

Brown solid, mp: 126.7-128.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.37 – 7.31 (m, 2H), 5.99 – 5.89 (m, 1H), 5.29 (d, J = 10.4 Hz, 1H), 5.21 – 5.17 (m, 2H), 4.97 – 4.86 (m, 2H), 2.87 (s, 3H), 2.61 – 2.48 (m, 2H), 2.46 – 2.38 (m, 1H), 2.04 – 1.97 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 157.3, 153.8, 132.6, 132.5, 130.8, 130.5, 124.1, 118.6, 114.4, 61.0, 44.6, 29.6, 29.1, 24.2; HRMS (ESI) calcd for C₁₆H₁₈N₃O₂ [M+H]⁺: 284.1394, found 284.1397.

3-(1-methyl-5-oxopyrrolidin-2-yl)-1-phenylquinoxalin-2(1H)-one (3g)

Gray solid, mp: 148.2-151.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.8, 1.8 Hz, 1H), 7.65 – 7.61 (m, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.31 – 7.29 (m, 2H), 6.71 (dd, J = 8.2, 1.8 Hz, 1H), 5.20 (dd, J = 9.2, 2.8 Hz, 1H), 2.92 (s, 3H), 2.62 – 2.51 (m, 2H), 2.48 – 2.37 (m, 1H), 2.12 – 2.05 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 158.1, 154.0, 135.5, 134.2, 132.4, 130.5, 130.3, 129.8, 128.4, 128.2, 124.3, 115.7, 61.1, 29.7, 29.1, 24.2; HRMS (ESI) calcd for C₁₉H₁₈N₃O₂ [M+H]⁺: 320.1394, found 320.1400.

3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3h)

Yellow solid, mp: 254.8-256.2 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.51 (s, 1H), 7.74 (dd, J = 8.2, 1.4 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.33 – 7.28 (m, 2H), 5.05 (dd, J =9.0, 3.0 Hz, 1H), 2.71 (s, 3H), 2.46 – 2.34 (m, 1H), 2.32 – 2.20 (m, 2H), 1.99 – 1.91 (m, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 174.6, 159.0, 154.1, 132.0, 131.3, 130.2, 128.6, 123.3, 115.4, 59.8, 29.1, 28.3, 23.2; HRMS (ESI) calcd for C₁₃H₁₄N₃O₂ [M+H]⁺: 244.1081, found 244.1090.

6, 7-dimethyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3i)

Yellow solid, mp: 302.5-303.4 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.38 (s, 1H), 7.52 (s, 1H), 7.07 (s, 1H), 5.02 (dd, *J* = 8.8, 3.2 Hz, 1H), 2.69 (s, 3H), 2.46 – 2.34 (m, 1H), 2.30 (s, 3H), 2.27 (s, 3H), 2.24 – 2.17 (m, 2H), 1.93 – 1.86 (m, 1H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 174.6, 157.6, 154.1, 139.7, 132.0, 130.0, 129.8, 128.5, 115.3, 59.7, 29.1, 28.3, 23.3, 19.8, 18.8; **HRMS** (ESI) calcd for C₁₅H₁₈N₃O₂ [M+H]⁺: 272.1394, found 272.1401.

1, 6, 7-trimethyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3j)
 Yellow solid, mp: 222.8-223.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.09 (s, 1H), 5.17 (dd, *J* = 9.0, 3.0 Hz, 1H), 3.69 (s, 3H), 2.84 (s, 3H), 2.56 – 2.48 (m, 2H),

2.44 – 2.39 (m, 4H), 2.34 (s, 3H), 2.04 – 1.95 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 155.8, 154.3, 140.8, 133.2, 131.3, 131.0, 130.7, 114.3, 61.0, 29.7, 29.0, 24.2, 20.7, 19.2; **HRMS** (ESI) calcd for C₁₆H₂₀N₃O₂ [M+H]⁺: 286.1550, found 286.1552.

6, 7-difluoro-1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3k)

Yellow solid, mp: 271.2-272.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 9.8, 8.2 Hz, 1H), 7.14 (dd, J = 11.2, 6.8 Hz, 1H), 5.13 (dd, J = 9.2, 2.8 Hz, 1H), 3.66 (s, 3H), 2.82 (s, 3H), 2.58 – 2.48 (m, 1H), 2.46 – 2.31 (m, 2H), 1.99 – 1.93 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 157.9, 157.9, 153.8, 153.2, 153.0, 150.7, 150.5, 148.2 (d, J = 14.0 Hz), 145.8, 145.6, 130.6, 130.6, 130.5, 130.5, 128.7, 128.7, 128.6, 128.6, 118.3, 118.2, 118.1, 118.1, 102.6, 102.4, 61.0, 29.6, 29.5, 29.0, 24.0; HRMS (ESI) calcd for C₁₄H₁₄F₂N₃O₂ [M+H]⁺: 294.1049, found 294.1046.

