Disassembling Catechyl and Guaiacyl/Syringyl Lignins
Coexisted in Euphorbiaceae Seed Coats
Shihao Su, Shuizhong Wang, Guoyong Song*
${ }^{\text {a Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, }}$ Beijing 100083, P. R. China.
Email: songg@bjfu.edu.cn

Table of Contents

1. Materials S2
2. The preparation of C-lignin samples S3
3. Characterizations S5
4. Catalytic hydrogenolysis S11
5. Authentic samples S12
6. References S13

1. Materials

The seeds of Jatropha (Jatropha carcas L.), Candlenut (Aleurites moluccana (L.) Willd) and Tung (Vernicia fordii (Hemsl.) Airy Shaw) grow up in Yunnan Province, China. Castor (Ricinus communis L.) seeds were obtained from Shandong Province, China. Pd/C (Pd content: 5 wt \%) was purchased from Energy Chemical. Dioxane, methanol, ethanol and n-butyl alcohol were purchased from Sinopharm. Cellulase and xylanase are purchased from Shandong Longcote Enzyme Preparation Co., Ltd. All commercially available chemical reagents were used without further purification.

The seeds were washed with deionized water to remove dust and were then dried. After cracked with hammers or pliers, the coats can be readily peeled from kernel. The dried seed coats were ground into powder (20-60 mesh), which were then extracted with ethanol/toluene $(1: 2, v / v)$ to remove some waxes and then dried under vacuum before use.

Figure S1. The pre-treatment of Euphorbiaceae plant seeds.

2. The preparation of \mathbf{C}-lignin samples

Klason lignin (KL):Klason lignin was prepared according to NREL/TP-51042618 protocol. ${ }^{40,41}$ The power of Jatropha seed coats ($20 \sim 60$ mesh, 2 g) was treated with 12 M sulfuric acid $(20 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$ for 1 h , to which deionized water $(560 \mathrm{~mL})$ was added. After further heating at $120^{\circ} \mathrm{C}$ for 1 h , the mixture was filtered through a filter crucible (filter diameter 4-7 um). The solid phase was obtained as Klason lignin (900 mg).

Enzyme lignin (EL): The ball-milled Jatropha seed coats (300 mesh, 10 g) was treated with cellulase ($200000 \mu / \mathrm{g}, 750 \mathrm{mg}$) and xylanase ($290000 \mu / \mathrm{g}, 750$ mg) in a citrate buffer ($200 \mathrm{~mL}, \mathrm{pH}=4.8$) at $50^{\circ} \mathrm{C}$ for 48 h . After enzymatic hydrolysis, the solid residue was collected by centrifugation, which was treated with cellulase and xylanase again. The insoluble solid was collected, washed with deionized water, and freeze-drying to afford $\mathbf{E L}(7.8 \mathrm{~g})$.

Enzymatic mild acidolysis lignin (EMAL): The suspension of enzyme lignin $(5 \mathrm{~g})$ in an acidic dioxane $/ \mathrm{H}_{2} \mathrm{O}$ mixture $(85: 15 \mathrm{v} / \mathrm{v}, 500 \mathrm{~mL},[\mathrm{HCl}]=4 \mathrm{mM})$ was refluxed under nitrogen for 4 h . After filtration, the soluble fraction was neutralized with NaHCO_{3}, followed by evaporation to afford a thick solution. Upon the treatment of HCl aqueous solution $(\mathrm{pH}=2.0)$, a precipitate was formed, which was allowed to equilibrate at $4{ }^{\circ} \mathrm{C}$ overnight. The EMAL sample was collected by centrifugation, washing with HCl aqueous solution ($\mathrm{pH}=2.0$), and freeze-drying (515 mg).

Cellulolytic enzyme lignin (CEL): The suspension of enzyme lignin (5 g) in dioxane $/ \mathrm{H}_{2} \mathrm{O}(96: 4 \mathrm{v} / \mathrm{v}, 500 \mathrm{~mL})$ was refluxed under nitrogen for 24 h . After filtration, the soluble fraction was concentrated and acidized to $\mathrm{pH}=2.0$ (adjusted by HCl aqueous solution). Collecting the resulted precipitate, and followed freeze-drying afforded CEL (400 mg).

Alkali lignin (AL): The ball-milled Jatropha seed coats (300 mesh, 5 g), $\mathrm{NaOH}(0.8 \mathrm{~g})$, anthraquinone $(0.025 \mathrm{~g})$ and water (30 mL) was placed into reactor and heated at $160{ }^{\circ} \mathrm{C}$ for 2 h . The black liquid was collected by filtration and adjusted the acidity of solution $(\mathrm{pH}=2)$ to generate a precipitate, which was allowed to equilibrate at $4{ }^{\circ} \mathrm{C}$ overnight. The $\mathbf{A L}$ was obtained by centrifugation, washing with HCl aqueous solution ($\mathrm{pH}=2.0$), and freeze-drying (850 mg).

