Supporting Information

N-Iodosuccinimide and dioxygen in air enabled synthesis of 10-phenanthrenols under sunlight

Jia-Dong Guo,^{a,b} Xiu-Long Yang,^{a,b} Bin Chen,^{a,b} Chen-Ho Tung,^{a,b} and

Li-Zhu Wu*^{*a,b*}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of

Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China

^bSchool of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R.

China

E-mail: lzwu@mail.ipc.ac.cn

Table of Contents

1.	General information	S1
2.	Substrates preparation	S2
	2.1 Synthesis of 1a–1z	S2
	2.2 Synthesis of methyl 3-([1,1'-biphenyl]-2-yl)-3-oxopropanoate (1aa)	S4
	2.3 Synthesis of benzyl 3-([1,1'-biphenyl]-2-yl)-3-oxopropanoate (1ab)	S4
	2.4 Synthesis of 1-([1,1'-biphenyl]-2-yl)-3-phenylpropane-1,3-dione (1ac)	S5
	2.5 Synthesis of 3-([1,1'-biphenyl]-2-yl)-3-oxo-N-phenylpropanamide (1ad)	S5
	2.6 Synthesis of 3-([1,1'-biphenyl]-2-yl)-3-oxopropanenitrile (1ae)	S5
	2.7 Synthesis of 1-([1,1'-biphenyl]-2-yl)-2-(methylsulfonyl)ethan-1-one (1af)	S6
	2.8 Synthesis of ethyl 3-oxo-3-(2-(pyridin-2-yl)phenyl)propanoate (1ag)	S6
	2.9 Synthesis of ethyl 3-(2-(1-methyl-1H-indol-3-yl)phenyl)-3-oxopropanoate (1ah)	S7
	2.10 Synthesis of ethyl 3-(2-(furan-2-yl)phenyl)-3-oxopropanoate (1ai)	S8
	2.11 Synthesis of ethyl 3-oxo-3-(2-(thiophen-2-yl)phenyl)propanoate (1aj)	S9
	2.12 Synthesis of ethyl 3-([1,1'-biphenyl]-2-yl)-2-iodo-3-oxopropanoate ([I]-1a)	S9
	2.13 Synthesis of ethyl 3-([1,1'-biphenyl]-2-yl-2',3',4',5',6'- <i>d</i> ₅)-3-oxopropanoate (D ₅ -1a)	S10
	2.14 Involved Substrates	.S12
3.	Reaction optimization	.S13
4.	General experimental procedure	.S15
5.	Mechanism study	.S16
	5.1 Synthesis of [I]-1a	.S16
	5.2 UV-vis absorption spectra	S16
	5.3 Light off/on experiment	S17
	5.4 Control experiments	.S17
	5.5 ¹ H spectra determination of H ₂ O ₂	S18
	5.6 Electron paramagnetic resonance (EPR) experiments	S20
	5.7 ESI-HRMS spectra	.S22
	5.8 Competing kinetic isotope effect (KIE) experiments	S23
	5.9 Scale-up experiment	.S24
	5.10 Supplementary data	S24
6.	Characterization Data for Compounds	S25
7.	Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR	S40
8.	References	S90

1. General information

All reagents were purchased from commercial suppliers and used without further purification. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. ¹H NMR, ¹³C NMR and ¹⁹F NMR (400 MHz, 101 MHz and 377 MHz, respectively) spectra were measured in CDCl₃, DMSO-*d*₆, Ethanol-*d*₆ recorded on Bruker Avance DPX 400 MHz spectrometer. All chemical shifts (δ) were reported in ppm and coupling constants (*J*) in Hz. NMR Spectra recorded in CDCl₃ were referenced to tetramethylsilane at 0 ppm for ¹H or referenced to residual CHCl₃ at 77.16 ppm for ¹³C. NMR Spectra recorded in DMSO-*d*₆ were referenced to residual DMSO at 2.50 ppm for ¹H or 39.52 ppm for ¹³C. NMR Spectra recorded in Ethanol-*d*₆ were referenced to residual ethanol at 3.56 ppm for ¹H. The following abbreviations are used: m (multiplet), s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), *etc.* The high resolution mass spectra (HRMS) were measured on a Bruker Daltonics APEX II 47e spectrometer by ESI. Substrates **1a–1z**,¹ **1aa**,² **1ab**,³ **1ac**,⁴ **1ad**,¹ **1ae**,¹ **1af**,⁴ **1ag–1aj**⁵ and compound **[I]-1a**⁶ were prepared by the known methods.

2. Substrates preparation

2.1 Synthesis of 1a-1z

Scheme S1

To a stirred solution of aryl bromide (4.0 mmol, 1.0 equiv) and aryl boronic acid (4.8 mmol, 1.2 equiv) in a toluene:ethanol = 3:1 (40 mL) mixture was added potassium carbonate (12.0 mmol, 3.0 equiv) and tetrakis(triphenylphosphine) palladium (0.4 mmol, 0.1 equiv). The resulting suspension was heated at 110 °C under an atmosphere of Ar for 24 h. The solvent was removed under reduced pressure and the crude residue was redissolved in water (100 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with water and brine. The filtrate was concentrated under reduced pressure and purified by column chromatography.

Scheme S2

To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added NaH (60% in mineral oil, 11.2 mmol, 2.8 equiv), diethyl carbonate (11.2 mmol, 2.8 equiv), and dry THF (10 mL). The mixture was heated to 80 °C under an atmosphere of Ar. A solution of ketone (4.0 mmol, 1.0 equiv) in dry THF (50 mL) was added dropwise from the dropping funnel over 30–60 min. After the addition, the mixture was heated to reflux until the biphenyl ketone is completely consumed (12 h). When the reaction was cooled to room temperature, glacial acetic acid was added dropwise and a heavy, pasty solid appeared. Ice-water was added until the solid was dissolved completely. The THF layer was separated, and the water layer was extracted with EtOAc (3 × 30 mL). The combined organic solution was washed with water and brine. After evaporation of the solvent, the mixture was distilled under reduced pressure. The crude residue was purified by column chromatography to furnish the desired compound **1a–1z**.

Ethyl 3-(3'-cyano-[1,1'-biphenyl]-2-yl)-3-oxopropanoate

Pale yellow liquid (1.0 g, 83%, *keto:enol* = 77:23); \mathbf{R}_f = 0.38 (petroleum ether/ethyl acetate 5:1); ¹H NMR (400 MHz, CDCl₃) δ 12.24 (s, 0.3H, *enol*), 7.70–7.43 (m, 9.1H, *keto* + *enol*), 7.36–7.31 (m, 1.3H, *keto* + *enol*), 5.13 (s, 0.3H, *enol*), 4.20 (q, *J* = 6.8 Hz, 0.6H, *enol*), 4.13 (q, *J* = 6.8 Hz, 2H, *keto*), 3.58 (s, 2H, *keto*), 1.28 (t, *J* = 7.2 Hz, 0.9H, *enol*), 1.21 (t, *J* = 7.2 Hz, 3H, *keto*); ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 173.3, 172.4, 166.9, 142.4, 141.9, 139.1, 138.6, 138.1, 133.8, 133.4, 133.2, 132.2, 132.0, 131.9, 131.3, 131.1, 130.9, 130.7, 130.6, 129.4, 129.4, 129.1, 128.9, 128.5, 128.3, 118.8, 118.6, 112.9, 112.5, 93.0, 61.5, 60.5, 48.5, 14.3, 14.1; **ESI-HRMS**: m/z Calcd for C₁₈H₁₆NO₃⁺ [M+H]⁺: 294.1125, found 294.1115.

Ethyl 3-(3',5'-dichloro-[1,1'-biphenyl]-2-yl)-3-oxopropanoate

White solid (1.2 g, 90%, *keto:enol* = 71:29); \mathbf{R}_f = 0.47 (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 12.26 (s, 0.4H, *enol*), 7.65 (d, *J* = 7.6 Hz, 1H, *keto*), 7.58–7.54 (m, 1.4H, *keto* + *enol*), 7.50–7.29 (m, 4.6H, *keto* + *enol*), 7.25 (d, *J* = 8.0 Hz, 2.8H, *keto* + *enol*), 5.14 (s, 0.4H, *enol*), 4.21 (q, *J* = 7.2 Hz, 0.8H, *enol*), 4.13 (q, *J* = 6.8 Hz, 2H, *keto*), 3.55 (s, 2H, *keto*), 1.29 (t, *J* = 7.2 Hz, 1.2H, *enol*), 1.21 (t, *J* = 6.8 Hz, 3H, *keto*); ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 173.2, 172.5, 166.9, 144.1, 143.4, 138.5, 138.4, 138.3, 135.3, 134.7, 133.8, 131.8, 130.8, 130.7, 130.5, 129.3, 128.9, 128.6, 128.4, 128.0, 127.4, 127.2, 93.0, 61.6, 60.5, 48.7, 14.3, 14.1; **ESI-HRMS**: m/z Calcd for C₁₇H₁₅Cl₂O₃⁺ [M+H]⁺: 337.0393, found 337.0381.

2.2 Synthesis of methyl 3-([1,1'-biphenyl]-2-yl)-3-oxopropanoate (1aa)

To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added NaH (60% in mineral oil, 11.2 mmol, 2.8 equiv), dimethyl carbonate (11.2 mmol, 2.8 equiv), and dry THF (10 mL). The mixture was heated to 80 °C under an atmosphere of Ar. A solution of 1-([1,1'-biphenyl]-2-yl)ethan-1-one (4.0 mmol, 1.0 equiv) in dry THF (50 mL) was added dropwise from the dropping funnel over 30–60 min. After the addition, the mixture was heated to reflux until the 1-([1,1'-biphenyl]-2-yl)ethan-1-one is completely consumed (12 h). When the reaction was cooled to room temperature, glacial acetic acid was added dropwise and a heavy, pasty solid appeared. Ice-water was added until the solid was dissolved completely. The THF layer was separated, and the water layer was extracted with EtOAc (3 × 30 mL). The combined organic solution was washed with water and brine. After evaporation of the solvent, the mixture was distilled under reduced pressure. The crude residue was purified by column chromatography to furnish the compound **1aa** as a white solid.

