Supporting information

Practical DMSO-promoted selective hydrolysis–oxidation of lignocellulosic biomass to formic acid attributed to hydrogen bonds

Yan-Jun Guo,¹Shi-Jun Li,² Yuan-Li Sun,¹ Lei Wang,³ Wen-Min Zhang,¹ Ping Zhang,¹⁴ Yu Lan²** and Yang Li¹*

¹Center for Organic Chemistry of Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710054, China,
²College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
³Institute of Pulp and Paper Technology, Hubei University of Technology, Wuhan 430068, China
⁴College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
*Correspondence: liyang79@mail.xjtu.edu.cn

Table of Contents

General Information3
Table S1. Components of the wheat straw5
Fig. S1. The standard curve for the calculation of the contents of CH_4 (A) and CO_2 (B)6
Fig. S2. The pictures of the hydrolysis-oxidation procedure7
Table S2. Recycling Experiment
Fig. S3. The picture after the reaction with wheat straw7
Fig. S4. EDX (A) and XPS (B) of dark green flocculation (VO ₂)8
Fig. S5. The picture after the reaction with glucose8
Table S3. Investigation of possible intermediates 9
Fig. S6. ¹ H NMR analysis of the reaction mixture after the hydrolysis–oxidation of glyoxal
Fig. S7. ¹ H NMR analysis of mixture after oxidation step of glycolaldehyde11
Fig. S8. HPLC analysis of mixture after the hydrolysis-oxidation step of glucose and
fructose14
Table S4. The Gibbs free energy for the species15
Fig. S9. The possible hydrogen bond for the water and substrates15
Table S5. The coordination for the species15
Selected ¹ H NMR and Gas Chromatography (GC) spectra (Table 2)

General Information

Materials

The wheat straw and the lignin were obtained from Institute of Pulp and Paper Technology, Hubei University of Technology, China. The wheat straw was milled into powder (200 mesh) before use. The analysis results are shown in Tables S1. The lignin [milled wood lignin (MWL), C%=58.73%] was obtained from wheat straw by Bjorkman method.¹ Microcrystalline cellulose (96%, 25 µm) was purchased from Aladdin Reagent Inc. (Shanghai, China). Xylan and xylose were purchased from Adamas Reagent Co., Ltd. (Shanghai, China). Glucose and sodium metavanadate (NaVO₃, AR) were purchased from Energy Chemical. All reagents were of analytical grade and were used without further purification.

Hydrolysis-oxidation of various substrates

The NaVO₃–H₂SO₄ solution was prepared by NaVO₃ (4 mol%, 271 mg), 0.7 wt% H₂SO₄ aqueous solution (100 mL) and stirred at room temperature until all the NaVO₃ was dissolved. Various substrates (containing 6 mmol of C-atoms), NaVO₃–H₂SO₄ solution (10 mL) and DMSO or sulfolane (1 v%, 100 μ L) were added to a quartz inner charged with a stirring bar. Meanwhile the sleeves of the autoclave (Fig. S2, A) were preheated for 10–15 minute. The quartz lining was put into the autoclave (50 mL, 2.4 cm inner diameter). Then the autoclave was charged with oxygen (3 MPa). The mixture was stirred at a rate

of 1,000 rpm and heated to 160 °C (inner temperature, ±0.5 °C) at a heating rate of 10–15 °C min⁻¹ in

about 10–15 min. Then the reaction mixture was stirred at 160 °C (inner temperature, ± 0.5 °C) for the indicated time (3 hours for wheat straw, polysaccharides and lignin, 20 min for saccharides, 10 min for intermediates). The autoclave was cooled by water to room temperature and the pressure was released carefully after finish the reaction. Produced gas was collected in the gas collection bag, CH₄ was added as an internal standard for the detection of GC yield of CO₂. 1,4-Dioxane was added as an internal standard to the liquid phase for detection of ¹H NMR yield of HCO₂H.

Recycling experiments of formic acid production from biomass

Step 1: wheat straw (containing 0.94 g or 9.4 g of C-atoms in polysaccharides) and NaVO₃ (81.3 mg for 0.94 g, 813 mg for 9.4 g) were added to an erlenmeyer flask inner (150 mL) for 0.94 g, an quartz inner (1 L) for 9.4 g) charged with a stirring bar. Then added 0.7% H₂SO₄ aqueous solution (30.0 mL/0.94 g) and DMSO (1 v%). Stir vigorously until completely dissolved. The quartz inner was put in an autoclave (Fig. S2, B for 0.94 g, and Fig. S2, C for 9.4 g), and fill with oxygen (3 MPa). Then the reaction mixture was stirred at 160 °C (inner temperature, \pm 0.5 °C) for 3 hours. After the reaction, the autoclave was cooled to room temperature under running water. Next, the gas in the autoclave was released and the quartz inner was taken out, and 1, 4-dioxane (192.5 µL/0.94 g) as internal standard for the detection of ¹H NMR yield of HCO₂H.