6, 7-dichloro-1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one(3l)

Yellow solid, mp: 255.3-257.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.43 (s, 1H), 5.14 (dd, J = 9.2, 2.8 Hz, 1H), 3.67 (s, 3H), 2.83 (s, 3H), 2.58 – 2.50 (m, 1H), 2.48 – 2.36 (m, 2H), 2.01 – 1.94 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 159.1, 153.7, 135.1, 132.7, 131.5, 131.4, 128.1, 115.4, 61.0, 29.5, 29.4, 29.0, 24.1; HRMS (ESI) calcd for C₁₄H₁₄Cl₂N₃O₂ [M+H]⁺: 326.0458, found 326.0455.

6-fluoro-1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3m) Yellow solid, mp: 169.4-171.8 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.34 – 7.27 (m, 2H), 5.15 (dd, *J* = 9.2, 3.2 Hz, 1H), 3.70 (s, 3H), 2.82 (s, 3H), 2.59 – 2.34 (m, 3H), 2.01 – 1.93 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.0, 160.1, 158.9, 157.7, 153.8, 133.1, 133.0, 130.0, 130.0, 118.7, 118.5, 116.0, 115.8, 115.0, 114.9, 61.0, 29.5, 29.3, 29.0, 24.1; **HRMS** (ESI) calcd for C₁₄H₁₅FN₃O₂ [M+H]⁺: 276.1143, found 276.1142.

7-fluoro-1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3n) Gray solid, mp: 169.1-170.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.8, 6.0 Hz, 1H), 7.07 (td, *J* = 8.6, 2.4 Hz, 1H), 7.01 (dd, *J* = 9.8, 2.6 Hz, 1H), 5.14 (dd, *J* = 9.0, 2.6 Hz, 1H), 3.67 (s, 3H), 2.84 (s, 3H), 2.59 – 2.45 (m, 2H), 2.44 – 2.35 (m, 1H), 2.01 – 1.94 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 164.9, 162.4, 156.1, 156.0, 154.1, 134.8, 134.7, 132.7, 132.6, 129.2, 129.2, 112.2, 112.0, 101.0, 100.7, 60.9, 29.6, 29.4, 29.1, 24.1; HRMS (ESI) calcd for C₁₄H₁₅FN₃O₂ [M+H]⁺: 276.1143, found 276.1142.

6-chloro-1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3o) White solid, mp: 252.5-254.1 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.34 – 7.31 (m, 2H), 5.15 (dd, *J* = 9.0, 3.0 Hz, 1H), 3.70 (s, 3H), 2.82 (s, 3H), 2.60 – 2.37 (m, 3H), 2.02 – 1.94 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 157.4, 153.9, 136.9, 134.1, 131.7, 131.0, 124.6, 113.9, 61.0, 29.6, 29.3, 29.1, 24.1; HRMS (ESI) calcd for C₁₄H₁₅ClN₃O₂ [M+H]⁺: 292.0847, found 292.0844.

7-chloro-1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3p) Brown solid, mp: 239.9-242.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 2.4 Hz, 1H), 7.52 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.27 (d, *J* = 9.2 Hz, 1H), 5.15 (dd, *J* = 9.2, 2.8 Hz, 1H), 3.69 (s, 3H), 2.83 (s, 3H), 2.59 – 2.45 (m, 2H), 2.43 – 2.35 (m, 1H), 2.01 – 1.94 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 158.8, 153.8, 132.9, 132.0, 130.8, 129.8, 129.5, 115.0, 61.0, 29.5, 29.3, 29.0, 24.1; HRMS (ESI) calcd for C₁₄H₁₅ClN₃O₂ [M+H]⁺: 292.0847, found 292.0844.

7-bromo-1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3q) Brown solid, mp: 162.7-163.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 2.4 Hz, 1H), 7.67 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.22 (d, *J* = 9.2 Hz, 1H), 5.18 – 5.16 (m, 1H), 3.70 (s, 3H), 2.85 (s, 3H), 2.59 – 2.37 (m, 3H), 2.01 – 1.96 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 158.7, 153.9, 133.6, 133.2, 133.0, 132.4, 116.8, 115.3, 61.0, 29.5, 29.3, 29.1, 24.1; HRMS (ESI) calcd for C₁₄H₁₅BrN₃O₂ [M+H]⁺:336.0342, found 336.0342.