Milled wood lignin (MWL): The suspension of ball-milled Jatropha seed coats (300 mesh, 10 g) in dioxane/water ($96: 4, v / v, 100 \mathrm{~mL}$) was stirred under N_{2} at room temperature for 48 h . The soluble fraction was collected by filtration and
the solid residue was treated with dioxane/water again. The combined soluble fraction was concentrated and acidified to $\mathrm{pH}=2.0$ with 6 M HCl solution. The formed precipitate was collected by centrifugation and freeze-drying to give MWL (950 mg).

Ethanol organosolv lignin (EOL): The Jatropha seed coats (20~60 mesh, 10 g) was treated with $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(65 / 35, v / v, 100 \mathrm{~mL})$ in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}(12$ mM) at $170{ }^{\circ} \mathrm{C}$ for 1 h . The soluble fraction was obtained by filtration and concentrated to afford a thick solution, which was acidified to $\mathrm{pH}=2.0$ with 6 M HCl solution. The formed precipitate was collected by centrifugation and freeze-drying to give EOL (700 mg).

Butanol organosolv lignin (BL): BL (1.05 g) was prepared by following the analogous procedure of EOL by using ${ }^{n} \mathrm{BuOH}$ instead of EtOH starting from Jatropha seed coats (20~60 mesh, 10 g).

Dioxane lignin (DL): Concentrated $\mathrm{HCl}(150 \mu \mathrm{~L})$ was added to the suspension of seed coats ($20 \sim 60$ mesh, 10 g) in dioxane (100 mL), where $[\mathrm{HCl}]$ was estimated as $18 \mathrm{mmol} \mathrm{L}^{-1}$. The mixture was heated at $85{ }^{\circ} \mathrm{C}$ under N_{2} for 3 h, and solid residue was removed by centrifugation. The supernatant liquid was concentrated through evaporation to afford a thick solution, which was acidified to $\mathrm{pH}=2.0$ with 6 M HCl solution. The formed precipitate was collected by centrifugation and freeze-drying to give $\mathbf{D L}(1 \mathrm{~g})$.

3. Characterizations

HSQC NMR analysis

2D HSQC NMR spectra were acquired on a Bruker Avance 400 MHz spectrometer by using lignin samples (50 mg) dissolved in DMSO- $\mathrm{d}_{6}(0.5 \mathrm{~mL})$. The central solvent peak at $\delta_{\mathrm{C}} / \delta_{\mathrm{H}} 39.5 / 2.49 \mathrm{ppm}$ was used as an internal reference. HSQC cross-peaks assigned by comparison with C-lignin dimer and previous literatures' reports. ${ }^{1-3}$ A semi-quantitative analysis of the HSQC cross-peak intensities were performed in the side-chain region, and volume integration of peaks of benzodioxane (I_{α}), resinol (II_{α}) and cinnamyl alcohol end-unit (IV, IV_{α}) gave the corresponding ratios.

Quantitative ${ }^{13} \mathrm{C}$ NMR analysis

Quantitative ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a Bruker Avance 600 MHz spectrometer under decoupled mode with a relaxation time as 10 second. The sample was prepared as followed: an isolated C-lignin sample (100 mg), 1,3,5trioxane (internal standard) and $\mathrm{Cr}(\mathrm{acac})_{3}$ (relaxation reagent, 2 mg) were dissolved in DMSO-d $\mathrm{d}_{6}(0.5 \mathrm{~mL})$.

GPC analysis

Lignin sample (10 mg) was treated with a $1: 1$ mixture of acetic anhydride/pyridine $(1.0 \mathrm{~mL})$ at room temperature under N_{2} for 72 h . After removing the volatiles under vacuum, the acetylated lignin was dissolved in THF (ca. $2 \mathrm{mg} \mathrm{mL}^{-1}$) and filtered through a PTFE filter ($0.45 \mu \mathrm{~m}$). The average molecular weight was determined on Shimadzu LC-20AD equipped with a PLgel $10 \mu \mathrm{~m}$ Mixed-B 7.5 mm I.D. column (mixed) and UV detection detector (254 nm) at $50^{\circ} \mathrm{C}$, using THF as the solvent ($1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$). The average molecular weight was calibrated with polystyrene standards.