Step 2: The liquid of reaction mixture after reaction in step 1 was treated by evaporation in vacuo to afford the remained [V]–cat. and H_2SO_4 .

Step 3: Deionized water (30 mL/22 mmol) and DMSO (1 v%) was added to the collected mixture of the [V] and H₂SO₄ and transferred to the inner. It is then stirred and heated (90 °C) for a period of time (10 min for 0.94 g; 30 min for 9.4 g reaction).

Step 4: Next, wheat straw (containing 0.94 g or 9.4 g) was added to the inner charged with a stirring bar and repeat step 1.

Influence of different components of wheat straw on recycling experiments

The NaVO₃– H_2SO_4 solution was prepared by NaVO₃ (4 mol%, 271 mg), 0.7 wt% H_2SO_4 aqueous solution (100 mL) and stirred at room temperature until all the NaVO₃ was dissolved.

Step 1: Various substrate (containing 6 mmol of C-atoms), NaVO₃–H₂SO₄ solution (10 mL) and DMSO (1 v%, 100 μ L) were added to a quartz inner charged with a stirring bar. Meanwhile the sleeves of the autoclave (Fig. S2, A) were preheated for 10–15 minute. The quartz inner was put in the autoclave, and fill with oxygen (3 MPa). Then the reaction mixture was stirred at 160 °C (inner temperature, ± 0.5 °C) for 3 hours (glucose for 20 min). After the reaction, the autoclave was cooled to room temperature under running water. Next, the gas in the autoclave was released and the quartz inner was taken out, and 1, 4-dioxane (18 mmol, 64 μ L) as internal standard for the detection of ¹H NMR yield of HCO₂H.

Step 2: The liquid of reaction mixture after reaction in step 1 was treated by evaporation in vacuo and left V-cat and H_2SO_4 .

Step 3: Deionized water (10 mL) and DMSO (1 ν %) was added to the collected mixture of the [V] and H₂SO₄ and transferred to the inner. It is then stirred for 10 min (heating at 90 °C for 10 min for E).

Step 4: Next, glucose (containing 6 mmol of C-atoms, 180 mg) was added to the inner charged with a stirring bar and repeat step 1.

Detection of oxidation of glycolaldehyde to glyoxal

Glycolaldehyde-dimer (containing 6 mmol of C-atoms, 182 mg), NaVO₃–H₂SO₄ solution (10 mL), DMSO (1 v%, 100 μ L) and 1,2-diaminobenzene (1 mmol, 108 mg) were added to a quartz inner charged with a stirring bar. Meanwhile the sleeves of the autoclave (Fig. S2, A) were preheated for 10–15 minute. The quartz inner was put in the autoclave, and fill with oxygen (3 MPa). Then the reaction mixture was stirred at 160 °C (inner temperature, ± 0.5 °C) for 10 min. After the reaction, the autoclave was cooled to room temperature by water. Next, the gas in the autoclave was released and the quartz inner was taken out, and detected quinoxaline by ¹H NMR.

Time-resolved glucose conversion detected by HPLC

Glucose (containing 6 mmol of C-atoms, 180 mg), NaVO₃–H₂SO₄ solution (10 mL) and DMSO (1 $\sqrt{8}$, 100 μ L) were added to a quartz inner charged with a stirring bar. Meanwhile the sleeves of the autoclave (Fig. S2, A) were preheated for 10–15 minute. The quartz inner was put in the autoclave, and fill with oxygen (3 MPa). Then the reaction mixture was stirred at 160 °C (inner temperature, ± 0.5 °C) for 0, 5, 10, 15, 20 min, respectively. After the reaction, the autoclave was cooled to room temperature by water. Next, the gas in the autoclave was released and the quartz inner was taken out, and filtered with the syringe–driven filter (0.22 μ m), and detected by HPLC.

IR detection in Fig. 6

Various substrates (glycolaldehyde-dimer, glucose, glyoxal containing 6 mmol of C-atoms) were dissolved in water (1 mL) and DMSO (0.1 mL) for infrared test. The mixed sample was prepared by mixing the required solution with the same volume, and then for infrared test. Especially, glyoxal (aq.)

and DMSO (aq.) needed to be mixed for more than 2 h before test. All the experiments were performed for two times with the constant data.