2.3 Synthesis of benzyl 3-([1,1'-biphenyl]-2-yl)-3-oxopropanoate (1ab)

1ab

A mixture of benzyl alcohol (4.0 mmol, 1.0 equiv), ethyl 3-([1,1'-biphenyl]-2-yl)-3-oxopropanoate (4.0 mmol, 1.0 equiv), DMAP (4.0 mmol, 1.0 equiv) was stirred with oven-dried 4 Å molecular sieves (20 g) in dry toluene (30 mL) at 100–105 °C for 48 h. The reaction mixture was cooled to room temperature, and filtered to remove the molecular sieves. The solvents were removed under reduced pressure, and EtOAc (60 mL) and water (60 mL) were added to the residue. The layers were separated, and filtered, and concentrated. The crude product was purified by column chromatography to furnish the compound **1ab** as a pale yellow liquid.

2.4 Synthesis of 1-([1,1'-biphenyl]-2-yl)-3-phenylpropane-1,3-dione (1ac)

To a stirred solution of 1-([1,1'-biphenyl]-2-yl)ethan-1-one (4.0 mmol, 1.0 equiv) in toluene (30 mL) precooled at 0 °C, LiHMDS (1 M in toluene, 6.0 mmol, 1.5 equiv) was dropwise added over 10 min. After stirring at 0 °C for 10 min, benzoyl chloride (99%, 8.0 mmol, 2.0 equiv) was added in one portion. The reaction mixture was then allowed to stir at room temperature for an additional 2 min, quenched by glacial acetic acid and diluted with ethyl acetate. The solution was washed with water and brine, and concentrated under reduced pressure. The crude residue was purified by column chromatography to furnish the compound **1ac** as a pale yellow solid.

2.5 Synthesis of 3-([1,1'-biphenyl]-2-yl)-3-oxo-N-phenylpropanamide (1ad)

To ethyl 3-([1,1'-biphenyl]-2-yl)-3-oxopropanoate (4.0mmol, 1.0 equiv) in a round bottom flask, aniline (4.0mmol, 1.0 equiv) was added. To this reaction mixture, xylene (10 mL) was added, and the whole of the reaction mixture was heated at 165 °C under an atmosphere of Ar on an oil bath for 24 h. The reaction mixture was removed from heating, allowed to attain ambient temperature, distilled under reduced pressure. And the resultant residue was purified by column chromatography to furnish compound **1ad** as a pale yellow liquid.

2.6 Synthesis of 3-([1,1'-biphenyl]-2-yl)-3-oxopropanenitrile (1ae)

To a suspension of NaH (2.0 equiv.) in dry THF, under Ar was added acetonitrile (2 mL), followed by methyl [1,1'-biphenyl]-2-carboxylate (1.0 equiv). The reaction mixture was heated to 80 °C for 24 h. Then

cooled to 0°C, quenched with water. The THF layer was separated, and the water layer was extracted with EtOAc. The combined organic solution was washed with water and brine. After evaporation of the solvent, the mixture was distilled under reduced pressureor subjected chromatography to give **1ae** as a yellow solid.

2.7 Synthesis of 1-([1,1'-biphenyl]-2-yl)-2-(methylsulfonyl)ethan-1-one (1af)

Under Ar protection, *n*-BuLi (2.76 mL, 2.0 M in cyclohexane, 5.52 mmol) was dropwise added to a stirred solution of dimethyl sulfone (314.8 mg, 99%, 3.31 mmol) in THF (16 mL) at 0 °C. The resultant white cloudy solution was continued to stir at 0 °C for 40 min, followed by slowly adding with a solution of ethyl biphenyl-2-carboxylate (624.3 mg, 2.76 mmol) in THF (11.5 mL) over 5 min. The reaction mixture was then allowed to stir at rt for 36 hours, quenched by H₂O (15 mL), and diluted with ethyl acetate (350 mL). The organic layer was separated and washed with saturated aqueous NH₄Cl solution (50 mL x 2), water (50 mL) and brine (50 mL). After concentration, the crude mixture was subjected to chromatography to provide **1af** as a white solid.

2.8 Synthesis of ethyl 3-oxo-3-(2-(pyridin-2-yl)phenyl)propanoate (1ag)

In an argon-filled glove box, to a 100 mL Schlenk tube was charged sequentially $Pd(OAc)_2$ (0.08 mmol), $PtBu_3 \cdot HBF_4$ (0.12 mmol), 2-bromopyridine (4 mmol), (2-acetylphenyl)boronic acid (4.8 mmol), and 35 mL of dioxane/H₂O (4:1). The mixture was stirred at RT for 15 min, and then a solution of NaOH (6.5 mmol) in 6 mL of degassed H₂O was added to initiate the Suzuki reaction. The Schlenk tube was capped tightly and the reaction mixture was stirred vigorously at 80 °C for 12 h. At the end of the reaction, the organic phase was separated and the aqueous phase was further extracted with Et_2O . The combined organic extracts were concentrated on a rotary evaporator. The resulting residue was purified by silica gel flash chromatography to obtain the desired coupling product 1-(2-(pyridin-2-yl)phenyl)ethan-1-one. The next operation is the same as

Scheme S2 to provide **1ag**. Yellow liquid (0.92 g, 85%, *keto:enol* = 91:9); \mathbf{R}_{f} = 0.39 (petroleum ether/ethyl acetate 1:2); ¹H NMR (400 MHz, CDCl₃) δ 12.22 (s, 0.1H, *enol*), 8.63 (s, 1.1H, *keto* + *enol*), 7.77 (t, *J* = 7.6 Hz, 1.1H, *keto* + *enol*), 7.69 (d, *J* = 7.2 Hz, 2.2H, *keto* + *enol*), 7.60–7.45 (m, 3.3H, *keto* + *enol*), 7.28–7.25 (m, 1.1H, *keto* + *enol*), 5.21 (s, 0.1H, *enol*), 4.18 (q, *J* = 6.4 Hz, 0.2H, *enol*), 4.11 (q, *J* = 7.2 Hz, 2H, *keto*), 3.56 (s, 2H, *keto*), 1.27 (t, *J* = 6.8 Hz, 0.3H, *enol*), 1.20 (t, *J* = 6.8 Hz, 3H, *keto*); ¹³C NMR (101 MHz, CDCl₃) δ 198.3, 174.3, 172.6, 167.4, 158.6, 156.1, 149.4, 149.1, 140.6, 139.9, 137.9, 137.1, 136.1, 133.9, 130.6, 130.5, 130.3, 129.1, 128.9, 128.4, 128.3, 128.0, 123.6, 122.6, 122.1, 121.9, 92.1, 61.1, 60.2, 49.4, 14.2, 14.1; **ESI-HRMS**: m/z Calcd for C₁₆H₁₆NO₃⁺ [M+H]⁺: 270.1125, found 270.1127.

2.9 Synthesis of ethyl 3-(2-(1-methyl-1H-indol-3-yl)phenyl)-3-oxopropanoate (1ah)

keto:enol = 95:5

In an argon-filled glove box, to a 100 mL Schlenk tube was charged sequentially Pd(OAc)₂ (0.08 mmol), PtBu₃•HBF₄ (0.12 mmol), 3-bromo-1-methyl-1*H*-indole (4 mmol), (2-acetylphenyl)boronic acid (4.8 mmol), and 35 mL of dioxane. The mixture was prestirred at RT for 15 min, and then a solution of NaOH (6.5 mmol) in 6 mL of degassed H₂O was added to initiate the Suzuki reaction. The Schlenk tube was capped tightly and the reaction mixture was stirred vigorously at 80 °C for 12 h. At the end of the reaction, the organic phase was separated and the aqueous phase was further extracted with Et₂O. The combined organic extracts were concentrated on a rotary evaporator. The resulting residue was purified by silica gel flash chromatography to obtain the desired coupling product 1-(2-(1-methyl-1H-indol-3-yl)phenyl)ethan-1-one. The next operation is the same as Scheme S2 to provide **1ah**. Yellow liquid (770 mg, 60%, *keto:enol* = 95:5); **R**_r = 0.27 (petroleum ether/ethyl acetate 10:1); **1H NMR** (400 MHz, CDCl₃) δ 12.35 (s, 0.05H, *enol*), 7.70 (d, *J* = 8.0 Hz, 1.05H, *keto* + *enol*), 7.04 (s, 1.05H, *keto* + *enol*), 5.14 (s, 0.05H, *enol*), 4.13 (q, *J* = 7.2 Hz, 0.1H, *enol*), 4.01 (q, *J* = 6.8 Hz, 2H, *keto*), 3.83 (s, 3H, *keto*), 3.81 (s, 0.15H, *enol*), 3.32 (s, 2H, *keto*), 1.21 (t, *J* = 7.2 Hz, 0.15H, *enol*), 1.13 (t, *J* = 6.8 Hz, 3H, *keto*); ¹³**C NMR** (101 MHz, CDCl₃) δ 200.3, 175.0, 172.9, 167.4, 140.1, 137.3, 137.0, 134.2,

133.9, 133.2, 131.5, 131.2, 130.6, 130.1, 129.3, 128.6, 127.8, 127.1, 126.6, 126.5, 126.3, 122.7, 121.9, 120.5, 119.8, 119.7, 115.0, 114.0, 109.8, 109.4, 92.2, 61.1, 60.1, 48.4, 33.1, 14.3, 14.1; **ESI-HRMS**: m/z Calcd for $C_{20}H_{20}NO_{3^{+}}$ [M+H]⁺: 332.1438, found 332.1431.