Thioacidolysis analysis

Thioacidolysis analysis was performed according to previous reports. ${ }^{1,4-6}$ In brief, 30 mg samples (seed coats or isolated lignin samples) were treated with BF_{3}-etherate $(0.2 \mathrm{M}, 5 \mathrm{~mL})$ in a dioxane/ethanethiol $(8.75: 1, v / v)$ at $100{ }^{\circ} \mathrm{C}$ for 4 h. The reaction mixture was extracted by dichloromethane. After the removal of all volatiles of the organic phase under vacuum, the resulted residue was
dissolved in anhydrous THF, which was treated with N,Obis(trimethylsilyl)trifluoroacetamide (BSTFA) at $65^{\circ} \mathrm{C}$ for 1 h under N_{2} before $\mathrm{GC}-\mathrm{MS}$ analysis. The ratios of $\mathrm{C} /(\mathrm{G}+\mathrm{S})$ were calculated based on the integrations of doublets in the GC-MS profile corresponding to α, β, γ-trithioethylpropylsubstituted catechol, guaiacol and syringol. All the analyses were repeated at least twice.

Figure S2. GC chromatograms of thioacidolysis products from Jatropha seed coats (a) seed coats sawdust, (b) KL, (c) EL, (d) AL, (e) MWL, (f) DL, (g) EMAL, (h) CEL, (i) EOL, (j) BL and (k) DL solid residue after three-time dioxane $(36 \mathrm{mM} \mathrm{HCl})$ extraction.

Figure S3. GC spectrum of monomeric products from thioacidolysis and subsequent desulfurization over Raney nickel.

b)
 $\begin{aligned} & \text { Second time } \\ & \mathrm{DL} \text { residue }\end{aligned}$
$\mathrm{Cl} /(\mathrm{G}+\mathrm{S})=0.4$

Figure S4. (a) The yield of lignin and thioacidolysis analysis of sequent extracted lignin samples. (b) Thioacidolysis analysis of solid residue after extraction. Reaction condition: Jatropha seed coats (1.0 g), 1,4-dioxane (20 mL), $85^{\circ} \mathrm{C}, \mathrm{HCl}$ (36 mM), $\mathrm{N}_{2}, 3 \mathrm{~h}$.

Figure S5. Expanded aliphatic side-chain and aromatic regions regions of 2D NMR spectra of $\mathbf{D L}$ isolated from Jatropha seed coats, box with x 4 or x 8 indicates regions that were scaled fourfold or eightfold.

Table S1. NMR data for the signal assignments in jatropha lignin samples and lignin oily products in DMSO-d ${ }_{6}$.

Lable	$\delta_{\mathrm{C}} / \delta_{\mathrm{H}}(\mathrm{ppm})$	Assignment
I_{α}	$75.4 / 4.83$	$\mathrm{C}_{\alpha}-\mathrm{H}_{\alpha}$ in benzodioxane substructures (I)
I_{β}	$77.9 / 4.06$	$\mathrm{C}_{\beta}-\mathrm{H}_{\beta}$ in benzodioxane substructures (I)
I_{γ}	$59.9 / 3.34-3.55$	$\mathrm{C}_{\gamma}-\mathrm{H}_{\gamma}$ in benzodioxane substructures (I)
II_{α}	$84.5 / 4.62$	$\mathrm{C}_{\alpha}-\mathrm{H}_{\alpha}$ in $\beta-\beta$ resinol substructures (II)
II_{β}	$53.4 / 3.04$	$\mathrm{C}_{\beta}-\mathrm{H}_{\beta}$ in $\beta-\beta$ resinol substructures (II)
II_{γ}	$70.7 / 3.74-4.09$	$\mathrm{C}_{\gamma}-\mathrm{H}_{\gamma}$ in $\beta-\beta$ resinol substructures (II)
III_{α}	$71.6 / 4.85$	$\mathrm{C}_{\alpha}-\mathrm{H}_{\alpha}$ in $\beta-\mathrm{O}-4$ substructures (III)
III_{β}	$86.6 / 4.09$	$\mathrm{C}_{\beta}-\mathrm{H}_{\beta}$ in $\beta-\mathrm{O}-4$ substructures (III)
III_{γ}	$59.5 / 3.1-3.79$	$\mathrm{C}_{\gamma}-\mathrm{H}_{\gamma}$ in $\beta-\mathrm{O}-4$ substructures (III)
IV_{α}	$127.9 / 6.42$	$\mathrm{C}_{\alpha}-\mathrm{H}_{\alpha}$ in cinnamyl alcohol end-units (IV)
IV_{β}	$128.7 / 6.20$	$\mathrm{C}_{\beta}-\mathrm{H}_{\beta}$ in cinnamyl alcohol end-units (IV)
IV_{γ}	$61.4 / 4.10$	$\mathrm{C}_{\gamma}-\mathrm{H}_{\gamma}$ in cinnamyl alcohol end-units (IV)
G_{2}	$110.7 / 6.92$	$\mathrm{C}_{2}-\mathrm{H}_{2}$ in guaiacyl units (G)
G_{5}	$114.5 / 6.68$	$\mathrm{C}_{5}-\mathrm{H}_{5}$ in guaiacyl units (G)
G_{6}	$119.0 / 6.77$	$\mathrm{C}_{6}-\mathrm{H}_{6}$ in guaiacyl units (G)
$\mathrm{I}_{2}, \mathrm{I}_{5}, \mathrm{I}_{6}$	$115.8 / 6.77,116.5 / 6.95$,	$\mathrm{C}_{2}-\mathrm{H}_{2}, \mathrm{C}_{5}-\mathrm{H}_{5}, \mathrm{C}_{6}-\mathrm{H}_{6}$, in catechol units (I)