Analysis of products

The elemental analysis for C% were performed on Elementar Vario MICRO cube apparatus. The components (water extracts, cellulose, hemicellulose and lignin) of wheat straw were analyzed according to NREL/TP-510-42618 method.² Analytical gas chromatography (GC) spectra were carried out on a SHIMDZU GC-2014ATF/SPL (TDX-01 60/80 mesh, 2.0 mm × 3.2 mm × 2.1 mm-FID, TCD permanent gases, N₂ carrier gas). The liquid samples were analyzed by HPLC (Agilent 1260) and NMR (Bruker Avance-400) in the solvents indicated. The HPLC were determined by a Sugar-H (7.8 × 300 mm, 5 μ m) column and a RID detector (40 °C) using pH=2 H₂SO₄ solution as eluent. The ¹H NMR yields of HCO₂H after hydrolysis–oxidation were determined by using 1,4-dioxane as an internal standard. Chemical shifts are reported in units (ppm) by assigning TMS resonance in the ¹H NMR spectrum as 0.00 ppm., D₂O resonance in the ¹H NMR spectrum as 4.79 ppm, (CD₃)₂SO resonance in the ¹H NMR spectrum as coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Attenuated Total Refraction-Fourier transform infrared (ATR-FTIR) spectra were obtained at room temperature using a Bruker ALPHA II. The spectra were recorded in the range

of 4000–600 cm⁻¹. Element analysis for C% were performed on Elementar Vario MICRO cube apparatus.

The hydrolysis-oxidization reactions were conducted in a Wattcas autoclave.

Computational details

All the calculations in this study were performed using the Gaussian 16 program package.³ The All the geometries were optimized at the M06-2X⁴/6-31G(d, p) level, and the solvent effect was utilized the polarizable continuum model using integral equation formalism model (IEFPCM) in hexane solvent.⁵All the optimized stationary points had been identified as minima (zero imaginary frequencies) and transition states (one imaginary frequency), via the vibrational analysis. The solution-translational entropy correction has been calculated with THERMO program.⁶

	H₂O /%	Glucose /%	Xylose /%	Galactose /%	Arabinose /%	Mannose /%	Cellulose /%	Hemicellulose /%	Lignin /%	Others /%	Element /% (C)
Wheat straw	6.36	40.00	21.50	0.04	0.16	0.62	40.00	22.32	23.24	8.08	43.84

Table S1. Components of the wheat straw^a

^aWheat straw was prepared into 200 mesh. The components were analyzed according to NREL/TP-510-42618 method.² Cellulose contents were calculated based on the carbon content of glucose. Hemicellulose contents were calculated based on the carbon content of xylose, galactose, arabinose and mannose.

Calculation of the contribution of each component to the product (HCO_2H and CO_2)

Contribution = yield of product \times mol fraction of the component in wheat straw

 $C \text{ mol fraction of the component} = \frac{wt_{component} \% \times C_{component} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}} = \frac{wt_{component} \% \times C_{component} \%}{C_{wheat straw} \% \times \frac{m_{wheat straw}(g)}{12.01 \ g/mol}}$

$$C_{\text{cellulose}} \% = \frac{12.01 \ g/mol \times 6}{162.14 \ g/mol} = 44.44\%$$

 $C_{mol fraction of cellulose}\% = \frac{40.00\% \times 44.44\%}{43.84\%} = 40.55\%$

 C_{xylan} % = $\frac{12.01 \ g/mol \times 5}{132.12 \ g/mol}$ = 45.45% (xylan was chosen as a model substrate of hemicellulose)

 $C_{\text{mol fraction of xylan}} \% = \frac{22.32\% \times 45.45\%}{43.84\%} = 23.13\%$

 C_{lignin} % = 58.73% (detected by element analysis)

$$C_{\text{mol fraction of lignin}}\% = \frac{23.24\% \times 58.73\%}{43.84\%} = 31.13\%$$

Calculation the contents of CO₂. Produced gas was collected in the gas collection bag, CH₄ was added as an internal standard for the detection of GC yield of CO₂.

Yield_{co2}% $= \frac{n_{CH4} \times c_{CO2}}{c_{CH4} \times 6 \text{ mmol c}} = \frac{v_{CH4}}{v_m} \times \frac{c_{CO2}}{c_{CH4} \times 6 \text{ mmol c}}$ $= \sqrt[3]{V_{CH4}} = 20 \text{ mL}, V_m = 24.041 \text{ L} (20 \text{ °C})$ Standard deviation (S) $= \sqrt{\frac{\sum_{i=1}^{n} (S_i - \bar{S})^2}{n}}$ $= \sqrt[4.5\%]{4.0\%}$ = 7E - 11x + 0.0006 $R^2 = 0.9981$ = 0.9981 = 25.0%= 20.0%

A.

В.

