Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Characteristic activity of phosphorous acid in the dehydration condensation of a chitin-derived nitrogen-containing sugar alcohol

Cheng Yang,^{1,2} Takuya Sagawa^{1,3}, Atsushi Fukuoka*¹, Hirokazu Kobayashi*¹

¹Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.

²Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.

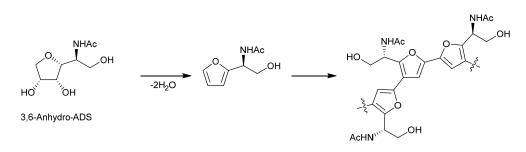
³Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan.

E-mail: kobayashi.hi@cat.hokudai.ac.jp (H.K.); fukuoka@cat.hokudai.ac.jp (A.F.)

Table of contents

Table S1 Optimisation of reaction conditions for the dehydration of ADS by H ₃ PO ₃ S2
Table S2 Dehydration of ADS by various catalysts under the optimised condition for $H_3PO_3 \cdots S2$
Fig. S1 A possible formation route of a furan derivative, and structure of a humin compound ····· S2
Fig. S2 GPC charts of ADS dehydration product using various acid catalysts
Table S3 GPC analysis of the product in the dehydration of ADS S3
Fig. S3 Time course of ADS dehydration by H_3PO_4
Fig. S4 LC chart and mass spectra of the product solution after the dehydration of ADS
Fig. S5 ³¹ P NMR spectra of HPLC fractions for LC-MS analysis
Fig. S6 Determination of the coefficients <i>a</i> and <i>b</i> using the least-squares method
Fig. S7 Proposed reaction mechanisms for (A) typical acid catalysts and (B) H ₃ PO ₃ ······ S7

Entry	S/C	Temp.	Conv.	Yield of product /%					
		/°C	/%	ADI	1,4-AHADS	3,6-AHADS	1,5-AHADS	ADIAc	Others
S1	2.0	150	100	24	1.8	1.3	7.0	3.5	63
S2	2.0	130	100	24	2.3	1.5	8.0	3.4	61
S3	2.0	110	100	18	5.4	5.5	23	3.0	46
S4	4.0	130	100	25	3.1	1.6	14	3.1	53
S5	8.0	130	100	10	16	4.8	30	2.0	38


Table S1 Optimisation of reaction conditions for the dehydration of ADS by H₃PO₃.^a

^{*a*}3 h, pressure <0.1 kPa, no solvent.

Table S2 Dehydration of ADS by various catalysts under the optimised condition for H₃PO₃.^{*a*}

Entry	Catalyst	Conv.	Yield of product /%					
		/%	ADI	1,4-AHADS	3,6-AHADS	1,5-AHADS	ADIAc	Others
S6	None	42	< 0.1	10	2.3	7.1	< 0.1	23
S7	CF ₃ SO ₃ H	100	28	<0.1	<0.1	2.0	2.9	67
S8	Oxalic	100	13	11	21	33	7.8	14
30	acid	100	15	11	21	55	7.0	14
S4	H ₃ PO ₃	100	25	3.1	1.6	14	3.1	53
S9	2,4-DNBA	100	12	17	6.8	19	2.7	43
S10	H_3PO_4	100	8.9	20	5.0	21	3.9	41

^{*a*}S/C = 4.0, 130 °C, 3 h, pressure <0.1 kPa, no solvent. 2,4-DNBA: 2,4-dinitrobenzoic acid.

Fig. S1 A possible formation route of a furan derivative, and structure of a humin compound. Speculated based on the literature (ChemSusChem, 2013, 6, 1745).

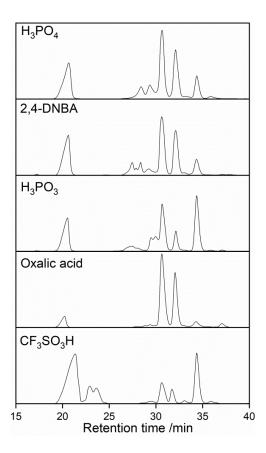
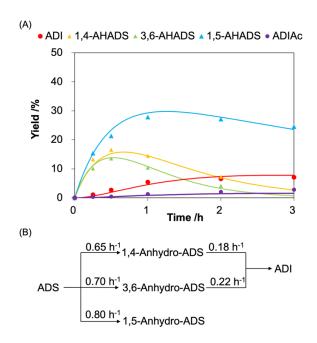
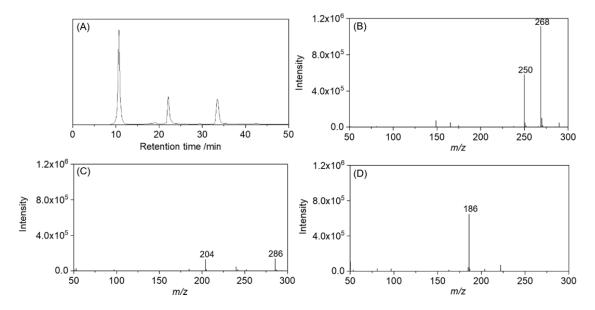


Fig. S2 GPC charts of ADS dehydration product using various acid catalysts. 2,4-DNBA: 2,4-dinitrobenzoic acid.