Figure S6. Molecular weight distribution of lignin samples isolated from jatropha seed coats.

Figure S7. Molecular weight distribution of lignin samples isolated from different seed coats.

4. Catalytic hydrogenolysis

In a typical reaction, C -lignin sample (50 mg), $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ and methanol (10 mL) were charged in a 50 mL Parr autoclave with a magnetic stirring. The reactor was purged with nitrogen, and then was pressured to $\mathrm{H}_{2}(3 \mathrm{MPa})$ at room temperature. After reaction was carried at $230{ }^{\circ} \mathrm{C}$ for 4 h , the autoclave was cooled with water and depressurized carefully. The soluble fraction was obtained by filtration and evaporated under vacuum. The residue was dissolved in anhydrous THF (5 mL) containing an external standard (tetradecane), which was then treated with BSTFA at $65^{\circ} \mathrm{C}$ for 1 h under N_{2}. The resulted mixture was analyzed on GC-MS (Shimadzu QP2010SE equipped with an HP-5 MS column) and GC (Shimadu 2010 equipped with an HP-5 column). Catechol monomers were identified and quantified by comparison with authentic samples from independent synthesis. ${ }^{7}$

Table S2. Pd/C catalyzed depolymerizaion of various samples.

		Monomer yield $(\mathrm{mg} / \mathrm{g})$			
Entry	Sample	$\mathrm{C} /(\mathrm{G}+\mathrm{S})$ monomers molar ratio			
1	Sawdust		1.9	0.4	2.1
2	EL	1.9	3.2	0.6	1.4
3	DL Residue	5.2	0.6	1.3	0.1
4	DL	0.8	35.6	0.4	31.2
5	BL	1.2	32.1	0.6	20.3
6	EOL	1.3	30.2	0.7	19.6

Reaction conditions: lignin sample or sawdust (50 mg), $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg}), \mathrm{MeOH}$ $(10 \mathrm{~mL}), \mathrm{H}_{2}(3 \mathrm{MPa}), 230^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Figure S8. Gas chromatograms of monomers from Pd/C-catalysed hydrogenolysis of various lignin samples.

5. Authentic samples

All authentic monomers were synthesized independently and characterized by NMR spectra.

4-(3-hydroxypropyl)-benzene-1,2-diol

4-(3-hydroxypropyl)-2-methoxyphenol

4-(3-hydroxypropyl)-2,6-dimethoxyphenol

6. References

1. F. Chen, Y. Tobimatsu, D. Havkin-Frenkel, R. A. Dixon and J. Ralph, Proc. Natl. Acad. Sci. U. S. A. , 2012, 109, 1772-1777.
2. S. Wang, K. Zhang, H. Li, L. P. Xiao and G. Song, Nat. Commun., 2021, 12, 416.
3. S. D. Mansfield, H. Kim, F. Lu and J. Ralph, Nat. Protoc., 2012, 7, 1579-1589.
4. Y. Tobimatsu, F. Chen, J. Nakashima, L. L. Escamilla-Trevino, L. Jackson, R.
A. Dixon and J. Ralph, Plant Cell, 2013, 25, 2587-2600.
5. Y. Li, L. Shuai, H. Kim, A. H. Motagamwala, J. K. Mobley, F. Yue, Y. Tobimatsu, D. Havkin-Frenkel, F. Chen, R. A. Dixon, J. S. Luterbacher, J. A. Dumesic and J. Ralph, Sci. Adv., 2018, 4, eaau2968.
6. C. Lapierre, B. Monties and C. Rolando, Holzforschung, 1986, 40, 113-118.
7. S. Wang, S. Su, L.-P. Xiao, B. Wang, R.-C. Sun and G. Song, ACS Sustainable Chem. Eng., 2020, 8, 7031-7038.