Fig. S1. The standard curve for the calculation of the contents of CH₄ (A) and CO₂ (B). CH₄ (20 μ L, 40 μ L, 60 μ L, 80 μ L) were injected into GC, respectively. These amounts of CH₄ were corresponding to the ratio of CH₄ (1%, 2%, 3% and 4%, respectively, the standard injection volume was 2 mL). The standard–curve was made by Ratio (CH₄)/Area (CH₄). The standard–curve for CO₂ calculation was made by the same method. CO₂ (10 μ L, 20 μ L, 60 μ L, 100 μ L, 150 μ L, 200 μ L, 250 μ L, 300 μ L, 400 μ L) were injected into GC, respectively. These amounts of CO₂ were corresponding to the ratio of CH₄ (0.5%, 1%, 3%, 5%, 7.5%, 10%, 12.5%, 15% and 20%, respectively, the standard injection volume was 2 mL). The standard–curve was made by Ratio (CO₂)/Area (CO₂).

Fig. S2. The pictures of the hydrolysis–oxidation procedure. A. autoclave for 50 mL; B. autoclave for 500 mL; C. autoclave for 1 L.

Entro d	Conditions	HCO ₂ H yield % ^b (Times)						
Entry	substrates ^c	DMSO	Preheating	1	2	3	4	5
1	Wheat straw 1 gram–scale	_	—	55	34	35	29	29
2	Wheat straw 1 gram–scale	\checkmark	_	52	39	_	_	_
3	Wheat straw 1 gram–scale	\checkmark	10 min	52	54	_	_	_
4	Wheat straw 10 gram–scale	\checkmark	30 min	53	53	54	53	55
5	Wheat straw 1 gram–scale	\checkmark	10 min	53	0 ^{<i>d</i>}	_	_	_

Table S2. Recycling Experiment

^aReaction conditions: substrate (including 0.94 g or 9.4 g), 0.7 wt% H₂SO₄ aqueous solution (30 mL/0.94 g), DMSO (1 v%), NaVO₃ (81.3 mg for 0.94 g, 813 mg for 9.4 g), O₂ (3.0 MPa), 160 °C, 3 h. ^bYields of HCO₂H were determined by ¹H NMR with 1,4-dioxane as an internal standard. ^aThe components were analyzed according to NREL/TP-510-42618 method.² The wheat straw was prepared into 200 mesh, carbon content was determined by elemental analysis as 43.84%. ^aTo exclude the increased HCO₂H from oxidation of DMSO, no substrate was added in the second recycle.

Fig. S3. The picture after the reaction with wheat straw. Without DMSO (left), with DMSO (right).

(B)

Fig. S4. **EDX (A) and XPS (B) of dark green flocculation (VO₂).** (A) SEM–EDX mapping results of elemental distribution for V, C, O and S elements of the dark green flocculation (VO₂). (B) V 2p (a) and O 1s (b) of XPS spectra of the dark green flocculation (VO₂).

Fig. S5. The picture after the reaction with glucose. With sulfolane (left) and with DMSO (right).

Table S3. Investigation of possible intermediates

Substrate – 0).7 wt% H ₂ SO ₄ aq. so DMSO, 1 v %, 160 °C,	HCO ₂ H + lution , 10 mins	CO ₂ +		
Entry ^ª	Substrate	Conv.% ^b	HCO ₂ H% ^b	CO ₂ % ^c	Others% ^{b,d}
1	о н он	5	/	3	_
2 ⁹	он Н Н Н	16	_	<1	_
3	ноон	3	3	<1	_
4	он ноон	7	3	2	CH ₂ O: 2
5	ОН	15	5	2	CH2O: 4 AA: 5
6 ^f	о " Н ^{^С~} Н	$/^{d}$	5	<1	/
7	о Н₃с́он	_	_	—	_
8	но о о он	>99	6	91	CH₂O: 16
9	но он	89	7	47	CH₂O: 8 AA: 16 MGO: 10
10	0	97	28	12	CH₂O: 7 AA: 50
11	ноон	74	17	34	CH2O: 34
12	o, ↓ OH	>99	54	46	CH ₂ O: 9
13 [°]	ощи	>99	25	72	_

NaVO₃ (4 mol%), O₂ (3 MPa)

^aReaction conditions: substrate (including 6 mmol C-atoms), 0.7 wt% H₂SO₄ aqueous solution (10 mL), DMSO (100 μL, 1 v %), NaVO₃ (27.1 mg, 4 mol%), O₂ (3.0 MPa), 160 °C, 10 min. Reported as an average of two experiments with an error bar less than 4%. AA = acetic acid, MGO = methylglyoxal. ^bConversion (Conv.) yields of HCO₂H, AA, and CH₂O were determined by ¹H NMR spectroscopy with 1,4-dioxane as an internal standard. ^CYields of CO₂ were determined using GC with CH4 as an internal standard. ^dPart of CH2O was produced by oxidation of DMSO, which was proved by the experiments with ¹³C-DMSO (See Fig. S6). ^eHigher conversion of CH₃OH than the total yield of substrate products should be attributed to volatilization. ¹37 wt% CH₂O aqueous solution was used. ⁹Without DMSO.

