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Table S1 Optimisation of reaction conditions for the dehydration of ADS by H3PO3.
a 

Entry S/C Temp.  

/℃ 

Conv.  

/% 

Yield of product /% 

ADI 1,4-AHADS 3,6-AHADS 1,5-AHADS ADIAc Others 

S1 2.0 150 100 24 1.8 1.3 7.0 3.5 63 

S2 2.0 130 100 24 2.3 1.5 8.0 3.4 61 

S3 2.0 110 100 18 5.4 5.5 23 3.0 46 

S4 4.0 130 100 25 3.1 1.6 14 3.1 53 

S5 8.0 130 100 10 16 4.8 30 2.0 38 

a3 h, pressure <0.1 kPa, no solvent. 

 

Table S2 Dehydration of ADS by various catalysts under the optimised condition for H3PO3.
a 

Entry Catalyst Conv. 

/% 

Yield of product /% 

ADI 1,4-AHADS 3,6-AHADS 1,5-AHADS ADIAc Others 

S6 None 42 <0.1 10 2.3 7.1 <0.1 23 

S7 CF3SO3H 100 28 <0.1 <0.1 2.0 2.9 67 

S8 
Oxalic 

acid 
100 13 11 21 33 7.8 14 

S4 H3PO3 100 25 3.1 1.6 14 3.1 53 

S9 2,4-DNBA 100 12 17 6.8 19 2.7 43 

S10 H3PO4 100 8.9 20 5.0 21 3.9 41 

aS/C = 4.0, 130 ℃, 3 h, pressure <0.1 kPa, no solvent. 2,4-DNBA: 2,4-dinitrobenzoic acid. 

 

 

Fig. S1 A possible formation route of a furan derivative, and structure of a humin compound. 

Speculated based on the literature (ChemSusChem, 2013, 6, 1745). 
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Fig. S2 GPC charts of ADS dehydration product using various acid catalysts. 2,4-DNBA: 

2,4-dinitrobenzoic acid. 

 

Table S3 GPC analysis of the product in the dehydration of ADS 

Catalyst 
Ratio of peak area /% 

Mw > 300 300 > Mw 

None 0 100 

CF3SO3H 62 38 

H2C2O4 10 90 

H3PO3 37 63 

2,4-DNBA 60 40 

H3PO4 53 47 
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Fig. S3 Time course of ADS dehydration by H3PO4. The plots indicate actual experimental results, and 

the lines show theoretical yield curves based on the kinetic analysis. 

 

  

Fig. S4 (A) LC chart of the product solution after the dehydration of ADS by H3PO3 (S/C = 4.0) at 

130 C under < 0.1 kPa of pressure for 1 h. The mass spectra with a negative ion mode at (B) 10 min, 

(C) 22 min and (D) 34 min. 
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Assignment of peaks observed in the mass spectra in Fig. S4 

 In (B), the peaks of m/z = 250 and m/z = 268 are ascribed to phosphorous acid esters of 

anhydro-ADS ([M−H2O−H]−, m/z = 250; [M−H]−, m/z = 268). In (C), the peaks of m/z = 204 and m/z 

= 286 are ascribed to anhydro-ADS ([M−H]−, m/z = 204) and phosphorous acid esters of ADS 

([M−H]−, m/z = 286). In (D), m/z = 186 is ascribed to ADI ([M−H]−, m/z = 186). 

 

  

  

Fig. S5 31P NMR spectra of HPLC fractions for LC-MS analysis shown in Fig. S4. (A) Retention time: 

10 min. (B) Retention time: 22 min. 

 



S6 
 

  

Fig. S6 Determination of the coefficients a and b using the least-squares method using standard 

compounds 
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Fig. S7 Proposed reaction mechanisms for (A) typical acid catalysts and (B) H3PO3. Proton formation 

assumes 2H3PO3  H+ + [H2PO3∙∙∙H3PO3]
−. 