Methyl 1-methyl-3-(1-methyl-5-oxopyrrolidin-2-yl)-2-oxo-1,2-dihydroquinoxalin e-6-carboxylate (3r) compound with methyl 4-methyl-2-(1-methyl-5-oxopyrrol idin-2-yl)-3-oxo-3,4-dihydroquinoxaline-6-carboxylate (3r') (3r:3r' = 4.5:5.5) Gray solid, mp: 177.1-179.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 2.0 Hz, 0.41H), 8.21 (dd, J = 8.8, 2.0 Hz, 0.44H), 8.02 – 7.96 (m, 1.18H), 7.89 (d, J = 8.0 Hz, 0.55H), 7.37 (d, J = 8.4 Hz, 0.45H), 5.19 – 5.13 (m, 1H), 3.96 (s, 1.56H), 3.93 (s, 1.38H), 3.75 (s, 1.57H), 3.73 (s, 1.41H), 2.85 (s, 2.94H), 2.59 – 2.35 (m, 3.11H), 2.01 – 1.95 (m, 1.14H); ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 166.0, 165.9, 159.8, 158.2, 154.1, 153.9, 136.4, 134.9, 133.0, 132.3, 131.7, 131.6, 131.5, 130.6, 126.0, 124.7, 115.6, 113.9, 61.1, 61.0, 52.9, 52.5, 29.5, 29.4, 29.4, 29.3, 29.1, 29.0, 24.0; HRMS (ESI) calcd for C₁₄H₁₈N₃O₄ [M+H]⁺: 316.1292, found 316.1292.

3-(1-ethyl-5-oxopyrrolidin-2-yl)-1-methylquinoxalin-2(1H)-one (3s) compound with 1-methyl-3-(1-(2-oxopyrrolidin-1-yl)ethyl)quinoxalin-2(1H)-one (3s') (3s:3s' = 6.3:1)

Yellow solid, mp: 136.5-137.2 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 0.19H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 7.2 Hz, 0.18H), 7.36 – 7.28 (m, 2.51H), 5.70 (q, *J* = 7.2 Hz, 0.15H), 5.31 (dd, *J* = 8.8, 2.4 Hz, 1H), 3.81 (dq, *J* = 14.2, 7.2 Hz, 1H), 3.71 (s, 3H), 3.65 (s, 0.62H), 3.54 (td, *J* = 8.4, 8.0, 6.1 Hz, 0.24H), 2.89 (dq, *J* = 14.2, 7.2 Hz, 1H), 2.58 – 2.33 (m, 3.35H), 2.04 – 1.96 (m, 1.22H), 1.56 (d, *J* = 7.2 Hz, 0.56H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 175.1, 158.8, 157.5, 154.2, 153.8, 133.4, 133.2, 132.4, 132.3, 130.8, 130.5, 130.4, 130.3, 124.1, 123.6, 113.8, 113.7, 58.0, 48.5, 37.2, 36.3, 31.4, 31.2, 30.0,

29.1, 24.3, 18.5, 12.7, 12.6; **HRMS** (ESI) calcd for C₁₅H₁₈N₃O₂ [M+H]⁺: 272.1394, found 272.1401.

3-(1-benzyl-5-oxopyrrolidin-2-yl)-1-methylquinoxalin-2(1H)-one (3t)

Green oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.18 – 7.11 (m, 5H), 5.09 (d, J = 7.6 Hz, 1H), 4.97 (d, J = 14.8 Hz, 1H), 4.11 (d, J = 14.8 Hz, 1H), 3.62 (s, 3H), 2.67 – 2.60 (m, 1H), 2.52 – 2.42(m, 2H), 2.08 – 2.04 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.2, 157.3, 153.9, 136.6, 133.3, 132.4, 130.8, 130.6, 128.5, 128.5, 127.4, 124.0, 113.7, 58.7, 45.6, 29.8, 29.0, 23.9; **HRMS** (ESI) calcd for C₂₀H₂₀N₃O₂ [M+H]⁺: 334.1550, found 334.1558.

3-(1,3-dimethyl-2-oxoimidazolidin-4-yl)-1-methylquinoxalin-2(1H)-one (3u) Yellow solid, mp: 231.4-233.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.40 – 7.33 (m, 2H), 5.04 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.83 (t, *J* = 9.0 Hz, 1H), 3.72 (s, 3H), 3.25 – 3.22 (m, 1H), 2.90 (s, 3H), 2.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 156.0, 154.4, 133.2, 132.5, 130.9, 130.8, 124.2, 113.8, 56.7, 50.1, 31.4, 30.5, 29.1; HRMS (ESI) calcd for C₁₄H₁₇N₄O₂ [M+H]⁺: 273.1346, found 273.1345.

4-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)oxazolidin-2-one (3v)

Yellow solid, mp: 130.7-131.8 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.04 (s, 1H), 7.86 (dd, J = 8.0, 1.6 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.61 (dd, J = 8.6, 1.4 Hz, 1H), 7.45 – 7.41 (m, 1H), 5.20 (dd, J = 9.4, 4.6 Hz, 1H), 4.69 (t, J = 9.0 Hz, 1H), 4.38 (dd, J = 8.6, 4.8 Hz, 1H), 3.64 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 158.9, 156.7, 153.4, 133.3, 131.5, 130.7, 129.3, 123.6, 114.8, 67.0, 53.1, 28.8; HRMS (ESI) calcd for C₁₂H₁₁N₃NaO₃ [M+Na]⁺: 268.0693, found 268.0701.