Fig. S6. ¹**H NMR analysis of the reaction mixture after the hydrolysis–oxidation of glyoxal.** To prove the part of CH₂O (CH₂O is existed as CH₂(OH)₂ in aqueous solution) was produced by the oxidation of DMSO, ¹³C-DMSO was used. Base on the integration of the indicated peaks, CH₂O from substrate and from DMSO was determined as 2:1 in this reaction. The CH₂O is different with different substrates.

Fig. S7. ¹**H NMR analysis of mixture after oxidation step of glycolaldehyde.** A) ¹**H NMR** analysis of mixture after oxidation of glycolaldehyde with or without DMSO. B) ¹**H NMR** analysis of quinoxaline after oxidation of glycolaldehyde with DMSO and 1,2-diaminobenzene. C) ¹**H NMR** analysis of commercial glycolaldehyde-dimer solutions in the reaction concentration (major formed 1,1,2-ethanetriol and glycolaldehyde).

11

Fig. S8. HPLC analysis of mixture after the hydrolysis–oxidation step glucose and fructose. a)–e) glucose–without DMSO–0 min, 5 min, 10 min, 15 min to 20 min, respectively; f)–j) glucose–with DMSO–0 min, 5 min, 10 min, 15 min to 20 min, respectively; k) fructose–without DMSO–0 min.

Species	G(a.u.)	Species	G(a.u.)
H ₂ O	-76.36863	DMSO	-553.02534
1	-228.90604	2	-305.28523
3	-858.31467	4	-858.31526
5	-858.31746	6	-227.71364
7	-380.48523	8	-933.51973
9	-763.11006	10	-1316.1435
11	-1316.1472	12	-381.66581
13	-456.86126	14	-839.48983

Table S4. The Gibbs free energy for the species.

Fig. S9. The possible hydrogen bond for the water and substrates.

The ΔG shows the combination for the water and substrate **1**, **6** and **9** would be weaker than that of DMSO, which would affect the further transformation.

H ₂ C)			DM	SO		
0	-0.49458	0.43260	-0.02420	S	-0.06464	-0.00382	-0.03825
Н	0.47107	0.48302	-0.02420	0	1.45252	-0.05029	-0.01534
Н	-0.76940	1.35970	-0.02420	С	-0.52965	1.74170	0.02803
1				Н	-1.61104	1.83487	-0.09492
С	-0.13919	1.32815	-0.00264	Н	-0.23486	2.12101	1.00770
0	1.06927	1.33171	-0.08403	Н	0.00007	2.28386	-0.75921
Н	-0.71236	0.39007	0.07979	С	-0.56466	-0.28967	-1.75171
С	-0.92031	2.61735	-0.01059	Н	-0.29352	-1.31608	-2.00369

Table S5	The	coordination	for th	e species
10010 33.	THE	coordination	ior th	c species.

