Supporting Information

Bio-based Synthesis of Cyclopentane-1,3-diamine and its Application in Bifunctional Monomers for Poly-condensation

Christian. A. M. R. van Slagmaat*, Jurrie Noordijk, Luciano G. Monsegue, Siri Mogensen, Gerard K. M. Verzijl, Peter J. L. M Quaedflieg, Paul L. Alsters, and Stefaan M. A. De Wildeman*

Contents:

S1.	Mater	ials and Methods								S2	
	S1.1	Chemicals .								<i>S2</i>	
	<i>S1.2</i>	Decomposition stud	y of Cl	PDX						<i>S3</i>	
	<i>S1.3</i>	<i>S1.3</i> Overview of attempted hydrogenation reactions to yield CPDA .									
S2.	Analy	rtical raw data .								S6	
	S2.1	NMR spectroscopy								<i>S6</i>	
	S2.2	FT-IR spectroscopy.								S30	
	S2.3	GC-FID chromatog	rams.							<i>S</i> 39	
	S2.4	High Resolution Ma	ss Spe	ctromet	ry (HR-1	MS).				S40	
	S2.5	Gel Permeation Chr	romato	ography	(GPC).					<i>S51</i>	
	S2.6	Thermogravic Analy	vsis (T	GA)						<i>S52</i>	
	S2.7	Differential Scannin	g Cale	orimetry	, (DSC)					<i>S53</i>	

S1. Materials and Methods

S1.1 Chemicals:

<u>NOTE:</u> <u>All chemicals were used as received from the supplier without purification, unless stated</u> otherwise (see section S1.2).

Ruthenium on carbon (5wt%, Strem Chemicals), Rhodium on carbon (5wt%, Sigma Aldrich), Palladium on carbon (10wt%, Sigma Aldrich), Platinum on carbon (5wt%, Sigma Aldrich), Ruthenium on alumina (5wt%, Sigma Aldrich), Heterogeneous Palladium Catalysts Kit I (Sigma Aldrich), Iridium on carbon (1wt% Sigma Aldrich), Shvo catalyst (98%, Strem Chemicals), Ru-BINAP-(OAc)₂ (98% Sigma Aldrich), Ru-BINAP-(Cl)-cymene (98% Sigma Aldrich), (Ir-COD-Cl)₂ (97% Sigma Aldrich), triphenylphosphine (99% Sigma Aldrich), 1,3-bis(diphenylphosphaneyl)propane (97%, Sigma Aldrich), Josiphos SL-J002-1 (>97%, Sigma Aldrich), Zinc powder (60 – 200 µm mesh, 99+%, Sigma Aldrich), Furfuryl alcohol (97%, Acros), Cyclopentane-1,3-dione (95%, Matrix Chemicals Inc.), benzylamine (99%, Sigma Aldrich), Ammonia in dry methanol (7M, Sigma Aldrich), Hydroxylamine hydrochloride (98%), Hydrazine (50 – 60% in water, Sigma Aldrich), Acetic acid (>99.0%, VWR), cis-cyclopentane-1,3-diamine (98.5%, Matrix Chemicals Inc.), trans-cyclopentane-1,3-diamine (98.5%, Matrix Chemicals Inc.), y-butyrolactone (99.5%, Fischer Scientific), y-valerolactone (99%, Sigma Aldrich), y-decalactone (98%, Sigma Aldrich), 5-Hydroxymethylfurfural (>98.5%, Matrix Chemicals Inc.), Diethyl adipate (>99%, Sigma Aldrich), Dimethyl isophthalate (99%, Sigma Aldrich), toluene-2,4-diisocyanate (95%, Sigma Aldrich), hexamethylene-1,6-diisocyanate (>99%, Sigma Aldrich), Methanol (HPLC grade, Biosolve) Ethanol (96%, VWR), isopropanol (HPLC grade, Biosolve), s-butanol (99%, Acros), t-butanol (≥99.0%, Sigma Aldrich), Ethyl acetate (HPLC grade, Biosolve), Cyclopentyl methyl ether (99%, Sigma Aldrich), Methyl tert-butyl ether (99%, Sigma Aldrich) 1,4-Dioxane (99.8%, Acros), Tetrahydrofuran (HPLC grade, Biosolve), 2-Methyltetrahydrofuran (>99%, dry, Sigma Aldrich), Toluene (HPLC grade, Biosolve), Heptane (99.5%, Sigma Aldrich), (Chloroform (HPLC grade, Biosolve), DMSO (>99%, dry, Sigma Aldrich). Naphthalene (≥99%, Alfa Aesar), Acetonitrile (LCMS grade, Biosolve), Celite® R566 (Acros), Silica (60 – 200 μm mesh, Acros), Hexane (HPLC grade, Biosolve), deuterium oxide (99.96%, Cambridge Isotope Laboratories), deuterated chloroform (99.96% Cambridge Isotope Laboratories), deuterated dimethyl sulfoxide (>99.7%, Fisher Scientific).

