Supplementary Material to:

A biobased, bioactive, low CO₂ impact coating for soil improvers.

Authors:

Renate Weiß¹, Sebastian Gritsch¹, Günter Brader², Branislav Nikolic², Marc Spiller³, Julia Santolin³, Hedda Weber⁴, Nikolaus Schwaiger⁴, Sylvain Pluchon⁵, Kristin Dietel⁶, Georg Gübitz^{1,7}, Gibson Nyanhongo^{1,7}

¹University of Natural Resources and Life Sciences, Vienna, Institute of Environmental Biotechnology, Konrad Lorenz Straße 20, 3430, Tulln an der Donau, Austria

²AIT, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria

³University of Antwerp, Department of Bioscience Engineering, Research Group of Sustainable Energy, Air and Water Technology, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

⁴SAPPI Papier Holding GmbH, Brucker Strasse 21, 8101 Gratkorn, Austria

⁵Centre Mondial de l'Innovation Roullier - Laboratoire de Nutrition Végétale, 18 avenue Franklin Roosevelt, 35400 Saint-Malo, France

⁶ABiTEP GmbH, Glienicker Weg 185, 12489 Berlin, Germany

⁷Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria

Specifications of magnesium lignosulfonates provided by SAPPI

Appearance: Brown liquid Solid Content: 8% Ash content: 4,4% of dry basis Reducing Sugars: Below 1000mg/kg liquid Rest are lignosulfonates pH:3-4 Full Water soluble Mg and Ca content was not analysed

Effects of polymerized lignosulfonates on plant germination and growth

Figure 10: Comparison of germination rate and growth development of tomato on fertile soil and fertile soil with 3.6 % v/v polymerized lignosulfonates added.

Figure 11: Comparison of germination rate and growth development of corn on fertile soil and fertile soil with 3.6 % v/v polymerized lignosulfonates added.

Figure 12: Comparison of germination rate and growth development of wheat on fertile soil and fertile soil with 3.6 % v/v polymerized lignosulfonates added.

Life cycle inventory

Table 1 shows the processes and their emissions used for modelling CO_2 -eq. emissions. Table 2 indicates the amounts of products used to produce 1 kg of LS. Min and max value show the expected efficiencies that can be realized at an industrial scale in an optimized (min) and a not fully optimized (max) scenario.

Table 1: Life cycle processes used

Ecolnvent 3.4 process or reference	Motivation for selection and reference	Value	Unit
		GWP100a	
Heat, in chemical industry {RER} steam	Proxy for marginal heat demand		
production in chemical industry Conseq,			kg CO ₂ -eq./ kWh
U		0.27	heat
Electricity, low voltage market for			kg CO ₂ -eq./ kWh
Conseq, U		1.12	el
Polyurethane, flexible foam market for	Proxy for current state-of-the-art		
Conseq, S	coating (Azeem et al. 2014)	5.12	kg CO ₂ -eq./kg
Polyethylene, linear low density, granulate	Proxy for current state-of-the-art		
market for Conseq, U	coating		
		1.92	kg CO ₂ -eq./kg
Xylitol	Plasticizer (Dasgupta et al. 2021)	17.29	kg CO ₂ -eq./kg
Glycerine market for Conseq, U	Plasticizer	2.26	kgCO₂ eq/kg
Maize starch production Conseq, U	Plasticizer	0.721	kgCO ₂ eq/kg

Table 2: Inventory of processes used for production of 1kg of LS coatings.

	min	max	Unit
Heat, in chemical industry {RER} steam production in chemical			
industry Conseq, U	1.27	9.11	kWh
Electricity, low voltage {AU} market for Conseq, U - purification	0.19	0.30	kWh
Electricity, low voltage {AU} market for Conseq, U – polymerization			
[value max value current aeration energy demand in paper with a fine			
bubble aeration efficiency of 15.64 m ³ air /kWh, min scenario assumes			
20% efficiency gain to full scale)	0.3	0.38	kWh
Xylitol, Glycerine	0.33	0.33	kg
Lignosulfonate	0.66	0.66	kg

References

Azeem, B., Kushaari, K., Man, Z.B., Basit, A. and Thanh, T.H. (2014) Review on Materials & Methods to Produce Controlled Release Coated Urea Fertilizer. *Journal of Controlled Release* 181, 11-21. 10.1016/j.jconrel.2014.02.020

Dasgupta, D., Sidana, A., Ghosh, P., Sharma, T., Singh, J., Prabhune, A., More, S., Bhaskar, T. and Ghosh, D. (2021) Energy and Life Cycle Impact Assessment for Xylitol Production from Corncob. *Journal of Cleaner Production* 278, 123217. 10.1016/j.jclepro.2020.123217