Н	-1.63381	2.57562	-0.84654	Н	-1.64541	-0.15928	-1.84199	
Н	-1.51575	2.65784	0.91325	Н	-0.03235	0.40935	-2.40157	
0	-0.06825	3.72347	-0.11940	3				
Н	0.83451	3.35999	-0.16316	С	-0.33761	-0.68052	0.18830	
2				0	-0.77846	0.55535	0.70280	
С	-0.18443	1.31726	-0.08878	С	0.80639	-0.38734	-0.76752	
0	1.04335	1.52816	0.57333	Н	1.14008	-1.33628	-1.19899	
С	-0.93109	2.63548	0.00696	Н	0.40438	0.23510	-1.58028	
Н	-1.86405	2.57743	-0.55787	0	1.89217	0.22413	-0.12153	
Н	-1.17289	2.80487	1.06700	Н	1.69879	1.18970	-0.10133	
0	-0.15643	3.68238	-0.53287	Н	0.00913	-1.31950	1.01241	
Н	0.72344	3.57954	-0.13440	Н	-1.31896	0.39606	1.49120	
Н	0.00329	1.05608	-1.13877	0	-1.33067	-1.32875	-0.56074	
Н	1.70529	0.91129	0.22934	Н	-1.97558	-1.72179	0.04543	
0	-0.97551	0.34934	0.53771	S	0.45276	3.23577	1.12665	
Н	-0.61137	-0.52601	0.33956	0	1.21297	2.85322	-0.14879	
4				С	1.23397	2.29504	2.45301	
С	-1.84973	0.76916	0.55549	Н	0.78189	2.56992	3.40840	
0	-2.67839	-0.04815	1.34775	Н	1.05160	1.24418	2.22645	
С	-1.93315	0.21005	-0.85088	Н	2.30625	2.50538	2.45259	
Н	-1.36650	0.83945	-1.54138	С	1.10630	4.85577	1.58142	
Н	-1.48223	-0.79321	-0.83921	Н	0.76428	5.57078	0.83168	
0	-3.27548	0.18038	-1.28785	Н	0.72029	5.13629	2.56406	
Н	-3.77366	-0.20677	-0.54932	Н	2.19770	4.80980	1.58883	
Н	-2.23873	1.80052	0.57157	5				
Н	-2.70879	0.37470	2.22702	С	-2.03324	-0.36040	-0.19760	
0	-0.51462	0.73910	0.96976	0	-1.39308	-0.88512	0.93961	
Н	-0.54504	0.99531	1.91564	С	-2.28100	1.13946	-0.09641	
S	-1.57706	2.85002	3.94321	Н	-2.98993	1.42901	-0.87793	
0	-1.55587	1.40709	3.41468	Н	-2.74425	1.33549	0.88227	
С	0.09167	3.14487	4.55410	0	-1.10902	1.89732	-0.29859	
Н	0.18003	4.18822	4.86335	Н	-0.41288	1.57635	0.31084	
Н	0.24191	2.48855	5.41220	Н	-1.42191	-0.55532	-1.09930	
Н	0.80963	2.90787	3.76550	Н	-0.51125	-0.46223	1.02968	
С	-1.49499	3.90257	2.48217	0	-3.28302	-0.97566	-0.29785	
Н	-2.46291	3.84840	1.98187	Н	-3.13128	-1.93209	-0.24899	
Н	-1.29450	4.93126	2.78882	S	1.78525	0.15191	-0.35725	
Н	-0.70534	3.52771	1.82477	0	0.96284	0.52408	0.89635	
6				С	3.50062	0.26054	0.17704	
С	-0.36072	-0.43155	-0.00460	Н	4.14456	-0.13485	-0.61098	
0	0.84408	-0.40824	-0.00460	Н	3.72271	1.31481	0.34638	
Н	-0.95673	-1.36126	-0.00460	Н	3.61478	-0.30744	1.10257	
С	-1.16511	0.86184	-0.00460	С	1.66041	-1.64292	-0.46549	
0	-2.36991	0.83854	-0.00460	Н	0.60824	-1.88228	-0.63339	