1-methyl-3-(2-oxoazepane-1-carbonyl)quinoxalin-2(1H)-one (3w)

Yellow solid, mp: 197.4-199.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.36 – 7.31 (m, 2H), 4.09 (s, 2H), 3.68 (s, 3H), 2.69 – 2.66 (m, 2H), 1.90 – 1.82 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 166.8, 154.8, 153.1, 133.6, 132.6, 130.9, 130.5, 124.0, 113.9, 43.3, 38.7, 29.6, 29.0, 28.3, 23.3; HRMS (ESI) calcd for C₁₆H₁₈N₃O₃ [M+H]⁺: 300.1343, found 300.1345.

3-(1-acetylpyrrolidin-2-yl)-1-methylquinoxalin-2(1H)-one (3x) ^[3]

Yellow solid, mp: 148.1-149.5 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.39 – 7.28 (m, 4H), 5.56 (dd, *J* = 8.6, 3.4 Hz, 1H), 5.46 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.89 –

3.84 (m, 2H), 3.73 (s, 3H), 3.69 – 3.67 (m, 4H), 3.64 – 3.60 (m, 1H), 2.54 – 2.44 (m, 1H), 2.39 – 2.34 (m, 1H), 2.13 (s, 3H), 2.10 – 2.00 (m, 5H), 1.94 – 1.91 (m, 1H), 1.88 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.5, 161.1, 157.5, 146.1, 137.3, 129.2, 128.9, 121.7, 119.6, 60.6, 41.8, 39.7, 32.1, 28.2, 25.0, 20.2, 14.3; **HRMS** (ESI) calcd for C₁₅H₁₈N₃O₂ [M+H]⁺: 272.1394, found 272.1396.

N-ethyl-*N*-(1-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)formamide (3y) ^[3] Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 0.82H), 8.19 (s, 0.12H), 7.88 (d, *J* = 8.0 Hz, 0.88H), 7.84 (d, *J* = 8.4 Hz, 0.13H), 7.59 (t, *J* = 7.8 Hz, 0.93H), 7.53 (t, *J* = 7.8 Hz, 0.12H), 7.39 – 7.32 (m, 2H), 7.30 – 7.28 (m, 0.21H), 5.74 (q, *J* = 7.2 Hz, 0.10H), 5.29 (q, *J* = 7.2 Hz, 0.86H), 3.69 (s, 2.76H), 3.67 (s, 0.31H), 3.57 – 3.48 (m, 0.22H), 3.42 – 3.27 (m, 1.96H), 1.67 (d, *J* = 7.2 Hz, 2.65H), 1.63 (d, *J* = 7.2 Hz, 0.29H), 1.23 (t, *J* = 7.2 Hz, 0.29H), 1.04 (t, *J* = 7.2 Hz, 2.66H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.0, 158.1, 156.9, 154.5, 154.1, 133.5, 133.4, 132.2, 132.0, 131.0, 130.7, 130.4, 124.0, 123.8, 123.6, 113.8, 113.7, 53.0, 50.0, 40.8, 36.8, 29.3, 29.1, 17.3, 15.8, 14.2; HRMS (ESI) calcd for C₁₄H₁₇N₃NaO₂ [M+Na]⁺: 282.1213, found 282.1223.

N-ethyl-*N*-(1-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)acetamide (3z) ^[3] Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.6 Hz, 0.72H), 7.82 (d, *J* = 7.6 Hz, 0.37H), 7.59 (t, *J* = 7.4 Hz, 0.73H), 7.52 (t, *J* = 7.8 Hz, 0.38H), 7.39 – 7.28 (m, 2.16H), 5.91 (q, *J* = 7.2 Hz, 0.34H), 5.56 (q, *J* = 7.2 Hz, 0.70H), 3.69 (s, 2H), 3.66 (s, 1H), 3.55 – 3.43 (m, 0.77H), 3.37 – 3.25 (m, 1.72H), 2.40 (s, 2.22H), 2.13 (s, 1.13H), 1.58 (dd, J = 7.0, 2.2 Hz, 3.33H), 1.17 (t, J = 7.2 Hz, 1.06H), 0.88 (t, J = 7.0 Hz, 2.27H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.3, 170.6, 159.3, 157.1, 154.3, 154.0, 133.5, 133.4, 132.4, 132.3, 131.0, 130.7, 130.3, 130.2, 123.9, 123.5, 113.8, 113.6, 53.0, 51.5, 40.7, 36.6, 29.3, 29.1, 22.3, 21.9, 16.4, 16.2, 15.9, 14.6; **HRMS** (ESI) calcd for C₁₅H₁₉N₃NaO₂ [M+Na]⁺: 296.1369, found 296.1368.