Catalyst	Ratio of peak area /%			
Cataryst	$M_w > 300$	$300 \ge M_w$		
None	0	100		
CF ₃ SO ₃ H	62	38		
$H_2C_2O_4$	10	90		
H ₃ PO ₃	37	63		
2,4-DNBA	60	40		
H ₃ PO ₄	53	47		

Table S3 GPC analysis of the product in the dehydration of ADS

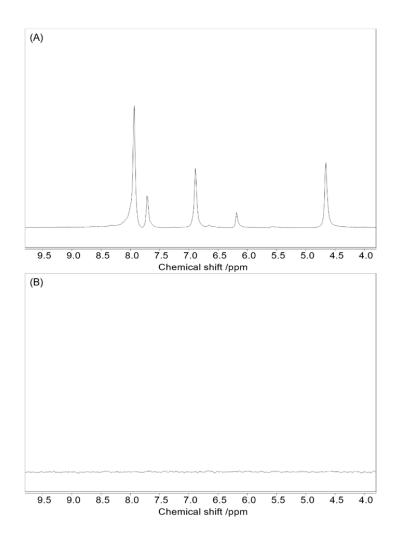

Fig. S3 Time course of ADS dehydration by H_3PO_4 . The plots indicate actual experimental results, and the lines show theoretical yield curves based on the kinetic analysis.

Fig. S4 (A) LC chart of the product solution after the dehydration of ADS by H_3PO_3 (S/C = 4.0) at 130 °C under < 0.1 kPa of pressure for 1 h. The mass spectra with a negative ion mode at (B) 10 min, (C) 22 min and (D) 34 min.

Assignment of peaks observed in the mass spectra in Fig. S4

In (B), the peaks of m/z = 250 and m/z = 268 are ascribed to phosphorous acid esters of anhydro-ADS ($[M-H_2O-H]^-$, m/z = 250; $[M-H]^-$, m/z = 268). In (C), the peaks of m/z = 204 and m/z = 286 are ascribed to anhydro-ADS ($[M-H]^-$, m/z = 204) and phosphorous acid esters of ADS ($[M-H]^-$, m/z = 286). In (D), m/z = 186 is ascribed to ADI ($[M-H]^-$, m/z = 186).

Fig. S5 ³¹P NMR spectra of HPLC fractions for LC-MS analysis shown in Fig. S4. (A) Retention time: 10 min. (B) Retention time: 22 min.

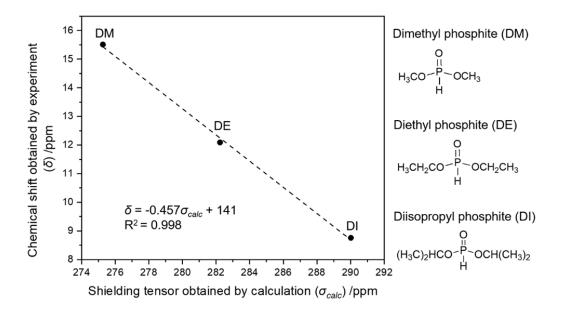


Fig. S6 Determination of the coefficients a and b using the least-squares method using standard compounds

(A) Simple acid-catalysed mechanism

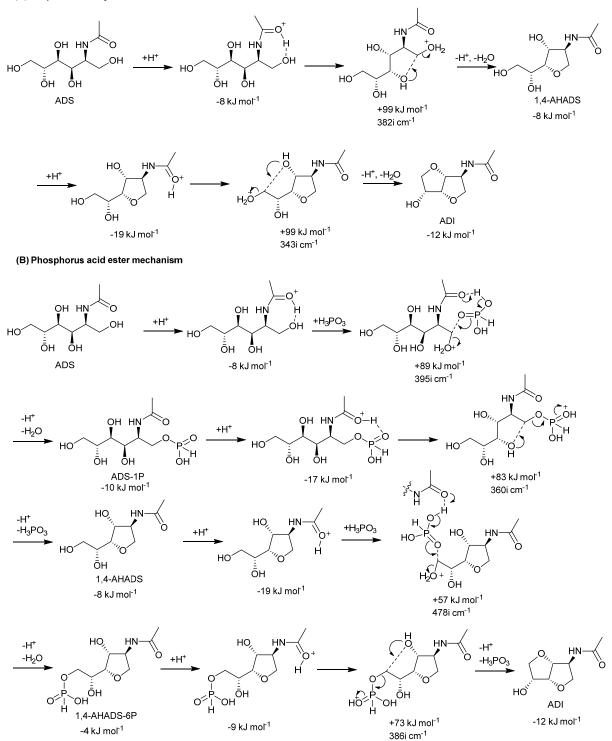


Fig. S7 Proposed reaction mechanisms for (A) typical acid catalysts and (B) H_3PO_3 . Proton formation assumes $2H_3PO_3 \rightarrow H^+ + [H_2PO_3 \cdots H_3PO_3]^-$.