Н	-0.56911	1.79155	-0.00460	Н	2.26480	-1.99611	-1.30327	
7				Н	1.99752	-2.08004	0.47698	
С	-0.32308	-0.41644	-0.06481	8				
0	1.03197	-0.11547	-0.18743	С	1.66147	-0.00535	0.28144	
С	-1.09991	0.89577	0.02580	0	1.65582	-1.04021	-0.66387	
0	-2.47032	0.61358	0.07973	С	3.12126	0.20266	0.68798	
Н	-0.93128	1.50711	-0.86246	Н	3.22476	1.13444	1.25774	
Н	-0.68108	-1.00897	-0.91526	0	3.55044	-0.89655	1.45346	
Н	-2.57523	-0.09364	0.73956	Н	2.74889	-1.25839	1.87067	
Н	1.50452	-0.91185	-0.47188	Н	1.26186	0.91878	-0.16234	
0	-0.65614	1.63811	1.12687	Н	0.72905	-1.13047	-0.96025	
Н	-0.54058	1.01032	1.86057	0	0.95346	-0.34791	1.44265	
0	-0.63016	-1.07064	1.15026	Н	0.07208	-0.64500	1.12426	
Н	-0.39991	-2.00926	1.09058	S	-2.22316	-0.03777	-0.59318	
9				0	-1.05444	-0.98390	-0.26729	
С	-4.13469	-1.50230	-0.01696	С	-3.40677	-0.29075	0.74072	
С	-2.60796	-1.57946	-0.09177	Н	-4.23134	0.41541	0.62380	
С	-2.14499	-2.61503	-1.10501	Н	-3.77631	-1.31317	0.65274	
С	-6.10588	-0.47622	1.16906	Н	-2.90247	-0.14993	1.69960	
С	-4.61984	-0.83267	1.27072	С	-1.65705	1.60684	-0.11795	
Н	-2.22224	-0.59891	-0.40989	Н	-0.94463	1.94268	-0.87274	
Н	-4.46489	-0.87463	-0.85291	Н	-2.51070	2.28665	-0.08643	
Н	-6.66533	-1.38534	0.92403	Н	-1.17359	1.53860	0.86067	
Н	-4.05221	0.10853	1.39067	0	3.91833	0.33558	-0.44395	
Н	-2.40607	-3.61600	-0.73860	Н	3.64454	-0.38574	-1.03791	
0	-4.46044	-1.66593	2.39975	10				
Н	-3.53693	-1.97023	2.38075	С	0.72801	-0.49534	0.20937	
0	-4.73527	-2.78567	-0.09906	С	2.08450	0.18380	0.42516	
Н	-4.67873	-3.04763	-1.03154	С	3.05749	-0.73500	1.14272	
0	-2.79989	-2.34150	-2.31530	С	-1.66161	-0.19866	-0.53352	
0	-0.74885	-2.48216	-1.18657	С	-0.39643	0.51113	-0.04238	
Н	-0.35878	-3.32975	-1.44607	Н	2.51203	0.43216	-0.55790	
0	-2.06722	-1.92899	1.17341	Н	0.82216	-1.10720	-0.69579	
Н	-1.11718	-2.08292	1.04131	Н	-1.94703	-0.94880	0.21147	
С	-6.62898	0.09145	2.47755	Н	-0.05513	1.19577	-0.84101	
Н	-6.45931	-0.63673	3.27824	Н	2.72155	-0.85840	2.18318	
Н	-6.05881	1.00349	2.72353	0	-0.74426	1.23034	1.12313	
0	-8.00497	0.38048	2.31028	Н	0.09096	1.57550	1.48399	
Н	-8.34255	0.69979	3.15869	0	0.35515	-1.30753	1.31120	
Н	-2.59043	-3.04506	-2.94867	Н	0.94734	-2.07686	1.27954	
0	-6.32656	0.41560	0.08952	0	3.06798	-1.97839	0.49078	
Н	-5.94568	1.27415	0.33371	0	4.30752	-0.09419	1.12956	
11				Н	4.89441	-0.67719	1.65566	
С	0.70604	-0.00811	0.46216	0	1.93749	1.36547	1.20171	

С	2.15687	0.29352	0.06852	Н	2.83139	1.66950	1.42954	
С	3.14658	-0.43430	0.99847	С	-2.80825	0.78050	-0.71651	
С	-1.72692	0.17193	-0.17705	Н	-2.98238	1.30985	0.22660	
С	-0.29974	0.62019	-0.50739	Н	-2.52072	1.52760	-1.47606	
Н	2.32431	-0.09415	-0.94781	0	-3.94797	0.04820	-1.12852	
Н	0.57205	-1.09921	0.39031	Н	-4.68827	0.66804	-1.18909	
Н	-1.94196	0.44954	0.86006	Н	3.73678	-2.51348	0.96537	
Н	-0.05354	0.24936	-1.52067	0	-1.39966	-0.91929	-1.72588	
Н	2.80315	-1.46441	1.13528	Н	-1.26488	-0.27340	-2.43746	
0	-0.28289	2.03253	-0.47176	S	6.60502	-2.78161	0.95117	
Н	0.64247	2.29573	-0.31611	0	5.42280	-2.47217	1.89108	
0	0.40374	0.45527	1.76324	С	6.02669	-2.40064	-0.71552	
Н	1.22145	0.38947	2.28907	Н	6.88023	-2.42787	-1.39600	
0	4.43508	-0.52022	0.46343	Н	5.30116	-3.16517	-0.99768	
0	3.13897	0.15604	2.28396	Н	5.54883	-1.41835	-0.70308	
Н	3.47001	1.06952	2.17713	С	7.72905	-1.38563	1.14034	
0	2.32989	1.70034	0.11538	Н	8.07986	-1.39147	2.17314	
Н	3.28113	1.93879	0.15242	Н	8.57251	-1.51105	0.45858	
С	-2.73924	0.84571	-1.08753	Н	7.19082	-0.45907	0.92464	
Н	-2.61069	1.93177	-1.02230	12				
Н	-2.53843	0.54276	-2.12948	С	1.62670	-0.07205	0.23698	
0	-4.03526	0.44451	-0.68028	0	1.68475	-0.97657	-0.84116	
Н	-4.67546	0.93327	-1.21601	С	3.06729	0.22595	0.60559	
Н	4.83943	0.36913	0.50268	Н	3.10616	0.99761	1.37819	
0	-1.83717	-1.24076	-0.23065	Н	3.50661	-0.69825	1.01014	
Н	-1.75491	-1.50803	-1.15993	0	3.77637	0.69687	-0.52045	
S	5.69012	3.38983	1.04201	Н	3.53957	0.08945	-1.24061	
0	4.80207	2.12565	1.03895	Н	1.11907	0.84901	-0.08999	
С	6.32120	3.51441	-0.63804	Н	0.76988	-1.06422	-1.16608	
Н	6.86167	4.45740	-0.74301	0	0.99093	-0.60964	1.35930	
Н	7.00153	2.67593	-0.79214	Н	0.06187	-0.73735	1.09351	
Н	5.48429	3.46181	-1.33783	0	-1.08235	-0.86420	-0.52060	
С	4.52727	4.76127	0.99317	Н	-1.66092	-1.63682	-0.60201	
Н	3.96758	4.74242	1.92917	Н	-1.62782	-0.11286	-0.79636	
Н	5.08701	5.69540	0.91257	13				
Н	3.85368	4.63515	0.14239	С	0.64328	0.31308	-0.09161	
14				0	0.78241	1.65871	0.26890	
С	-1.38371	-0.11543	0.05464	С	-0.83629	0.04591	-0.32793	
С	-0.24808	0.71949	-0.54636	Н	-1.37957	0.24034	0.60793	
С	1.06088	0.49659	0.19216	0	-1.25922	0.91987	-1.33916	
С	-3.86452	-0.56605	0.06180	Н	-2.22687	0.90252	-1.37343	
С	-2.76528	0.43510	-0.30486	Н	1.18770	0.10873	-1.02892	
Н	-0.10361	0.41235	-1.59315	Н	1.74183	1.80005	0.36689	
Н	-1.30875	-1.11696	-0.38536	0	1.07434	-0.55291	0.92053	