N-methyl-*N*-((4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methyl)formamide (3aa) ^[3]

Yellow solid, mp: 153.4-154.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1.03H), 7.86 (dd, J = 7.8, 1.4 Hz, 0.66H), 7.82 (dd, J = 7.8, 1.4 Hz, 0.42H), 7.62 – 7.58 (m, 0.70H), 7.57 – 7.53 (m, 0.42H), 7.40 – 7.30 (m, 2.25H), 4.78 (s, 0.80H), 4.64 (s, 1.22H), 3.71 (s, 1.92H), 3.69 (s, 1.16H), 3.12 (s, 1.19H), 2.96 (s, 1.90H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 163.4, 154.4, 154.3, 153.9, 153.3, 133.3, 133.1, 132.6, 132.5, 131.0, 130.5, 130.4, 130.3, 124.2, 123.9, 113.9, 113.8, 51.4, 46.5, 35.7, 30.8, 29.1, 29.0; **HRMS** (ESI) calcd for C₁₂H₁₄N₃O₂ [M+H]⁺: 232.1081, found 232.1086.

N-methyl-*N*-((4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methyl)acetamide (3ab)

Yellow solid, mp: 93.3-95.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.38 – 7.27 (m, 4H), 4.82 (s, 2H), 4.73 (s, 2H), 3.71 (s, 3H), 3.66 (s, 3H), 3.15 (s, 3H), 3.02 (s, 3H), 2.23 (s, 3H), 2.11 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 171.7, 154.5, 154.3, 154.3, 153.9, 133.0, 132.8 (d, *J* = 47.0 Hz), 132.5, 130.8, 130.5, 130.2,

130.1, 124.1, 123.6, 113.8, 113.6, 52.7, 50.0, 37.6, 34.8, 29.0, 28.9, 21.8, 21.5; **HRMS** (ESI) calcd for C₁₃H₁₆N₃O₂ [M+H]⁺: 246.1237, found 246.1241.

N-methyl-*N*-((4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methyl)benzamide (3ac) Yellow solid, mp: 109.2-111.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 0.83H), 7.62 – 7.53 (m, 4H), 7.43 – 7.40 (m, 6H), 7.36 – 7.24 (m, 5H), 4.99 (s, 1.62H), 4.73 (s, 2H), 3.70 (s, 2.46H), 3.65 (s, 3H), 3.17 (s, 3H), 3.10 (s, 2.41H); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 172.3, 154.5, 154.3, 154.2, 154.1, 136.6, 136.6, 133.2, 133.1, 132.7, 130.7, 130.5, 130.3, 130.2, 129.6, 129.5, 128.6, 128.6, 128.6, 128.5, 127.2, 127.0, 126.6, 124.2, 124.1, 123.8, 113.9, 113.8, 113.8, 53.5, 49.8, 39.0, 34.4, 29.0; **HRMS** (ESI) calcd for C₁₈H₁₈N₃O₂ [M+H]⁺: 308.1394, found 308.1395.

1,1,3-trimethyl-3-((4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methyl)urea (3ad) Yellow solid, mp: 95.2-97.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.36 – 7.30 (m, 2H), 4.66 (s, 2H), 3.69 (s, 3H), 2.98 (s, 3H), 2.86 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 155.8, 154.4, 133.1, 132.7, 130.3, 130.2, 123.8, 113.7, 52.6, 38.9, 37.8, 29.0; HRMS (ESI) calcd for C₁₄H₁₈N₄NaO₂ [M+Na]⁺: 297.1322, found 297.1328.

(E)-1-methyl-3-(2-(2-oxopyrrolidin-1-yl)vinyl)quinoxalin-2(1H)-one (3ae) Gray solid, mp: 178.2-179.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 14.4 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 6.48 (d, *J* = 14.4 Hz, 1H), 3.74 (t, *J* = 7.2 Hz, 2H), 3.70 (s, 3H), 2.58 (t, *J* = 8.2 Hz, 2H), 2.20 (p, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 154.8, 152.7, 133.5, 132.6, 132.1, 129.5, 129.1, 124.0, 113.6, 105.3, 45.4, 31.3, 29.3, 17.6; HRMS (ESI) calcd for C₁₅H₁₆N₃O₂ [M+H]⁺: 270.1237, found 270.1236.

1-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)imidazolidine-2,4-dione (3af)

White solid, mp: 225.2-216.8 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.55 (s, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.79 (t, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 4.30 – 4.20 (m, 2H), 3.70 (s, 3H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 170.7, 155.1, 151.5, 142.3, 133.9, 132.5, 130.6, 129.9, 124.5, 115.5, 46.7, 30.0; **HRMS** (ESI) calcd for C₁₂H₁₀N₄NaO₂ [M+Na]⁺: 281.0645, found 281.0645.

1-methyl-3-(5-oxopyrrolidin-2-yl)quinoxalin-2(1H)-one (3ag)

Yellow solid, mp: 148.7-149.6 °C;¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.40 – 7.33 (m, 2H), 6.45 (s, 1H), 5.11 (dd, J = 8.0, 4.0 Hz, 1H), 3.71 (s, 3H), 2.74 – 2.62 (m, 1H), 2.50 – 2.42 (m, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 178.4, 157.1, 154.3, 133.3, 132.3, 130.9, 130.6, 124.2, 113.9, 55.7, 29.9, 29.1, 25.0; **HRMS** (ESI) calcd for C₁₃H₁₄N₃O₂ [M+H]⁺:244.1081, found 244.1079.