2.10 Synthesis of ethyl 3-(2-(furan-2-yl)phenyl)-3-oxopropanoate (1ai)

keto:enol = 87:13

In an argon-filled glove box, to a 100 mL Schlenk tube was charged sequentially Pd(OAc)₂ (0.08 mmol), PtBu3•HBF4 (0.12 mmol), 2-bromofuran (4 mmol), (2-acetylphenyl)boronic acid (4.8 mmol), and 35 mL of nBuOH/H₂O (4:1). The mixture was prestirred at RT for 15 min, and then a solution of NaOH (6.5 mmol) in 6 mL of degassed H₂O was added to initiate the Suzuki reaction. The Schlenk tube was capped tightly and the reaction mixture was stirred vigorously at r.t. for 12 h. At the end of the reaction, the organic phase was separated and the aqueous phase was further extracted with Et₂O. The combined organic extracts were concentrated on a rotary evaporator. The resulting residue was purified by silica gel flash chromatography to obtain the desired coupling product 1-(2-(furan-2-yl)phenyl)ethan-1-one. The next operation is the same as Scheme S2 to provide 1ai. Yellow liquid (720 mg, 70%, keto:enol = 87:13); R_f = 0.41 (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 12.36 (s, 0.15H, enol), 7.67 (d, J = 7.6 Hz, 0.15H, enol), 7.60 (d, J = 7.6 Hz, 1H, keto), 7.53-7.46 (m, 3.3H, keto + enol), 7.40-7.26 (m, 1.3H, keto + enol), 6.63-6.60 (m, 1.15H, keto + enol), 6.52-6.46 (m, 1.15H, keto + enol), 5.23 (s, 0.15H, enol), 4.26 (g, J = 7.2 Hz, 0.3H, enol), 4.13 (g, J = 7.2 Hz, 2H, keto), 3.55 (s, 2H, keto), 1.32 (t, J = 7.2 Hz, 0.45H, enol), 1.22 (t, J = 7.2 Hz, 3H, keto); ¹³C NMR (101 MHz, CDCl₃) δ 198.9, 174.8, 172.9, 167.2, 152.1, 151.8, 143.6, 142.6, 138.0, 132.4, 130.9, 130.2, 129.5, 129.5, 128.4, 128.1, 128.1, 128.0, 127.7, 127.5, 112.2, 111.7, 109.0, 108.7, 92.0, 61.4, 60.4, 48.7, 14.4, 14.1; **ESI-HRMS**: m/z Calcd for C₁₅H₁₅O₄⁺ [M+H]⁺: 259.0965, found 259.0968.

S8

2.11 Synthesis of ethyl 3-oxo-3-(2-(thiophen-2-yl)phenyl)propanoate (1aj)

keto:enol = 83:17

In an argon-filled glove box, to a 100 mL Schlenk tube was charged sequentially Pd(OAc)₂ (0.08 mmol), PtBu₃•HBF₄ (0.12 mmol), 2-bromothiophene (4 mmol), (2-acetylphenyl)boronic acid (4.8 mmol), and 35 mL of nBuOH/H₂O (4:1). The mixture was prestirred at RT for 15 min, and then a solution of NaOH (6.5 mmol) in 6 mL of degassed H₂O was added to initiate the Suzuki reaction. The Schlenk tube was capped tightly and the reaction mixture was stirred vigorously at r.t. for 12 h. At the end of the reaction, the organic phase was separated and the aqueous phase was further extracted with Et₂O. The combined organic extracts were concentrated on a rotary evaporator. The resulting residue was purified by silica gel flash chromatography to obtain the desired coupling product 1-(2-(thiophen-2-yl)phenyl)ethan-1-one. The next operation is the same as Scheme S2 to provide **1aj**. Yellow liquid (820 mg, 75%, keto:enol = 83:17); R_f = 0.41 (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 12.31 (s, 0.2H, enol), 7.54–7.49 (m, 3.6H, keto + enol), 7.44–7.32 (m, 2.4H, keto + enol), 7.12-7.09 (m, 1.2H, keto + enol), 7.05-7.02 (m, 1.2H, keto + enol), 5.20 (s, 0.2H, enol), 4.21 (q, J = 6.8 Hz, 0.4H, enol), 4.08 (q, J = 6.8 Hz, 2H, keto), 3.41 (s, 2H, keto), 1.29 (t, J = 6.8 Hz, 0.6H, enol), 1.18 (t, J = 7.2 Hz, 3H, keto); ¹³C NMR (101 MHz, CDCl3) δ 199.2, 174.1, 172.7, 167.1, 141.9, 140.9, 140.0, 134.2, 133.4, 132.5, 131.2, 131.1, 130.7, 130.1, 129.4, 128.5, 128.3, 128.2, 127.8, 127.5, 127.3, 126.6, 126.0, 92.9, 61.3, 60.4, 48.6, 14.3, 14.1; ESI-HRMS: m/z Calcd for C₁₅H₁₅O₃S⁺ [M+H]⁺: 275.0736, found 275.0739.

2.12 Synthesis of ethyl 3-([1,1'-biphenyl]-2-yl)-2-iodo-3-oxopropanoate ([I]-1a)

[l]-1a

To the i-PrOH solution of ethyl 3-([1,1'-biphenyl]-2-yl)-3-oxopropanoate (**1a**, 1.0 mmol), *N*-halosuccinamide (NIS) (1.05 mmol) was added, and the resultant mixture was stirred at room temperature for 3 h in dark. After completion of the reaction as indicated by TLC, the reaction mixture was washed with NH₄Cl

solution. The product was extracted with ethyl acetate, dried over sodium sulphate, and purified by column chromatography to afford [I]-1a. Yellow liquid; yield 335 mg, 85%; $\mathbf{R}_{f} = 0.36$ (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.2 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.44–7.35 (m, 7H), 4.91 (s, 1H), 4.10–4.06 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 166.2, 140.3, 139.6, 136.4, 131.7, 130.4, 130.3, 129.3, 128.8, 128.5, 127.6, 62.8, 26.5, 13.8; ESI-HRMS: m/z Calcd for C₁₇H₁₆IO₃⁺ [M+H]⁺: 395.0139, found 395.0126.

2.13 Synthesis of ethyl 3-([1,1'-biphenyl]-2-yl-2',3',4',5',6'- d_5)-3-oxopropanoate (D₅-1a)

To a stirred solution of 1-(2-bromophenyl)ethan-1-one (4.0 mmol, 1.0 equiv) and (phenyl- d_5)boronic acid (4.8 mmol, 1.2 equiv) in a toluene:ethanol = 3:1 (40 mL) mixture was added potassium carbonate (12.0 mmol, 3.0 equiv) and tetrakis(triphenylphosphine) palladium (0.4 mmol, 0.1 equiv). The resulting suspension was heated at 110 °C under an atmosphere of Ar for 24 h. The solvent was removed under reduced pressure and the crude residue was redissolved in water (100 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with water and brine. The filtrate was concentrated under reduced pressure and purified by column chromatography.

To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added NaH (60% in mineral oil, 11.2 mmol, 2.8 equiv), diethyl carbonate (11.2 mmol, 2.8 equiv), and dry THF (10 mL). The mixture was heated to 80 °C under an atmosphere of Ar. A solution of 1-([1,1'-biphenyl]-2-yl-2',3',4',5',6'- d_5)ethan-1-one (4.0 mmol, 1.0 equiv) in dry THF (50 mL) was added dropwise from the dropping funnel over 30–60 min. After the addition, the mixture was heated to reflux until the 1-([1,1'-biphenyl]-2-yl-2',3',4',5',6'- d_5)ethan-1-one is completely consumed (12 h). When the reaction was cooled to room temperature, glacial acetic acid was added dropwise and a heavy, pasty solid appeared. Ice-water was added until the solid was dissolved completely. The THF layer was separated, and the water layer was extracted with EtOAc (3 × 30 mL). The combined organic solution was washed with water and brine. After evaporation of the solvent, the mixture was distilled under reduced pressure. The crude residue was purified by column

chromatography to furnish the compound D_5 -1a 0.9 g, 82% yield. Pale yellow liquid, (*keto:enol* = 87:13); R_f = 0.47 (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 12.26 (s, 0.15H, *enol*),7.61–7.58 (m, 1.15H, *keto* + *enol*), 7.53 (t, *J* = 7.6 Hz, 1H, *keto*), 7.48–7.36 (m, 2.45H, *keto* + *enol*), 5.06 (s, 0.15H, *enol*), 4.16 (q, *J* = 7.2 Hz, 0.3H, *enol*), 4.05 (q, *J* = 7.2 Hz, 2H, *keto*), 3.27 (s, 2H, *keto*), 1.25 (t, *J* = 7.2 Hz, 0.45H, *enol*), 1.15 (t, *J* = 6.8 Hz, 3H, *keto*); ¹³C NMR (101 MHz, CDCl₃) δ 199.0, 174.2, 172.7, 167.1, 141.0, 140.8, 140.6, 140.0, 139.5, 133.8, 131.4, 130.9, 130.4, 130.2, 129.1, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.0, 127.7, 127.6, 127.3, 92.8, 61.2, 60.3, 48.8, 14.3, 14.1; **ESI-HRMS**: m/z Calcd for C₁₇H₁₂D₅O₃* [M+H]*: 274.1486, found 274.1476.