Н	-3.79297	-0.77773	1.13376	Н	2.03087	-0.38771	1.00904	
Н	-2.78752	0.58358	-1.40037	0	3.45876	0.89905	0.64669	
Н	0.97525	0.92570	1.20161	0	-0.96223	-1.29886	-0.70327	
0	-3.05467	1.64062	0.37364	Н	-1.88370	-1.56913	-0.58101	
Н	-2.28765	2.22161	0.22711	Н	4.08843	0.76548	-0.07704	
0	-1.29693	-0.19587	1.46853	Н	3.99734	1.18253	1.40019	
Н	-0.53673	-0.77219	1.65102					
0	1.29506	-0.88364	0.27336					
0	2.04499	1.18806	-0.52987					
Н	2.84228	1.18439	0.03119					
0	-0.55702	2.10583	-0.48844					
Н	0.25972	2.58392	-0.70865					
С	-5.24320	-0.00448	-0.24055					
Н	-5.36132	0.95191	0.28068					
Н	-5.31912	0.18859	-1.32420					
0	-6.20669	-0.95466	0.17701					
Н	-7.08147	-0.56568	0.03881					
Н	2.12498	-0.97589	0.77982					
0	-3.65233	-1.80589	-0.59188					
Н	-3.82040	-1.67376	-1.53853					
0	3.67210	0.02603	1.40994					
Н	3.74671	0.27591	2.34286					
Н	4.54062	-0.33345	1.17549					

Selected ¹H NMR and Gas Chromatography (GC) spectra for the experiments in Table 2. The data are shown from one experiment, there are small differences with the average data.

Fig. S10. ¹H NMR (a) and GC (b) spectra of 1,3-dioxyacetone with DMSO sample (Table 2, entry 1).

Fig. S11. ¹H NMR (a) and GC (b) spectra of glyceraldehyde with DMSO sample (Table 2, entry 2).

Fig. S12. ¹H NMR (a) and GC (b) spectra of glycolaldehyde with DMSO sample (Table 2, entry 3).

4).

Fig. S15. ¹H NMR (a) and GC (b) spectra of glyoxal without DMSO sample (Table 2, entry 6).

Fig. S16. ¹H NMR (a) and GC (b) spectra of glucose with DMSO sample (Table 2, entry 7).

Fig. S17. ¹H NMR (a) and GC (b) spectra of glucose without DMSO sample (Table 2, entry 8).

a)

Reference:

- 1 A. Bjorkman, Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. 1956, 59, 477-485.
- 2 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker, Technical Report NREL/TP-510-42618.
- 3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian16, Gaussian, Inc., Wallingford, CT*, 2016.
- 4 Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- 5 (a) F. Furche, R. Ahlrichs, J. Chem. Phys., 2002, 117, 7433-7447; (b) G. Scalmani, M. J. Frisch, J. Chem. Phys. 2006, 124, 094107.
- 6 D.-C. Fang, THERMO; Beijing Normal University, Beijing, People's Republic of China, 2013.