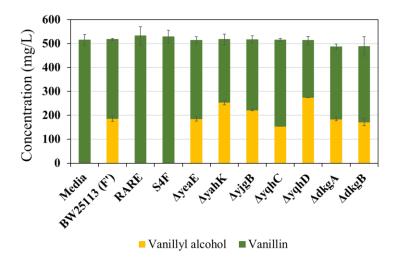
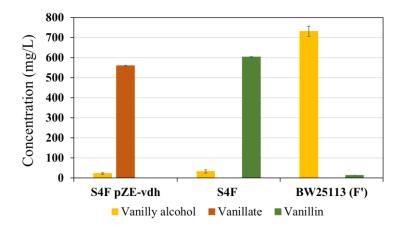
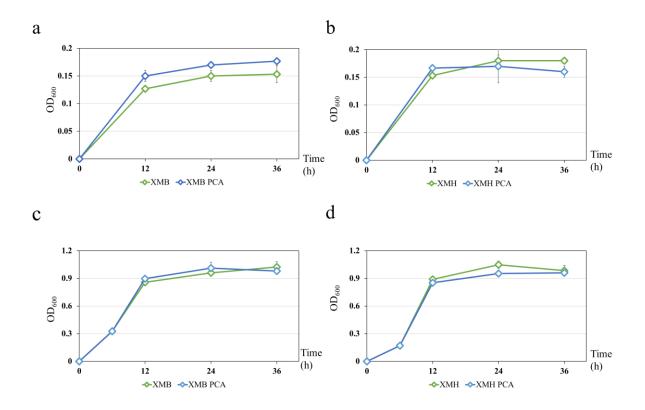
Supplementary file


Towards Synthetic Ligninolysis via Microbial Utilization of Lignin Degraded Aromatics

Ruihua Zhang et. al.


Supplementary Table 1. Plasmids and strains used in this study.

Plasmid	Description	Source
pETDuet-1	pT7lac; <i>colE</i> ori; Amp ^R	Promega
pZE12-luc	PLlacO1, <i>colE</i> ori, Amp ^R	1
pCS27	PLlacO1, <i>P15A</i> ori, Kan ^R	2
pCP20	Flippase, AmpR, and temperature-sensitive replicon	3
pET-xylE	pETDuet-1 harboring xylE from P. putida mt-2	This study
pET-xylG	pETDuet-1 harboring xylG from P. putida mt-2	This study
pET-xylF	pETDuet-1 harboring xylF from P. putida mt-2	This study
pZE-aroY	pZE12-luc harboring <i>aroY</i> from <i>K. pneumoniae</i> (ATCC 25955)	This study
pZE-aroY-hp1	pZE12-luc harboring aroY-hp1 from K. pneumoniae (ATCC 25955)	This study
pZE-aroY-hp1-hp2	pZE12-luc harboring <i>aroY-hp1-hp2</i> from <i>K. pneumoniae</i> (ATCC 25955)	This study
pZE-aroY-kpdB	pZE12-luc harboring aroY-kpdB from K. pneumoniae (ATCC 25955)	This study
pZE-kpdBCD	pZE12-luc harboring kpdBCD from K. pneumoniae (ATCC 25955)	This study
pCS-xylE-aroY-hp1	pCS27 harboring <i>xylE</i> and <i>aroY-hp1</i>	This study
pZE-xylF-mhpD	pZE12-luc harboring xylF from P. putida mt-2 and mhpD from E. coli	This study
pZE-xylF-xylJ	pZE12-luc harboring xylF and xylJ from P. putida mt-2	This study
pZE-xylGHI-mhpD	pZE12-luc harboring xylGHI from P. putida mt-2 and mhpD from E. coli	This study
pZE-xylGHI-xylJ	pZE12-luc harboring xylGHI and xylJ from P. putida mt-2	This study
pCS-kivD-adh6	pCS27 harboring kivD-adh6 operon	This study
pZE-FJKA	pZE12-luc harboring dual operons of xylF-xylJ and kivD-adh6	This study
pZE-FDKA	pZE12-luc harboring dual operons of xylF-mhpD and kivD-adh6	This study
pZE-GJKA	pZE12-luc harboring dual operons of xylGHI-xylJ and kivD-adh6	This study
pZE-GDKA	pZE12-luc harboring dual operons of xylGHI-mhpD and kivD-adh6	This study
pZE-vanAB	pZE12-luc harboring vanAB operon	This study
pZE-vdh	pZE12-luc harboring <i>vdh</i>	This study
pCS-VIV	pCS27 harboring vanAB-iem-vdh operon	This study
pZE-xylF-cimA*	pZE12-luc xylF-cimA* operon	This study
pZE-XCH	pZE12-luc harboring dual operons of xylF-cimA* and aroY-hp1	This study