2.14 Involved Substrates

Table S1. Involved Substrates

3. Reaction optimization

Table S2. Optimization of the Reaction Conditions^a

Entry	PC (x mol%)	Catalyst (y mol%)	Solvent (mL)	light source (nm)	Time (h)	Yield (%) ^b
1	_	NIS (100)	i-PrOH	sunlight	7	53
2	_	NIS (50)	i-PrOH	sunlight	7	57
3	_	NIS (20)	i-PrOH	sunlight	7	67
4	_	NIS (10)	i-PrOH	sunlight	7	79
5	-	NIS (5)	i-PrOH	sunlight	7	87
6	-	NIS (1)	i-PrOH	sunlight	7	trace
7	-	l ₂	i-PrOH	sunlight	7	80
8	-	н	i-PrOH	sunlight	7	65
9	-	TBAI	i-PrOH	sunlight	7	12
10	-	KI	i-PrOH	sunlight	7	20
11	-	NIS (5)	DMSO	sunlight	24	79
12	-	NIS (5)	CH₃CN	sunlight	24	18
13	-	NIS (5)	MeOH	sunlight	24	trace
14	-	NIS (5)	Toluene	sunlight	24	18
15	-	NIS (5)	DCM	sunlight	24	15
16	-	NIS (5)	THF	sunlight	16	82
17	-	NIS (5)	EA	sunlight	16	65
18	-	NIS (5)	Acetone	sunlight	24	60
19	-	NIS (5)	EtOH	sunlight	16	77
20	-	NIS (5)	i-PrOH	3W blue LEDs (445)	7	90
21	-	NIS (5)	i-PrOH	3W green LEDs (525)	24	NR
22	-	NIS (10)	THF	sunlight	12	93
23	-	NIS (5)	i-PrOH	dark	7	NR
24°	-	NIS (5)	i-PrOH	dark	7	NR
25	-	-	i-PrOH	sunlight	7	NR
26	-	NIS (5)	i-PrOH	sunlight	7	NR
27	-	NBS (5)	i-PrOH	sunlight	7	15
28	-	NCS (5)	i-PrOH	sunlight	7	10
29	EY (3)	-	CH₃CN	3W green LEDs (525)	8	trace
30	EY (3)	-	DMF	3W green LEDs (525)	8	trace
31	EY (3)	-	DMF	3W green LEDs (525)	24	trace
32	EY (3)	-	DMF	3W green LEDs (525)	8	36
33	EY (3)	-	DMSO	3W green LEDs (525)	8	trace
34	Ir(ppy) ₃ (3)	-	CH₃CN	3W blue LEDs (465)	24	NR

S13

35	Ir(ppy) ₃ (3)	_	DMF	3W blue LEDs (465)	24	NR
36	Ir(ppy) ₃ (3)	-	DMSO	3W blue LEDs (465)	24	trace
37	Ru(bpy) ₃ (3)	-	CH ₃ CN	3W blue LEDs (465)	24	trace
38	Ru(bpy)₃ (3)	-	DMF	3W blue LEDs (465)	24	trace
39	Ru(bpy) ₃ (3)	-	DMSO	3W blue LEDs (465)	24	NR

^aReaction conditions: corresponding **1a**, photocatalyst (x mol%), cocatalyst (y mol%) in 5 mL solvent in air atmosphere, irradiation with light source, at rt. ^bIsolated yields. ^c50 °C.

4. General experimental procedure

Mathod A: A 10 mL Pyrex tube was charged with substrate **1a–1n**, **1t–1ac** (0.1 mmol, 1 equiv) and NIS (0.005 mmol, 1.12 mg, 0.05 equiv) in i-PrOH (5 mL). The sample was then irradiated by sunlight for 7 h. Upon completion of the reaction, the solvent was then removed under vacuum. The residue was purified with chromatography column on silica gel using mixtures of petroleum ether and ethyl acetate to give the corresponding products. The identity and purity of the product **2a–2n**, **2t–2ac** was confirmed by ¹H NMR, ¹³C NMR or ¹⁹F NMR spectroscopic analysis. **Mathod B**: A 10 mL Pyrex tube was charged with substrate **1o–1s** (0.1 mmol, 1 equiv) and NIS (0.01 mmol, 2.24 mg, 0.1 equiv) in THF (5 mL). The sample was then irradiated by sunlight for 12 h. Upon completion of the reaction, the solvent was then removed under vacuum. The residue was purified with chromatography column on silica gel using mixtures of petroleum ether and ethyl acetate to give the corresponding products. The identity and purity of the product **2a–2n**, **2t–2ac** was confirmed by ¹H NMR, ¹³C NMR or ¹⁹F NMR spectroscopic analysis. **Mathod B**: A 10 mL Pyrex tube was charged with substrate **1o–1s** (0.1 mmol, 1 equiv) and NIS (0.01 mmol, 2.24 mg, 0.1 equiv) in THF (5 mL). The sample was then irradiated by sunlight for 12 h. Upon completion of the reaction, the solvent was then removed under vacuum. The residue was purified with chromatography column on silica gel using mixtures of petroleum ether and ethyl acetate to give the corresponding products. The identity and purity of the product **2o–2s** was confirmed by ¹H NMR, ¹³C NMR or ¹⁹F NMR spectroscopic analysis.

The irradiation was maintained from 9:00 am till 16:00 pm (Longitude: 116.338229, Latitude: 39.994285). The ambient temperature and the light intensity are reported later. Other procedures are the same as the general method described above.

5. Mechanism study

5.1 Synthesis of [I]-1a

Fig. S1 Synthesis of [I]-1a.

5.2 UV-vis absorption spectra

Fig. S2 UV-vis absorption spectra: i-PrOH solution of [I]-1a (0.1 mM) (labeled by green line); i-PrOH solution of [I]-1a (0.1 mM)

irradiation with sunlight for 300 s (labeled by yellow line); i-PrOH solution of I_2 (0.1 mM) (labeled by blue line).

5.3 Light off/on experiment

Fig. S3 Light off/on experiment.

5.4 Control experiments

Fig. S4 Control experiments.

5.5 ¹H spectra determination of H_2O_2

Fig. S5 1 H spectra of the reaction mixture irradiation with sunlight for 5 h (Ethanol- d_{6} , 400 MHz). No H₂O₂ was detected.

Fig. S6 ¹H spectra of the reaction mixture and 2.5 µL H₂O₂ (30% aqueous) in dark (Ethanol-*d*₆, 400 MHz). The peak at 10.62 ppm is

due to H₂O₂.

Fig. S7 ¹H spectra of the reaction mixture and 2.5 µL H₂O in dark (Ethanol-*d*₆, 400 MHz). The peak at 4.51 ppm is due to H₂O.

Fig. S8 ¹H spectra of 1a (Ethanol-d₆, 400 MHz).

Fig. S9 ¹H spectra of 2a (Ethanol-*d*₆, 400 MHz).

We did not detect H_2O_2 by *in situ* ¹H NMR analysis after the reaction mixture in Ethanol- d_6 was irradiated with sunlight for 5 hours in air at room temperature (Fig. S5), increased possibly due to the H_2O_2 participated in the catalytic cycle to convert I_2 to IOH.

5.6 Electron paramagnetic resonance (EPR) experiments

Fig. S10 Electron spin resonance (ESR) spectrum: solution of DMPO (0.56 M), 1a (2 × 10⁻² M) and NIS (1 × 10⁻³ M) in air-saturated i-

PrOH without irradiation (labeled by black line); solution of DMPO (0.56 M), 1a (2 × 10-2 M) and NIS (1 × 10-3 M) in air-saturated i-

PrOH upon irradiation with sunlight for 10 s (labeled by red line).

Fig. S11 Electron spin resonance (ESR) spectrum: solution of DMPO (0.48 M), 1a (2 × 10⁻² M) and NIS (1 × 10⁻³ M) in deaerated i-

PrOH without irradiation (labeled by black line); solution of DMPO (0.48 M), 1a (2 × 10-2 M) and NIS (1 × 10-3 M) in deaerated i-PrOH

upon irradiation with sunlight for 120 s (labeled by red line).

5.7 ESI-HRMS spectra

Fig. S12 ESI-HRMS spectra of TEMPO-1a.

5.8 Competing kinetic isotope effect (KIE) experiments

Intermolecular KIE with D₅-1a and 1a

1a, 0.05 mmol

Fig. S13 Intermolecular KIE with D_5 -1a and 1a.

5.9 Scale-up experiment

Fig. S14 Scale-up experiment.

Scale up experiment: A 250 mL eggplant-type flask was loaded with substrate **1a** (6 mmol, 1.6 g, 1 equiv), NIS (0.3 mmol, 67.5 mg, 0.05 equiv) in i-PrOH (0.04 M, 150 mL). The sample was then irradiated by sunlight for 20 h (2 days). Upon completion of the reaction, the solvent was then removed under vacuum. The residue was purified with chromatography column on silica gel using mixtures of petroleum ether and ethyl acetate to give the corresponding products **2a** (1.0 g, 63% yield).

5.10 Supplementary data

Figure S15. The variation of sunlight intensity (•) and ambient temperature (•) during sunlight photocatalysis.

6. Characterization Data for Compounds

Ethyl 10-hydroxyphenanthrene-9-carboxylate

White solid; yield 23.2 mg, 87%; $\mathbf{R}_{f} = 0.36$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.32 (s, 1H), 8.79 (d, J = 8.4 Hz, 1H), 8.58–8.53 (m, 3H), 7.76 (t, J = 7.2 Hz, 1H), 7.63 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 6.8 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 4.60 (q, J = 7.2 Hz, 2H), 1.54 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 162.8, 133.8, 130.6, 129.6, 127.7, 127.0, 126.2, 126.1, 125.4, 125.1, 124.4, 123.0, 122.6, 101.7, 62.2, 14.5; **ESI-HRMS**: m/z Calcd for C₁₇H₁₃O₃⁻ [M–H]⁻: 265.0870, found 265.0870.