1-methyl-3-(6-oxopiperidin-2-yl)quinoxalin-2(1H)-one (3ah)

Yellow solid, mp: 172.4-174.1 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.83 (d, J = 7.2 Hz 1H), 7.65 (t, J = 7.2 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.42 – 7.40 (m, 1H), 7.38 (s, 1H), 4.99 (td, J = 6.0, 2.0 Hz, 1H), 3.65 (s, 3H), 2.24 – 2.10 (m, 3H), 1.80 – 1.65 (m, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 170.7, 158.7, 153.3, 133.0, 131.6, 130.5, 129.3, 123.7, 114.8, 52.3, 31.3, 29.0, 25.5, 18.2; **HRMS** (ESI) calcd for C₁₄H₁₆N₃O₂ [M+H]⁺:258.1237, found 2581246.

2-(2-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)-5-oxopyrrolidin-1-yl)acetamide (3ai)

Yellow solid, mp: 198.9-200.2 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.77 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.40 (s, 1H), 7.38 – 7.36 (m, 1H), 7.07 (s, 1H), 5.21 (dd, J = 9.2, 3.2 Hz, 1H), 4.20 (d, J = 16.8 Hz, 1H), 3.62 (s, 3H), 3.43 (d, J = 16.8 Hz, 1H), 2.55 – 2.45 (m, 1H), 2.33 – 2.29 (m, 2H), 1.97 – 1.90 (m, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 175.4, 170.0, 157.7, 153.7, 133.3, 131.6, 130.5, 129.3, 123.5, 114.8, 58.9, 44.0, 28.9, 23.3; **HRMS** (ESI) calcd for C₁₅H₁₇N₄O₃ [M+H]⁺: 301.1295, found 301.1294.

Jaj

1-methyl-5-(quinolin-2-yl)pyrrolidin-2-one (3aj) (0:p=3:10)

White oil; ¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (d, J = 4.4 Hz, 0.97H), 8.18 (m, 1.32H), 8.04 (d, J = 8.4 Hz, 0.30H), 7.93 (d, J = 8.4 Hz, 1.00H), 7.81 (d, J = 8.0 Hz, 0.31H), 7.77 – 7.69(m, 1.37H), 7.60 (t, J = 7.8 Hz, 1.01H), 7.53 (t, J = 7.6 Hz, 0.30H), 7.27 (d, J = 8.4 Hz, 0.34H), 7.10 (d, J = 4.4 Hz, 0.92H), 5.33 (s, 0.82H), 4.83 (m, 0.33H), 2.84 (s, 3.19H), 2.73 (s, 1.23H), 2.70 – 2.43 (m, 3.86H), 2.02 – 1.93 (m, 1.41H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.9, 175.9, 160.9, 150.3, 148.6, 147.8, 137.8, 130.7, 130.1, 129.9, 129.7, 129.2, 127.7, 127.6, 127.3, 126.8, 125.8, 122.3, 117.7, 116.3, 66.6, 59.9, 30.1, 29.4, 29.0, 28.7, 27.1, 26.4; **HRMS** (ESI) calcd for C₁₄H₁₄N₂NaO [M+Na]⁺: 249.0998, found 249.1007.

1-methyl-5-(2-methylquinolin-4-yl)pyrrolidin-2-one (3ak)

White oil; ¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 6.95 (s, 1H), 5.27 (s, 1H), 2.83 (s, 3H), 2.70 (s, 3H), 2.66 – 2.61 (m, 1H), 2.54 – 2.44 (m, 2H), 1.98 – 1.91 (m, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 175.9, 159.0, 148.3, 146.2, 129.7, 129.7, 126.3, 124.0, 122.1, 117.0, 59.7, 29.4, 29.0, 27.0, 25.5; **HRMS** (ESI) calcd for C₁₅H₁₇N₂O [M+H]⁺: 241.1335, found 241.1330.

1-methyl-5-(4-methylquinolin-2-yl)pyrrolidin-2-one (3al) White oil; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 4.83 (dd, J = 8.2, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 4.83 (dd, J = 8.2, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 4.83 (dd, J = 8.2, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 4.83 (dd, J = 8.2, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 4.83 (dd, J = 8.2, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 4.83 (dd, J = 8.2, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 4.83 (dd, J = 8.2, 1H), 7.11 (s, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 7.11 (s, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 7.58 (t, J = 8.2, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.11 (s, 1H), 7.58 (t, J = 8.2, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.58 (t, J =

5.0 Hz, 1H), 2.76 (s, 3H), 2.72 (s, 3H), 2.68 – 2.46 (m, 3H), 2.06 – 1.98 (m, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 176.1, 160.7, 147.4, 146.7, 130.0, 129.6, 127.7, 126.8, 123.9, 118.2, 66.5, 30.2, 28.8, 26.4, 19.2; **HRMS** (ESI) calcd for C₁₅H₁₇N₂O [M+H]⁺: 241.1335, found 241.1337.