S1.2 Decomposition study of CPDX:

Figure S1.3.1: Photograph of decomposition studies for CPDX. Left triplet: 20°C; Middle triplet: 40°C; Right triplet: 60°C. Each triplet contains the solvents MeOH, THF, and toluene from left to right.

S1.3 Overview of attempted hydrogenation reactions to yield CPDA:

Figure S1.3.1: Tested homogeneous catalysts and ligands for the hydrogenation towards CPDA.

Catalyst	Additive	Solvent	P _{H2}	Т	t	Stirring	Result
(Cat. / Sub.)			(bar)	(°C)	(h)	(rpm)	
Shvo cat. (1%)	-	iPrOH	60	100	20	300	partial hydrog.
Shvo cat. (1%)	-	iPrOH	55	80	20	300	no reaction
Ru/C (10 wt%)	-	MeOH	50	80	20	300	no reaction
Rh/C (10 wt%)	-	MeOH	50	80	20	300	no reaction
Pd/C (10 wt%)	-	MeOH	50	80	20	300	no reaction
Pt/C (10 wt%)	-	MeOH	50	80	20	300	no reaction
Ru/C (10 wt%)	-	iPrOH	50	100	18	300	partial hydrog.
							+ side products
Rh/C (10 wt%)	-	iPrOH	50	100	18	300	side products
Pd/C (10 wt%)	-	iPrOH	50	100	18	300	partial hydrog.
							+ side products
Pt/C (10 wt%)	-	iPrOH	50	100	18	300	side products
Pd/C (10 wt%)	-	water	50	100	18	300	partial hydrog.
							+ side products
Pd/C (10 wt%)	-	EtOAc	50	100	18	300	partial hydrog.
							+ side products
Pd/C (10 wt%)	-	THF	50	100	18	300	partial hydrog.
							+ side products
Pd/C (10 wt%)	-	toluene	50	100	18	300	partial hydrog.
							+ side products
Ru-BINAP-(OAc) ₂	-	THF	50	50	22	300	no reaction
Ru-BINAP-	-	THF	50	50	22	300	no reaction
(Cl)-cymene							
${Ir(COD)Cl}_2$	-	EtOAc	50	50	3	300	no reaction
${Ir(COD)Cl}_2$	PPh_3 (4 eq)	EtOAc	50	50	3	300	no reaction
${Ir(COD)Cl}_2$	L1 (2 eq)	EtOAc	50	50	3	300	no reaction
${\rm Ir(COD)Cl}_2$	L2 (2 eq)	EtOAc	50	50	3	300	no reaction
${Ir(COD)Cl}_2$	-	MeOH	50	50	20	300	no reaction
${Ir(COD)Cl}_2$	PPh_3 (4 eq)	MeOH	50	50	20	300	no reaction
${Ir(COD)Cl}_2$	L1 (2 eq)	MeOH	50	50	20	300	no reaction
${Ir(COD)Cl}_2$	L2 (2 eq)	MeOH	50	50	20	300	no reaction
${Ir(COD)Cl}_2$	I_2 (8 eq)	MeOH	50	50	20	300	no reaction
${Ir(COD)Cl}_2$	PPh_3 (4 eq)	MeOH	50	50	20	300	no reaction
	$+ I_2 (8 eq)$						
${Ir(COD)Cl}_2$	L1 (2 eq)	MeOH	50	50	20	300	no reaction
	$+ I_2 (8 eq)$						
${Ir(COD)Cl}_2$	L2 (2 eq)	MeOH	50	50	20	300	no reaction
	$+ I_2 (8 eq)$						

1 u 0 c 0 1.5.1. List of unempted nyu ogenuiton reactions of C1 D1 to ufford C1 D1	<i>Table S1.3.1:</i>	List of attemp	ted hydrogenation	reactions of C	CPDI to afford CPD
--	----------------------	----------------	-------------------	----------------	--------------------