Ethyl 10-hydroxy-7-methylphenanthrene-9-carboxylate

Pale yellow solid; yield 18.8 mg, 67%; $\mathbf{R}_{f} = 0.36$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.23 (s, 1H), 8.54 (s, 1H), 8.47 (t, *J* = 9.6 Hz, 2H), 8.37 (d, *J* = 8.4 Hz, 1H), 7.68 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 4.55 (q, *J* = 7.2 Hz, 2H), 2.49 (s, 3H), 1.52 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 162.8, 137.3, 133.8, 130.4, 129.6, 126.4, 126.1, 125.8, 125.0, 125.0, 124.0, 122.8, 122.3, 101.5, 62.0, 22.3, 14.4; **ESI-HRMS**: m/z Calcd for C₁₈H₁₅O₃⁻ [M–H]⁻: 279.1027, found 279.1028.

Ethyl 7-ethyl-10-hydroxyphenanthrene-9-carboxylate

Pale yellow solid; yield 22.1 mg, 75%; $\mathbf{R}_{f} = 0.36$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.26 (s, 1H), 8.59 (s, 1H), 8.47 (dd, J = 12.8 Hz, J = 8.4 Hz, 2H), 8.39 (d, J = 8.4 Hz, 1H), 7.67 (t, J

= 8.0 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 4.54 (q, J = 7.2 Hz, 2H), 2.80 (q, J = 7.6 Hz, 2H), 1.51 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.0, 162.9, 143.5, 133.8, 130.4, 129.7, 126.4, 125.0, 125.0, 124.7 (×2), 124.2, 122.8, 122.3, 101.6, 62.0, 29.4, 15.4, 14.4; **ESI-HRMS**: m/z Calcd for C₁₉H₁₇O₃⁻ [M–H]⁻: 293.1183, found 293.1185.

Ethyl 7-(tert-butyl)-10-hydroxyphenanthrene-9-carboxylate

Pale yellow solid; yield 22.9 mg, 71%; $\mathbf{R}_{f} = 0.32$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.36 (s, 1H), 8.85 (s, 1H), 8.51–8.43 (m, 3H), 7.69 (t, J = 7.6 Hz, 1H), 7.57–7.50 (m, 2H), 4.56 (q, J = 7.2 Hz, 2H), 1.55 (t, J = 7.2 Hz, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 163.1, 150.4, 133.7, 130.5, 129.4, 126.5, 125.1, 125.1, 124.0, 122.7, 122.4, 122.4 (×2), 101.8, 62.0, 35.3, 31.6, 14.5; ESI-HRMS: m/z Calcd for C₂₁H₂₁O₃⁻ [M–H]⁻: 321.1496, found 321.1496.

Ethyl 10-hydroxy-7-pentylphenanthrene-9-carboxylate

White solid; yield 28.3 mg, 84%; $\mathbf{R}_{f} = 0.32$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.24 (s, 1H), 8.63 (s, 1H), 8.56–8.48 (m, 3H), 7.75 (t, *J* = 7.2 Hz, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 4.61 (q, *J* = 7.2 Hz, 2H), 2.79 (t, *J* = 7.2 Hz, 2H), 1.77–1.75 (m, 2H), 1.57 (t, *J* = 6.8 Hz, 3H), 1.39 (s, 4H), 0.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 162.9, 142.3, 133.9, 130.5, 129.7, 126.5, 125.5, 125.3, 125.1, 125.0, 124.3, 122.8, 122.4, 101.6, 62.1, 36.6, 31.7, 31.1, 22.7, 14.4, 14.2; **ESI-HRMS**: m/z Calcd for C₂₂H₂₃O₃⁻ [M–H]⁻: 335.1653, found 335.1653.

Ethyl 7-cyclohexyl-10-hydroxyphenanthrene-9-carboxylate

White solid; yield 23.7 mg, 68%; $\mathbf{R}_{f} = 0.32$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.26 (s, 1H), 8.64 (s, 1H), 8.48 (dd, J = 11.2 Hz, J = 8.8 Hz, 2H), 8.40 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 4.55 (q, J = 7.2 Hz, 2H), 2.67–2.61 (m, 1H), 1.94 (dd, J =42.8 Hz, J = 10.8 Hz, 4H), 1.79 (d, J = 12.8 Hz, 1H), 1.53 (t, J = 7.2 Hz, 3H), 1.50–1.40 (m, 3H), 1.33–1.25 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 162.9, 147.3, 133.8, 130.4, 129.7, 126.4, 125.0 (×2), 124.4, 124.0, 123.8, 122.8, 122.3, 101.7, 62.0, 45.0, 34.8, 27.1, 26.5, 14.5; ESI-HRMS: m/z Calcd for C₂₃H₂₃O₃⁻ [M–H]⁻: 347.1653, found 347.1652.

Diethyl 9-hydroxyphenanthrene-2,10-dicarboxylate

White solid; yield 21.7 mg, 64%; $\mathbf{R}_{f} = 0.34$ (petroleum ether/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 13.44 (s, 1H), 9.56 (s, 1H), 8.55 (t, *J* = 8.0 Hz, 3H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.78 (t, *J* = 7.2 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 4.61 (q, *J* = 6.8 Hz, 2H), 4.45 (q, *J* = 6.8 Hz, 2H), 1.62 (t, *J* = 6.8 Hz, 3H), 1.46 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 167.1, 163.4, 133.0, 130.8, 129.2, 129.1, 129.1, 128.4, 128.0, 126.2, 125.2, 124.4, 123.2, 123.0, 101.6, 62.5, 61.2, 14.6, 14.3; ESI-HRMS: m/z Calcd for C₂₀H₁₇O₅⁻ [M–H]⁻: 337.1081, found 337.1082.

Ethyl 10-hydroxy-7-methoxyphenanthrene-9-carboxylate

White solid; yield 23.1 mg, 78%; $\mathbf{R}_{f} = 0.33$ (petroleum ether/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 13.43 (s, 1H), 8.50 (d, J = 8.4 Hz, 1H), 8.46 (d, J = 8.8 Hz, 2H), 8.33 (s, 1H), 7.72 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 8.8 Hz, 1H), 4.59 (q, J = 6.8 Hz, 2H), 3.93 (s, 3H), 1.56 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 163.8, 159.2, 134.0, 131.2, 130.7, 125.9, 125.2, 124.4, 124.3, 122.1, 120.4, 113.7, 108.2, 101.3, 62.1, 55.3, 14.5; **ESI-HRMS**: m/z Calcd for C₁₈H₁₅O₄⁻ [M–H]⁻: 295.0976, found 295.0973.

Ethyl 7-fluoro-10-hydroxyphenanthrene-9-carboxylate

White solid; yield 25.6 mg, 90%; $\mathbf{R}_{f} = 0.30$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.49 (s, 1H), 8.46–8.35 (m, 4H), 7.69 (t, J = 6.8 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H), 4.57 (q, J = 7.2 Hz, 2H), 1.54 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 164.1, 162.3 (d, ¹ $J_{C,F} = 244.6$ Hz), 133.4, 131.3 (d, ³ $J_{C,F} = 10.2$ Hz), 130.8, 126.7, 125.2, 124.9, 124.8, 122.6 (d, ⁴ $J_{C,F} = 1.3$ Hz), 122.3, 112.6 (d, ² $J_{C,F} = 23.6$ Hz), 111.6 (d, ² $J_{C,F} = 25.7$ Hz), 101.0 (d, ⁴ $J_{C,F} = 3.1$ Hz), 62.4, 14.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -112.74 (s, 1F); ESI-HRMS: m/z Calcd for C₁₇H₁₂FO₃⁻ [M–H]⁻: 283.0776, found 283.0781.

Ethyl 7-chloro-10-hydroxyphenanthrene-9-carboxylate

White solid; yield 21.1 mg, 70%; $\mathbf{R}_{f} = 0.30$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.42 (s, 1H), 8.71 (s, 1H), 8.44 (d, *J* = 8.0 Hz, 1H), 8.33 (dd, *J* = 15.6 Hz, *J* = 8.4 Hz, 2H), 7.68 (t, *J* = 7.2 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 8.8 Hz, 1H), 4.57 (q, *J* = 7.2 Hz, 2H), 1.54 (t, *J* = 6.8 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 172.6, 163.8, 133.8, 133.1, 130.8, 130.7, 127.1, 125.6, 125.2 (×2), 124.5, 124.4, 124.2, 122.4, 100.7, 62.4, 14.3; **ESI-HRMS**: m/z Calcd for C₁₇H₁₂ClO₃⁻ [M–H]⁻: 299.0480, found 299.0479.

Ethyl 10-hydroxy-7-(trifluoromethyl)phenanthrene-9-carboxylate

White solid; yield 29.1 mg, 87%; $\mathbf{R}_f = 0.30$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.42 (s, 1H), 9.05 (s, 1H), 8.44 (d, J = 8.0 Hz, 2H), 8.39 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 6.8 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 4.55 (q, J = 6.8 Hz, 2H), 1.54 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 163.8, 132.7, 130.9, 129.1, 129.1 (d, ² $_{J_{C,F}} = 32.0$ Hz), 128.0, 127.9, 126.0, 125.2, 124.8 (d, ¹ $_{J_{C,F}} = 273.2$ Hz), 123.5, 123.5, 122.8, 120.1 (d, ⁴ $_{J_{C,F}} = 3.0$ Hz), 101.1, 62.5, 14.1; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.41 (s, 3F); ESI-HRMS: m/z Calcd for C₁₈H₁₂F₃O₃⁻ [M–H]⁻: 333.0744, found 333.0744.