5-(4-bromoquinolin-2-yl)-1-methylpyrrolidin-2-one (3am)

Yellow solid, mp: 128.1-129.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.79 (t, *J* = 7.4 Hz, 1H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.59 (s, 1H), 4.87 – 4.82 (m, 1H), 2.78 (s, 3H), 2.69 – 2.61 (m, 2H), 2.54 – 2.50 (m, 1H), 2.08 – 1.99 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 160.9, 148.2, 136.2, 131.3, 129.5, 128.3, 127.3, 126.9, 121.9, 65.9, 30.0, 28.9, 26.4; HRMS (ESI) calcd for C₁₄H₁₄BrN₂O [M+H]⁺: 305.0284, found 305.0284.

5-(3-bromoquinolin-2-yl)-1-methylpyrrolidin-2-one (3an)

Gray solid, mp: 136.5-137.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.74 – 7.70 (m, 2H), 7.56 (t, J = 7.6 Hz, 1H), 5.31 (dd, J = 8.4, 3.2 Hz, 1H), 2.82 (s, 3H), 2.62 – 2.52 (m, 2H), 2.47 – 2.44 (m, 1H), 2.09 – 2.01 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 156.5, 146.3, 140.0, 130.3, 129.7, 128.6, 127.8, 126.6, 116.3, 64.0, 29.7, 29.0, 25.3; HRMS (ESI) calcd for C₁₄H₁₄BrN₂O [M+H]⁺: 305.0284, found 305.0288.

5-(isoquinolin-1-yl)-1-methylpyrrolidin-2-one (3ao) compound with 1-(isoquinolin-1-ylmethyl)pyrrolidin-2-one (3ao') (3ao:3ao'=12.5:1)

White oil; ¹**H NMR** (400 MHz, CDCl₃) δ 8.47 – 8.42 (m, 1.08H), 8.38 (d, J = 8.4 Hz, 0.08H), 8.10 (d, J = 8.4 Hz, 1H), 7.87 – 7.82 (m, 1.09H), 7.69 (t, J = 7.6 Hz, 1.09H), 7.63 – 7.57 (m, 2.16H), 5.49 (dd, J = 8.2, 4.2 Hz, 1H), 5.08 (s, 0.17H), 3.28 (t, J = 7.2 Hz, 0.17H), 2.76 (s, 3H), 2.65 – 2.54 (m, 2H), 2.49 – 2.38 (m, 1.18H), 2.13 – 2.04 (m, 1H), 1.91 (p, J = 7.6 Hz, 0.17H); ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 174.7, 158.1, 155.7, 142.0, 140.6, 136.7, 130.9, 130.2, 128.3, 127.9, 127.7, 127.3, 126.0, 125.6, 123.4, 121.4, 120.7, 62.2, 47.0, 46.6, 30.8, 30.0, 28.9, 26.1, 17.7; HRMS (ESI) calcd for C₁₄H₁₄N₂NaO [M+Na]⁺: 249.0998, found 2249.1007.

1-methyl-5-(phthalazin-1-yl)pyrrolidin-2-one (3ap)

Yellow solid, mp: 85.1-85.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 8.12 – 8.05 (m, 2H), 7.97 (dd, J = 6.0, 3.2 Hz, 2H), 5.51 (dd, J = 8.4, 5.2 Hz, 1H), 2.80 (s, 3H), 2.73 – 2.65 (m, 2H), 2.60 – 2.53 (m, 1H), 2.24 – 2.16 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 157.4, 151.6, 133.3, 132.7, 127.8, 127.0, 124.6, 122.4, 62.5, 29.9, 29.0, 25.6; HRMS (ESI) calcd for C₁₃H₁₄N₃O [M+H]⁺: 228.1131, found 228.1139.

5,5'-(phthalazine-1,4-diyl)bis(1-methylpyrrolidin-2-one) (3ap')

Yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 8.20 – 8.17 (2×m, 2H), 7.99 (2×dd, *J* = 6.2, 3.4 Hz, 2H), 5.52 (2×dd, *J* = 8.4, 4.8 Hz, 2H), 2.83 (2×s, 6H), 2.73 – 2.68 (2×m, 4H), 2.60 – 2.52 (2×m, 2H), 2.24 – 2.16 (2×m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 157.7, 133.1, 125.0, 123.8, 62.4, 29.9, 29.2, 29.1, 25.8, 25.7; **HRMS** (ESI) calcd for C₁₈H₂₁N₄O₂ [M+H]⁺: 325.1659, found 325.1664.