Catalyst	Additive	Solvent	P _{H2}	Т	t	Stirring	Result
(Cat. / Sub.)			(bar)	(°C)	(h)	(rpm)	
Zn	HCl	water	N/A	20	24	500	no reaction
Zn	AcOH	water	N/A	20	24	500	no reaction
Shvo cat. (5%)	-	MeOH	55	80	20	300	no reaction
Ru/C (10 wt%)	-	MeOH	30	80	20	300	decomposition
Rh/C (10 wt%)	-	MeOH	30	80	20	300	decomposition
							+ trace product
Pd/C (10 wt%)	-	MeOH	30	80	20	300	decomposition
Pt/C (10 wt%)	-	MeOH	30	80	20	300	decomposition
Ru/C (10 wt%)	-	THF	50	20	20	300	no reaction
Rh/C (10 wt%)	-	THF	50	20	20	300	no reaction
Pd/C (10 wt%)	-	THF	50	20	20	300	decomposition
Pt/C (10 wt%)	-	THF	50	20	20	300	decomposition
Ru/C (10 wt%)	-	THF	50	40	20	300	decomposition
Rh/C (10 wt%)	-	THF	50	40	20	300	product
Pd/C (10 wt%)	-	THF	50	40	20	300	decomposition
Pt/C (10 wt%)	-	THF	50	40	20	300	decomposition
Ru/C (10 wt%)	-	THF	50	40	20	300	decomposition
Rh/C (10 wt%)	-	THF	50	40	20	300	product
Pd/C (10 wt%)	-	THF	50	40	20	300	decomposition
Pt/C (10 wt%)	-	THF	50	40	20	300	decomposition
Ru/Al ₂ O ₃ (10 wt%)	-	THF	50	40	20	300	no reaction
Pt/Al ₂ O ₃ (10 wt%)	-	THF	50	40	20	300	decomposition
Pd/Al ₂ O ₃ (10 wt%)	-	THF	50	40	20	300	decomposition
Pd/CaCO ₃ (10 wt%)	-	THF	50	40	20	300	decomposition
Pd/BaSO ₄ (10 wt%)	-	THF	50	40	20	300	decomposition
Pd(OH) ₂ /C (10 wt%)	-	THF	50	40	20	300	decomposition
Ir/C (20 wt%)	-	THF	50	40	20	300	no reaction
Rh/C (10 wt%)	-	2-MeTHF	50	40	20	300	product
Rh/C (10 wt%)	-	MTBE	50	40	20	300	product
Rh/C (10 wt%)	-	CPME	50	40	20	300	product
Rh/C (10 wt%)	-	water	50	40	20	300	product
Rh/C (10 wt%)	-	MeOH	50	40	20	300	product
Rh/C (10 wt%)	-	EtOH	50	40	20	300	product
Rh/C (10 wt%)	-	iPrOH	50	40	20	300	product
Rh/C (10 wt%)	-	tBuOH	50	40	20	300	product
Rh/C (10 wt%)	-	EtOAc	50	40	20	300	product
Rh/C (10 wt%)	-	toluene	50	40	20	300	product
Rh/C (10 wt%)	-	dioxane	50	40	20	300	product
Rh/C (10 wt%)	-	dioxolane	50	40	20	300	decomposition
Rh/C (10 wt%)	-	DMSO	50	40	20	300	decomposition
Rh/C (10 wt%)	-	DMF	50	40	20	300	trace product
Rh/C (10 wt%)	-	CHCl ₃	50	40	20	300	trace product
Rh/C (10 wt%)	7M NH ₃	water	50	40	20	300	no reaction
Rh/C (10 wt%)	3.5M NH ₃	water/MeOH	50	40	20	300	trace product
Rh/C (10 wt%)	-	water/MeOH	50	40	20	300	product

 Table S1.3.2:
 List of attempted hydrogenation reactions of CPDX to afford CPDA:

S2. Substrate analysis:

S2.1 NMR spectroscopy:

Figure S2.1.2: ¹³C-NMR spectrum of **4-HCP** in DMSO-d₆.

Figure S2.1.4: ¹³*C*-*NMR spectrum of CPDO in acetone-d*₆*.*

¹³C-NMR spectrum of CPDO in DMSO-d₆. Figure S2.1.6:

Figure 2.1.7: ¹*H-NMR spectrum of compound 1 in CDCl*₃.

Figure S2.1.9: ¹³C-NMR spectrum of **CPDI** in DMSO-d₆.

Figure 2.1.11: ¹³C-NMR spectrum of compound 2 in DMSO-d₆.

Figure S2.1.12: ¹*H-NMR spectrum of CPDX in acetone-d*₆*.*

Figure S2.1.13: ¹³*C*-*NMR spectrum of CPDX in acetone-d*₆*.*

Figure S2.1.14: ¹H-NMR spectrum of CPDX in DMSO-d₆.

Figure S2.1.15: ¹³C-NMR spectrum of CPDX in DMSO-d₆.

Figure S2.1.16: ¹H-NMR spectrum of **CPDA** (obtained from preparative hydrogenation) in D_2O .