Ethyl 7-cyano-10-hydroxyphenanthrene-9-carboxylate

White solid; yield 27.4 mg, 94%; $\mathbf{R}_{f} = 0.40$ (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 13.57 (s, 1H), 9.16 (s, 1H), 8.60–8.52 (m, 3H), 7.83 (t, *J* = 7.2 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 4.65 (q, *J* = 7.2 Hz, 2H), 1.58 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 164.2, 132.6, 131.3, 131.2, 129.5, 128.8, 128.6, 126.4, 126.0, 125.5, 123.9, 123.1, 119.8, 111.1, 100.7, 62.8, 14.5; **ESI-HRMS**: m/z Calcd for C₁₈H₁₂NO₃⁻ [M–H]⁻: 290.0823, found 290.0818.

Ethyl 7-(4-chlorophenyl)-10-hydroxyphenanthrene-9-carboxylate

White solid; yield 28.3 mg, 75%; $\mathbf{R}_{f} = 0.40$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.36 (s, 1H), 8.93 (s, 1H), 8.48–8.42 (m, 3H), 7.68 (t, J = 7.2 Hz, 1H), 7.58–7.54 (m, 4H), 7.41 (d, J = 8.0 Hz, 2H), 4.52 (q, J = 6.8 Hz, 2H), 1.50 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 163.4, 140.0, 138.6, 133.6, 133.4, 130.6, 129.9, 129.1, 128.5, 127.0, 125.4, 125.4, 125.2, 124.5, 123.5, 122.8, 122.5, 101.4, 62.2, 14.4; **ESI-HRMS**: m/z Calcd for C₂₃H₁₆ClO₃⁻ [M–H]⁻: 375.0793, found 375.0794.

Ethyl 10-hydroxy-7-(naphthalen-2-yl)phenanthrene-9-carboxylate

White solid; yield 32.2 mg, 82%; $\mathbf{R}_{f} = 0.35$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.41 (s, 1H), 9.21 (s, 1H), 8.60 (d, J = 8.4 Hz, 1H), 8.55 (t, J = 7.2 Hz, 2H), 8.17 (s, 1H), 7.96–7.82 (m, 5H), 7.75 (t, J = 7.2 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.52–7.48 (m, 2H), 4.59 (q, J = 6.8 Hz, 2H), 1.59 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 163.4, 139.9, 138.9, 134.0, 133.6, 132.9, 130.7, 130.0, 128.7, 128.4, 127.8, 127.0, 126.5, 126.2, 126.1, 125.7, 125.4, 125.4, 125.2, 125.1, 123.6, 123.5, 122.6, 101.7, 62.2, 14.5; ESI-HRMS: m/z Calcd for C₂₇H₁₉O₃⁻ [M–H]⁻: 391.1340, found 391.1342.

Ethyl 10-hydroxy-5-methylphenanthrene-9-carboxylate

OH 20

Pale yellow solid; yield 14.6 mg, 52%; $\mathbf{R}_{f} = 0.41$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 12.86 (s, 1H), 8.60–8.55 (m, 3H), 7.67 (t, J = 7.2 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.2 Hz, 1H), 4.56 (q, J = 7.2 Hz, 2H), 2.99 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 161.4, 135.2, 134.5, 130.9, 129.1, 128.8, 127.7, 126.7, 126.5, 126.4, 126.3, 124.6, 124.0, 102.7, 62.1, 27.3, 14.5; **ESI-HRMS**: m/z Calcd for C₁₈H₁₅O₃⁻ [M–H]⁻: 279.1027, found 279.1029.

Ethyl 10-hydroxy-5-phenylphenanthrene-9-carboxylate

White solid; yield 15.8 mg, 46%; $\mathbf{R}_{f} = 0.32$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.08 (s, 1H), 8.73 (d, J = 8.0 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.43–7.30 (m, 7H), 7.14 (t, J = 7.2 Hz, 1H), 4.60 (q, J = 6.8 Hz, 2H), 1.53 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 162.3, 145.6, 140.6, 133.7, 131.1, 129.2, 129.1, 129.0, 128.8, 128.2, 127.1, 126.5, 126.4, 126.4, 125.2, 125.0, 124.4, 102.1, 62.2, 14.5; ESI-HRMS: m/z Calcd for C₂₃H₁₇O₃⁻ [M–H]-: 341.1183, found 341.1182.

Ethyl 10-hydroxy-5-methoxyphenanthrene-9-carboxylate

Pale yellow solid; yield 17.2 mg, 58%; $\mathbf{R}_{f} = 0.35$ (petroleum ether/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 12.95 (s, 1H), 9.57 (d, J = 8.8 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 8.37 (d, J = 8.4 Hz, 1H), 7.74 (t, J = 7.2 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 4.58 (q, J = 6.8 Hz, 2H), 4.08 (s, 3H), 1.52 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 162.1, 158.8, 133.4, 132.0, 130.1, 128.6, 127.3, 126.3, 125.6, 124.3, 118.7, 117.0, 106.9, 102.3, 62.2, 55.9, 14.5; ESI-HRMS: m/z Calcd for C₁₈H₁₅O₄- [M-H]⁻: 295.0976, found 295.0973.

Ethyl 5-fluoro-10-hydroxyphenanthrene-9-carboxylate

White solid; yield 14.3 mg, 50%; $\mathbf{R}_{f} = 0.38$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.21 (s, 1H), 9.02–9.00 (m, 1H),8.56 (t, J = 8.8 Hz, 2H), 7.77 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.46 (q, J = 8.0 Hz, 1H), 7.19 (dd, J = 14.0 Hz, J = 7.6 Hz, 1H), 4.59 (q, J = 7.2 Hz, 2H), 1.53 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 163.0, 161.7 (d, ¹ $_{J_{C,F}} = 252.4$ Hz), 132.1 (d, ³ $_{J_{C,F}} = 3.9$ Hz), 131.5 (d, ³ $_{J_{C,F}} = 5.1$ Hz), 130.9 (d, ⁴ $_{J_{C,F}} = 2.6$ Hz), 127.7 (d, ² $_{J_{C,F}} = 21.7$ Hz), 127.5 (d, ⁴ $_{J_{C,F}} = 3.7$ Hz), 127.2 (d, ⁴ $_{J_{C,F}} = 1.6$ Hz), 125.8, 124.8, 121.8 (d, ⁴ $_{J_{C,F}} = 3.4$ Hz), 115.8 (d, ³ $_{J_{C,F}} = 9.1$ Hz), 111.5 (d, ² $_{J_{C,F}} = 25.3$ Hz), 101.7 (d, ⁴ $_{J_{C,F}} = 1.9$ Hz), 62.4, 14.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -108.68 (s, 1F); ESI-HRMS: m/z Calcd for C₁₇H₁₂FO₃⁻ [M–H]⁻: 283.0776, found 283.0774.

Ethyl 5-chloro-10-hydroxyphenanthrene-9-carboxylate

Pale yellow solid; yield 19.3 mg, 64%; $\mathbf{R}_{f} = 0.41$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.00 (s, 1H), 9.59 (d, J = 8.4 Hz, 1H), 8.65 (d, J = 8.4 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H), 7.74 (t, J = 6.8 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 4.59 (q, J = 6.8 Hz, 2H), 1.52 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 162.3, 132.6, 132.5, 131.7, 129.2, 128.5, 127.7, 127.4, 127.0, 126.5, 124.8, 124.5, 124.1, 102.1, 62.4, 14.5; ESI-HRMS: m/z Calcd for C₁₇H₁₂ClO₃⁻ [M–H]⁻: 299.0480, found 299.0480.

Ethyl 8-cyano-10-hydroxyphenanthrene-9-carboxylate and ethyl 6-cyano-10-hydroxyphenanthrene-9carboxylate

NC OH

2t:(2t') = 1:2.2

White solid; yield 26.2 mg, 90%; $\mathbf{R}_{f} = 0.39$ (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 13.57 (s, 1H), 11.57 (s, 0.45H), 8.71 (d, J = 8.8 Hz, 1H), 8.63–8.60 (m, 1.45H), 8.43–8.40 (m, 2H), 8.29 (d, J =8.0 Hz, 1H), 7.87 (d, J = 7.2 Hz, 0.45H), 7.77–7.73 (m, 1.45H), 7.66–7.59 (m, 2.35H), 7.47 (t, J = 8.0 Hz, 0.45H), 4.59 (q, J = 6.8 Hz, 2.9H), 1.55 (t, J = 6.8 Hz, 3H), 1.42 (t, J = 7.2 Hz, 1.35H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 170.4, 164.9, 160.9, 134.6, 132.5, 132.4, 132.3, 131.3, 130.9, 130.0, 129.0, 128.1, 128.0, 127.7, 127.1, 127.1, 126.7, 125.6, 125.5, 125.2, 125.0, 124.1, 122.5, 122.2, 119.5, 119.4, 109.6, 107.3, 102.4, 101.0, 62.7, 62.1, 14.4, 13.9; **ESI-HRMS**: m/z Calcd for C₁₈H₁₂NO₃⁻ [M–H]⁻: 290.0823, found 290.0819.

Ethyl 6,8-dichloro-10-hydroxyphenanthrene-9-carboxylate

White solid; yield 18.1 mg, 54%; $\mathbf{R}_{f} = 0.46$ (petroleum ether/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 10.55 (s, 1H), 8.45 (d, J = 8.4 Hz, 2H), 8.41 (d, J = 1.6 Hz, 1H), 7.78 (t, J = 7.2 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.59 (d, J = 2.0 Hz, 1H), 4.44 (q, J = 6.8 Hz, 2H), 1.36 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 158.3, 132.1, 131.9, 130.7, 130.5, 129.5, 129.4, 128.4, 126.5, 125.3, 124.9, 123.0, 121.3, 103.3, 62.3, 14.1; ESI-HRMS: m/z Calcd for C₁₇H₁₁Cl₂O₃⁻ [M–H]⁻: 333.0091, found 333.0093.