pZE-XCB	pZE12-luc harboring dual operons of xylF-cimA* and aroY-kpdB	This study
pZE-XCBCD	pZE12-luc harboring dual operons of xylF-cimA* and kpdBCD	This study
pCS-xylE	pCS27 harboring <i>xylE</i>	This study
pCS-xylE-mhpDFE	pCS27 harboring xylE and mhpDFE operons from E. coli	This study
pZE-xylE-mhpDFE	pZE12-luc harboring xylE-mhpDFE operon	This study
pCS-VIV-XEM	pCS27 harboring dual operons of vanAB-iem-vdh and xylE-mhpDFE	This study
pZE-vdh-xylF-cimA*	pZE12-luc harboring vdh-xylF-cimA* operon	This study
pZE-VXCH	pZE12-luc harboring dual operons of vdh-xylF-cimA* and aroY-hp1	This study
pZE-VXCB	pZE12-luc harboring dual operons of <i>vdh-xylF-cimA</i> * and <i>aroY-kpdB</i>	This study
Strains	Description	Source
E. coli XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lacIqZ ΔM15 Tn10 (TetR)]	Stratagene
<i>E. coli</i> BW25113 (F')	rrnBT14 Δlac ZWJ16 hsdR514 ΔaraBADAH33 ΔrhaBADLD78 F' [traD36 proAB lacIqZ ΔM15 Tn10 (TetR)] F'	This study
<i>E. coli</i> BL21 Star (DE3)	F-ompT hsdSB (rB ⁻ mB ⁻) gal dcm (DE3)	Invitrogen
BW25113 F' Δ <i>mhpE</i>	BW25113 (F) with $\Delta mhpE$ and Kanamycin resistance marker removed	This study
RARE	E. coli MG1655 (DE3) $\Delta dkgB \Delta yeaE \Delta (yqhC-dkgA) \Delta yahK \Delta yjgB$	4
S 4	E. coli MG1655 (DE3) $\Delta(yqhC-dkgA)$::Kan $\Delta yahK \Delta yjgB$	4
S4F	S4 strain with F' plasmid and Kanamycin resistance marker removed	This study
FJKA	E. coli BW25113 (F') transformed with pZE-FJKA and pCS-xylE-aroY-hp1	This study
FDKA	<i>E. coli</i> BW25113 (F') transformed with pZE-FDKA and pCS-xylE-aroY-hp1	This study
GJKA	<i>E. coli</i> BW25113 (F') transformed with pZE-GJKA and pCS-xylE-aroY-hp1	This study
GDKA	<i>E. coli</i> BW25113 (F') transformed with pZE-GDKA and pCS-xylE-aroY-hp1	This study
XH	E. coli S4F transformed with pZE-XCH and pCS-xylE	This study
XB	E. coli S4F transformed with pZE-XCB and pCS-xylE	This study
XBCD	E. coli S4F transformed with pZE-XCBCD and pCS-xylE	This study
XMH	E. coli S4F transformed with pZE-XCH and pCS-xylE-mhpDFE	This study
XMB	E. coli S4F transformed with pZE-XCB and pCS-xylE-mhpDFE	This study
XMBCD	E. coli S4F transformed with pZE-XCBCD and pCS-xylE-mhpDFE	This study
VXMB	E. coli S4F transformed with pZE-VXCH and pCS-xylE-mhpDFE	This study
VXMH	E. coli S4F transformed with pZE-VXCB and pCS-xylE-mhpDFE	This study

Supplementary Figure 1. Screening of reductase deficient strains for vanillyl alcohol removal. Media: uninoculated media supplemented with vanillin. The error bars represent the standard deviations of two biological replications.

Supplementary Figure 2. Improvement of aromatic degradation efficiency by S4F and high-copy number *vdh*. All test groups were supplemented with 600 mg/L vanillin. The error bars represent the standard deviations of two biological replications.

Supplementary Figure 3. Investigation of growth promotion effect of lignin aromatics as the sole carbon source for the synthetic ligninolysis. (a) and (b) Growth profiles of strains grew in M9-0.5Y media. (c) and (d) Growth profiles of strains grew in M9-5Y media. PCA: strains were fed with 0.5 g/L PCA. The error bars represent the standard deviations of three biological replications.

References

- Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. *Nucleic acids research* 25, 1203-1210 (1997).
- Lin, Y., Shen, X., Yuan, Q. & Yan, Y. Microbial biosynthesis of the anticoagulant precursor 4hydroxycoumarin. *Nature communications* 4, 1-8 (2013).
- Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proceedings of the National Academy of Sciences* 97, 6640-6645 (2000).
- 4. Kunjapur, A.M., Tarasova, Y. & Prather, K.L. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. *Journal of the American Chemical Society* 136, 11644-11654 (2014).