5-(3-methoxyquinoxalin-2-yl)-1-methylpyrrolidin-2-one (3aq)

White oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 5.09 (dd, J = 8.6, 3.4 Hz, 1H), 4.12 (s, 3H), 2.82 (s, 3H), 2.62 – 2.41 (m, 3H), 2.06 – 1.99 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.1, 155.6, 147.7, 140.3, 138.4, 130.1, 129.1, 127.0, 126.9, 61.2, 54.1, 29.8, 28.9, 24.3; **HRMS** (ESI) calcd for C₁₄H₁₆N₃O₂ [M+H]⁺: 258.1237, found 258.1236.

5-(benzo[d]thiazol-2-yl)-1-methylpyrrolidin-2-one (3ar)

Brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 5.02 (dd, *J* = 8.4, 4.0 Hz, 1H), 2.87 (s, 3H), 2.72 – 2.59 (m, 2H), 2.52 – 2.44 (m, 1H), 2.25 – 2.16 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 172.5, 153.0, 134.9, 126.6, 125.8, 123.3, 122.1,

62.9, 29.5, 29.0, 26.8; **HRMS** (ESI) calcd for $C_{12}H_{13}N_2OS$ [M+H]⁺: 233.0743, found 233.0738.

1-methyl-5-(2,4,6-trimethoxyphenyl)pyrrolidin-2-one (3as)

White oil; ¹**H NMR** (400 MHz, CDCl₃) δ 6.09 (s, 2H), 5.19 (dd, J = 9.6, 4.8 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 6H), 2.59 – 2.52 (m, 1H), 2.49 (s, 3H), 2.43 – 2.22 (m, 2H), 2.02 – 1.93 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.3, 160.9, 159.6, 108.3, 90.6, 55.7, 55.2, 53.9, 31.1, 27.3, 23.6; **HRMS** (ESI) calcd for C₁₄H₂₀NO₄ [M+H]⁺: 266.1387, found 266.1389.

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of $\boldsymbol{3a}$

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of $\boldsymbol{3b}$

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3c

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3d

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3e

13C NMR (101 MHz, CDCl₃) spectrum of 3f

 ^{13}C NMR (101 MHz, CDCl_3) spectrum of 3g

¹³C NMR (101 MHz, DMSO- d_6) spectrum of **3h**

¹³C NMR (101 MHz, DMSO- d_{6}) spectrum of **3i**

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3j

 ^{13}C NMR (101 MHz, CDCl_3) spectrum of 3k

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of **3**l

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3m**

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of **3n**

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of $\boldsymbol{3o}$

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of $\boldsymbol{3p}$

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of $\boldsymbol{3q}$

 ^{13}C NMR (101 MHz, CDCl_3) spectrum of 3r and 3r'

¹³C NMR (101 MHz, CDCl₃) spectrum of **3s** and **3s'**

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3t

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3u

¹³C NMR (101 MHz, DMSO- d_6) spectrum of **3v**

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3w

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of 3x

¹³C NMR (101 MHz, CDCl₃) spectrum of **3y**

¹³C NMR (101 MHz, CDCl₃) spectrum of **3z**

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3aa**

 13 C NMR (101 MHz, CDCl₃₎ spectrum of **3ab**

 ^{13}C NMR (101 MHz, CDCl_3) spectrum of 3ac

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3ad**

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3ae**

¹³C NMR (101 MHz, DMSO- d_{6}) spectrum of **3af**

 ^{13}C NMR (101 MHz, CDCl_3) spectrum of $\boldsymbol{3ag}$

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of **3ah**

¹³C NMR (101 MHz, DMSO- d_{6}) spectrum of **3ai**

 ^{13}C NMR (101 MHz, CDCl_3) spectrum of 3aj

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3ak**

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3al**

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of **3am**

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3an**

 ^{13}C NMR (101 MHz, CDCl₃₎ spectrum of **3ao** and **3ao'**

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3ap**
8.197 8.191 8.191 8.167 8.181 8.167 8.167 7.990 7.990 7.990 7.990 7.990 7.991 7.982 5.502 5.515 5.515 2.515

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3ap'**

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3aq**

 ^{13}C NMR (101 MHz, CDCl_3) spectrum of 3ar

¹³C NMR (101 MHz, CDCl₃₎ spectrum of **3as**

6. References

[1] S. Peng, D. Hu, J. L. Hu, Y. W. Lin, S. S. Tang, H. S. Tang, J. Y. He, Z. Cao and

W. M. He, Adv. Synth. Catal., 2019, 361, 5721-5726.

[2] (a)D. Wei and F. Liang, Org. Lett., 2016, 18, 5860-5863. (b)A. S. Tsang, A. Kapat and F. Schoenebeck, J. Am. Chem. Soc., 2016, 138, 518-526. (c) C.-L. Dong, L.-Q. Huang, Z. Guan, C.-S. Huang and Y.-H. He, Adv. Synth. Catal., 2021, 363, 1-10.
[3] M. Salamone, M. Milan, G. A. DiLabio and M. Bietti, J. Org. Chem., 2014, 79, 7179-7184.