Ethyl 2-fluoro-10-hydroxyphenanthrene-9-carboxylate

Pale yellow solid; yield 27.9 mg, 98%; $\mathbf{R}_{f} = 0.38$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.19 (s, 1H), 8.78 (d, J = 8.4 Hz, 1H), 8.56–8.53 (m, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 9.6 Hz, 1H), 7.56 (t, J = 6.8 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 4.62 (q, J = 7.2 Hz, 2H), 1.55 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 161.7 (d, ¹ $J_{C,F} = 247.9$ Hz), 161.6 (d, ⁴ $J_{C,F} = 3.3$ Hz), 130.2, 129.0, 127.5, 126.9 (d, ³ $J_{C,F} = 8.7$ Hz), 126.1, 125.8, 125.0 (d, ³ $J_{C,F} = 8.3$ Hz), 124.6, 122.7, 119.2 (d, ² $J_{C,F} = 23.8$ Hz), 109.8 (d, ² $J_{C,F} = 22.8$ Hz), 102.6, 62.3, 14.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -113.76 (s, 1F); ESI-HRMS: m/z Calcd for C₁₇H₁₂FO₃⁻ [M–H]⁻: 283.0776, found 283.0784.

Ethyl 10-hydroxy-2-methoxyphenanthrene-9-carboxylate

White solid; yield 21.1 mg, 71%; $\mathbf{R}_{f} = 0.37$ (petroleum ether/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 13.39 (s, 1H), 8.77 (d, J = 8.4 Hz, 1H), 8.42 (d, J = 8.8 Hz, 2H), 7.86 (s, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 8.8 Hz, 1H), 4.57 (q, J = 6.8 Hz, 2H), 3.98 (s, 3H), 1.52 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 163.3, 161.7, 135.9, 130.3, 127.8, 127.1, 126.2, 125.7, 123.9, 123.0, 119.6, 116.4, 104.3, 99.9, 61.9, 55.6, 14.5; **ESI-HRMS**: m/z Calcd for C₁₈H₁₅O₄–[M–H]⁻: 295.0976, found 295.0973.

Ethyl 3-fluoro-10-hydroxyphenanthrene-9-carboxylate

Pale yellow solid; yield 26.2 mg, 92%; \mathbf{R}_{f} = 0.41 (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.35 (s, 1H), 8.76 (d, *J* = 7.6 Hz, 1H), 8.49–8.48 (m, 1H), 8.35 (d, *J* = 7.2 Hz, 1H), 8.10 (d, *J* = 10.8 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.33–7.29 (m, 1H), 4.59 (q, *J* = 7.2 Hz, 2H), 1.54 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 164.3 (d, ¹*J*_{C,F} = 251.0 Hz), 162.5, 136.1 (d, ³*J*_{C,F} = 9.2 Hz), 130.1, 128.3, 128.0 (d, ³*J*_{C,F} = 9.6 Hz), 126.2, 125.4 (d, ⁴*J*_{C,F} = 3.6 Hz), 124.4, 123.1, 122.0, 115.8 (d, ²*J*_{C,F} = 23.6 Hz), 107.9 (d, ²*J*_{C,F} = 23.0 Hz), 101.1, 62.2, 14.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -108.12 (s, 1F); ESI-HRMS: m/z Calcd for C₁₇H₁₂FO₃⁻ [M–H]⁻: 283.0776, found 283.0783.

Ethyl 10-hydroxy-3-methoxyphenanthrene-9-carboxylate

White solid; yield 13.1 mg, 44%; **R**_f = 0.33 (petroleum ether/ethyl acetate 20:1); ¹**H NMR** (400 MHz, CDCl₃) δ 13.31 (s, 1H), 8.77 (d, *J* = 8.0 Hz, 1H), 8.47 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 2.0 Hz, 1H), 7.49 (dt, *J* = 20.4 Hz,
J = 6.8 Hz, 2H), 7.37 (dd, J = 9.2 Hz, J = 2.0 Hz, 1H), 4.61 (q, J = 7.2 Hz, 2H), 3.98 (s, 3H), 1.55 (t, J = 6.8 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.2, 162.2, 158.8, 128.5, 128.1, 126.8, 126.6, 126.3, 126.1, 124.4, 124.3, 122.5, 121.3, 104.8, 102.2, 62.2, 55.7, 14.5; **ESI-HRMS**: m/z Calcd for C₁₈H₁₅O₄⁻ [M–H]⁻: 295.0976, found 295.0973.

Ethyl 5-hydroxybenzo[c]phenanthrene-6-carboxylate

Pale yellow solid; yield 10.2 mg, 32%; $\mathbf{R}_{f} = 0.38$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 12.99 (s, 1H), 8.85 (dd, J = 16.4 Hz, J = 8.4 Hz, 2H) 8.74 (d, J = 9.2 Hz, 1H), 8.63 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 7.2 Hz, 1H), 7.85 (d, J = 9.2 Hz, 1H), 7.74 (t, J = 7.2 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.60–7.52 (m, 2H), 4.61 (q, J = 6.8 Hz, 2H), 1.54 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 161.8, 133.3, 131.9, 130.0, 129.5, 128.5, 128.5, 128.0, 128.0, 127.6, 126.3, 126.1, 125.8, 125.4, 124.6, 124.1, 122.8, 102.8, 62.3, 14.5; **ESI-HRMS**: m/z Calcd for C₂₁H₁₅O₃⁻ [M–H]–: 315.1027, found 315.1027.

Methyl 10-hydroxyphenanthrene-9-carboxylate

Pale yellow solid; yield 14.2 mg, 56%; $\mathbf{R}_{f} = 0.38$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.21 (s, 1H), 8.69 (d, J = 8.4 Hz, 1H), 8.51 (d, J = 8.0 Hz, 3H), 7.71 (t, J = 7.2 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 4.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 162.9, 133.8, 130.6, 129.4, 127.7, 126.9, 126.2, 126.1, 125.3, 125.1, 124.4, 122.9, 122.5, 101.6, 52.6; ESI-HRMS: m/z Calcd for C₁₆H₁₁O₃⁻ [M–H]⁻: 251.0714, found 251.0712.

Benzyl 10-hydroxyphenanthrene-9-carboxylate

White solid; yield 26.9 mg, 82%; \mathbf{R}_{f} = 0.38 (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.19 (s, 1H), 8.74 (d, *J* = 8.4 Hz, 1H), 8.49 (t, *J* = 7.2 Hz, 3H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 1H) 7.50–7.32 (m, 7H), 5.53 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 163.0, 135.4, 133.8, 130.6, 129.5, 128.9, 128.6, 128.5, 127.7, 126.9, 126.2 (×2), 125.3, 125.1, 124.3, 122.9, 122.5, 101.5, 67.7; **ESI-HRMS**: m/z Calcd for C₂₂H₁₅O₃⁻ [M–H]⁻: 327.1027, found 327.1026.

(10-hydroxyphenanthren-9-yl)(phenyl)methanone

Pale yellow solid; yield 13.5 mg, 45%; $\mathbf{R}_{f} = 0.47$ (petroleum ether/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 12.74 (s, 1H), 8.61 (t, J = 9.2 Hz, 2H), 8.54 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 7.2 Hz, 1H), 7.69 (t, J = 7.2 Hz, 1H), 7.63 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.40–7.33 (m, 4H), 7.17 (t, J = 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 200.3, 160.8, 140.5, 134.1, 132.6, 130.7, 130.4, 129.6, 128.6, 127.8, 127.2, 126.3, 126.0, 125.3, 125.2, 124.5, 123.0, 122.7, 111.1; ESI-HRMS: m/z Calcd for C₂₁H₁₃O₂⁻ [M–H]⁻⁻: 297.0921, found 297.0917.

10-hydroxy-N-phenylphenanthrene-9-carboxamide

White solid; yield 7.9 mg, 25%; $\mathbf{R}_f = 0.58$ (petroleum ether/ethyl acetate 6:1); ¹H NMR (400 MHz, DMSO) δ 10.57 (s, 1H), 10.10 (s, 1H), 8.86 (d, J = 7.6 Hz, 1H), 8.80 (d, J = 7.6 Hz, 1H), 8.41 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.6 Hz, 2H), 7.79–7.73 (m, 3H), 7.60–7.54 (m, 2H), 7.38 (t, J = 6.4 Hz, 2H), 7.12 (t, J = 6.8 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 166.0, 147.2, 139.6, 131.0, 130.0, 128.7, 127.9, 127.4, 126.8, 126.1, 125.5, 124.3, 124.2, 123.5, 123.2, 123.0, 119.6, 116.7; **ESI-HRMS**: m/z Calcd for $C_{21}H_{14}NO_2^-$ [M–H]⁻: 312.1030, found 312.1029.

10-hydroxyphenanthrene-9-carbonitrile

Cream solid; yield 17.5 mg, 80%; \mathbf{R}_{f} = 0.24 (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, DMSO) δ 11.84 (s, 1H), 8.85 (d, *J* = 8.4 Hz, 1H), 8.78 (d, *J* = 8.0 Hz, 1H), 8.44 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.88 (t, *J* = 7.2 Hz, 1H), 7.79–7.71 (m, 2H), 7.61 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 158.8, 132.5, 130.4, 129.4, 128.7, 127.5, 125.6, 125.3, 124.8, 123.7, 123.6, 123.5, 123.5, 116.5, 90.2; ESI-HRMS: m/z Calcd for C₁₅H₈NO⁻ [M–H]⁻: 218.0611, found 218.0595.

10-(methylsulfonyl)phenanthren-9-ol

Pale yellow solid; yield 10.4 mg, 38%; $\mathbf{R}_{f} = 0.36$ (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 11.69 (s, 1H), 8.63–8.52 (m, 4H), 7.81 (t, J = 7.2 Hz, 1H), 7.66 (q, J = 7.2 Hz, 2H), 7.56 (t, J = 6.8 Hz, 1H), 3.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 133.8, 131.1, 128.6, 127.6, 127.2, 126.5, 125.4, 125.3, 123.5, 123.4, 122.6, 108.7, 45.0; ESI-HRMS: m/z Calcd for C₁₅H₁₁O₃S⁻ [M–H]⁻: 271.0434, found 271.0421.

Ethyl 6-hydroxybenzo[h]quinoline-5-carboxylate

White solid; yield 2.9 mg, 11%; $\mathbf{R}_{f} = 0.16$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 13.54 (s, 1H), 9.25 (d, J = 7.2 Hz, 1H), 9.13 (d, J = 8.4 Hz, 1H), 8.81 (s, 1H), 8.54 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 6.4 Hz, 1H), 7.75 (t, J = 7.2 Hz, 1H), 7.51–7.49 (m, 1H), 4.63 (q, J = 7.2 Hz, 2H), 1.57 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 163.8, 146.1, 142.5, 135.0, 133.8, 131.1, 128.7, 126.8, 124.8, 124.4, 122.5, 100.0, 62.4, 14.5; ESI-HRMS: m/z Calcd for C₁₆H₁₂NO₃⁻ [M–H]^{-:}266.0823, found 266.0820.

Ethyl 5-hydroxy-7-methyl-7H-benzo[c]carbazole-6-carboxylate

Pale yellow solid; yield 6.4 mg, 20%; $\mathbf{R}_{f} = 0.23$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 11.72 (s, 1H), 8.66 (d, *J* = 8.0 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 8.43 (d, *J* = 7.6 Hz, 1H), 7.77 (t, *J* = 6.4 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.45 (q, *J* = 7.2 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 4.56 (q, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 1.47 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 160.7, 141.8, 136.9, 133.1, 130.7, 125.4, 123.9, 123.4, 123.1, 123.0, 120.9, 120.9, 120.8, 110.1, 110.0, 97.0, 62.1, 35.8, 14.5; **ESI-HRMS**: m/z Calcd for C₂₀H₁₆NO₃⁻ [M–H]⁻:318.1136, found 318.1130.

Ethyl 5-hydroxynaphtho[1,2-b]furan-4-carboxylate

Pale yellow solid; yield 4.4 mg, 17%; $\mathbf{R}_{f} = 0.39$ (petroleum ether/ethyl acetate 50:1); ¹H NMR (400 MHz, CDCl₃) δ 12.36 (s, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.73–7.69 (m, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.23 (s, 1H), 4.54 (q, J = 6.8 Hz, 2H), 1.54 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 159.5, 144.6, 144.4, 130.2, 125.2, 125.1, 125.0, 123.2, 120.0, 119.9, 109.5, 99.5, 61.7, 14.5; **ESI-HRMS**: m/z Calcd for C₁₅H₁₁O₄⁻ [M–H]⁻:255.0663, found 255.0660.

Ethyl 5-hydroxynaphtho[1,2-b]thiophene-4-carboxylate

Pale yellow solid; yield 14.5 mg, 53%; $\mathbf{R}_{f} = 0.67$ (petroleum ether/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 12.90 (s, 1H), 8.43 (d, J = 7.6 Hz, 1H), 7.97–7.95 (m, 2H), 7.62 (t, J = 6.4 Hz, 1H), 7.51–7.43 (m, 2H), 4.52 (q, J = 6.0 Hz, 2H), 1.51 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 161.9, 133.7, 131.8, 130.4, 130.3, 126.6, 125.7, 125.4, 123.5, 123.4, 101.8, 61.9, 14.4; ESI-HRMS: m/z Calcd for C₁₅H₁₁O₃S⁻ [M–H]⁻ : 271.0434, found 271.0421.

7. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR

1t - ¹H NMR (400 MHz, CDCl₃)

1t - ¹³C NMR (101 MHz, CDCl₃)

1u – ¹H NMR (400 MHz, CDCl₃)

 $1u - {}^{13}C$ NMR (101 MHz, CDCl₃)

1ag - ¹H NMR (400 MHz, CDCl₃)

1ag - ¹³C NMR (101 MHz, CDCl₃)

 $1ah - {}^{13}C$ NMR (101 MHz, CDCl₃)

1ai - ¹³C NMR (101 MHz, CDCl₃)

1aj - ¹³C NMR (101 MHz, CDCl₃)

[I]-1a – ¹H NMR (400 MHz, CDCl₃)

[I]-1a - ¹³C NMR (101 MHz, CDCl₃)

D₅-1a - ¹H NMR (400 MHz, CDCl₃)

 D_5 -1a – ¹³C NMR (101 MHz, CDCl₃)

2a – ¹H NMR (400 MHz, CDCl₃)

2b – ¹H NMR (400 MHz, CDCl₃)

2b - ¹³C NMR (101 MHz, CDCl₃)

2c – ¹H NMR (400 MHz, CDCl₃)

fl (ppm)

2d – ¹H NMR (400 MHz, CDCl₃)

2d - ¹³C NMR (101 MHz, CDCl₃)

2e - ¹H NMR (400 MHz, CDCl₃)

2f – ¹H NMR (400 MHz, CDCl₃)

2f - ¹³C NMR (101 MHz, CDCl₃)

2g - ¹H NMR (400 MHz, CDCl₃)

2h – ¹H NMR (400 MHz, CDCl₃)

2i – ¹H NMR (400 MHz, CDCl₃)

2i – ¹³C NMR (101 MHz, CDCl₃)

2i - ¹⁹F NMR (377 MHz, CDCl₃)

2j – ¹H NMR (400 MHz, CDCl₃)

$2k - {}^{1}H NMR (400 MHz, CDCl_3)$

S60

2k - 19F NMR (377 MHz, CDCl₃)

2I – ¹H NMR (400 MHz, CDCl₃)

2m – ¹H NMR (400 MHz, CDCl₃)

2m - ¹³C NMR (101 MHz, CDCl₃)

2n – ¹H NMR (400 MHz, CDCl₃)

20 – ¹H NMR (400 MHz, CDCl₃)

20 - ¹³C NMR (101 MHz, CDCl₃)

2p - ¹H NMR (400 MHz, CDCl₃)

2p - ¹³C NMR (101 MHz, CDCl₃)

2q – ¹H NMR (400 MHz, CDCl₃)

2q - ¹³C NMR (101 MHz, CDCl₃)

2r – ¹H NMR (400 MHz, CDCl₃)

 $2r - {}^{19}F$ NMR (377 MHz, CDCl₃)

2s – ¹H NMR (400 MHz, CDCl₃)

2t:(2t') - ¹H NMR (400 MHz, CDCl₃)

2t:(2t') - ¹³C NMR (101 MHz, CDCl₃)

2u – ¹H NMR (400 MHz, CDCl₃)

2v – ¹H NMR (400 MHz, CDCl₃)

2v - ¹⁹F NMR (377 MHz, CDCl₃)

2w – ¹H NMR (400 MHz, CDCl₃)

2w - ¹³C NMR (101 MHz, CDCl₃)

2x – ¹H NMR (400 MHz, CDCl₃)

2x - ¹⁹F NMR (377 MHz, CDCl₃)

2y – ¹H NMR (400 MHz, CDCl₃)

2z – ¹H NMR (400 MHz, CDCl₃)

2aa - ¹H NMR (400 MHz, CDCl₃)

2aa - ¹³C NMR (101 MHz, CDCl₃)

2ab - ¹H NMR (400 MHz, CDCl₃)

2ac - ¹H NMR (400 MHz, CDCl₃)

2ac - ¹³C NMR (101 MHz, CDCl₃)

2ad - ¹H NMR (400 MHz, DMSO-d₆)

2ad - 13C NMR (101 MHz, DMSO-d₆)

2ae - ¹H NMR (400 MHz, DMSO-d₆)

 190
 170
 150
 130
 110
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 f1<(ppm)</td>
 (ppm)
 (ppm)

2af - ¹H NMR (400 MHz, CDCl₃)

 $2af - {}^{13}C$ NMR (101 MHz, CDCl₃)

2ag - ¹H NMR (400 MHz, CDCl₃)

2ah – ¹H NMR (400 MHz, CDCl₃)

2ai – ¹H NMR (400 MHz, CDCl₃)

2aj – ¹H NMR (400 MHz, CDCl₃)

8. References

- 1. Y.-T. Jiang, Z.-Z. Yu, Y.-K. Zhang and B. Wang, Org. Lett., 2018, 20, 3728.
- 2. J.-D. Guo, X.-L. Yang, B. Chen, C.-H. Tung and L.-Z. Wu, Org. Lett., 2020, 22, 9627.
- 3. M.-H. Yang, J. R. Hunt, N. Sharifi and R. A. Altman, Angew. Chem. Int. Ed., 2016, 55, 9080.
- 4. K.-H. Chen, Y.-J. Chiang and J.-L. Zhu, Org. Biomol. Chem., 2018, 16, 8353.
- 5. (a) Y. Zou, G. Yue, J. Xu and J. S. Zhou, *Eur. J. Org. Chem.*, 2014, 2014, 5901;
 (b) J. Yan, T. Ni and F. Yan, *Tetrahedron Lett.*, 2015, 56, 1096.
- 6. B. Sreedhar, P. Surendra Reddy and M. Madhavi, Synth. Commun., 2007, 37, 4149.