Figure S2.1.17: ^{13}C -NMR spectrum of **CPDA** (obtained from preparative hydrogenation) in D_2O .

Figure S2.1.18: ¹*H-NMR spectrum of cis-CPDA (obtained from Matrix Chemicals) in DMSO-d6.*

Figure S2.1.19: ¹³C-NMR spectrum of cis-CPDA (obtained from Matrix Chemicals) in DMSO-d6.

Figure S2.1.20: ¹H-NMR spectrum of trans-CPDA (obtained from Matrix Chemicals) in DMSO-d6.

Figure S2.1.21: ¹H-NMR spectrum of trans-CPDA (obtained from Matrix Chemicals) in DMSO-d6.

Figure S2.1.22: ¹H-NMR spectrum of cis-CPDA (obtained from Matrix Chemicals) in D_2O .

Figure S2.1.23: ^{13}C -NMR spectrum of **cis-CPDA** (obtained from Matrix Chemicals) in D_2O .

Figure S2.1.25: ^{13}C -NMR spectrum of trans-CPDA (obtained from Matrix Chemicals) in D_2O .

Figure S2.1.31: ¹³C-NMR spectrum of 4 in DMSO-d₆.

Figure S2.1.33: ¹³C-NMR spectrum of 5 in DMSO-d₆.

Figure S2.1.39: ^{13}C -NMR spectrum of 8 in DMSO- d_6 .

Figure S2.2.1: FTIR spectrum of 4-HCP.

Figure S2.2.2: FTIR spectrum of CPDO.

Figure S2.2.3: FTIR spectrum of compound 1.

Figure S2.2.4: FTIR spectrum of **CPDI**.

Figure S2.2.5: FTIR spectrum of CPDX.

Figure S2.2.6: FTIR spectrum of **CPDA** (distillate, cis-trans ratio = 1:1).

Figure S2.2.7: FTIR spectrum of CPDA-dimer.

Figure S2.2.8: FTIR spectrum of compound 3.

Figure S2.2.9: FTIR spectrum of compound 4.

Figure S2.2.10: FTIR spectrum of compound 5.

Figure S2.2.11: FTIR spectrum of compound **6***.*

Figure S2.2.12: FTIR spectrum of compound 7.

Figure S2.2.13: FTIR spectrum of compound 8.

Figure S2.2.14: FTIR spectrum of compound 9.

Figure S2.2.15: FTIR spectrum of compound 10.

Figure S2.2.16: FTIR spectrum of the polyurethane derived from TDI and triblock 5.

Figure S2.2.17: FTIR spectrum of the polyurethane derived from HDI and triblock 5.

S2.3 GC-FID chromatograms:

Figure S2.3.1: Gas chromatogram of 4-HCP.

Figure S2.3.2: Gas chromatogram of CPDO.

Figure S2.3.3: Representative gas chromatogram of a crude reaction mixture from CPDX to CPDA hydrogenation.

S2.4 High-resolution mass-spectrometry (HR-MS):

Figure S2.4.1: HR-MS analysis in ESI+ mode of CPDO; full spectrum (top), and zoom of [CPDO + H]⁺ (bottom).

Figure S2.4.2: HR-MS analysis in ESI+ mode of CPDX; full spectrum (top), and zoom of [CPDX + H]⁺ (bottom).

Figure S2.4.3: HR-MS analysis in ESI+ mode of CPDA; full spectrum (top), and zoom of [CPDA + H]⁺ (bottom).

Figure S2.4.4: HR-MS analysis in ESI+ mode of 3; full spectrum (top); zoom of $[3 + H]^+$ (bottom-left), and zoom of $[3 + Na]^+$ (bottom-right).

Figure S2.4.4: HR-MS analysis in ESI+ mode of 4; full spectrum (top); zoom of $[4 + H]^+$ (bottom-left), and zoom of $[4 + Na]^+$ (bottom-right).

Figure S2.4.5: HR-MS analysis in ESI+ mode of 5; full spectrum (top); zoom of $[5 + H]^+$ (bottom-left), and zoom of $[5 + Na]^+$ (bottom-right).

Figure S2.4.6: HR-MS analysis in ESI+ mode of 6; full spectrum (top); zoom of $[6 + H]^+$ (bottom-left), and zoom of $[6 + Na]^+$ (bottom-right).

Figure S2.4.7: HR-MS analysis in ESI+ mode of 7; full spectrum (top); zoom of $[7 + H]^+$ and $[7 + Na]^+$ (bottom).

Figure S2.4.8: HR-MS analysis in ESI+ mode of $\mathbf{8}$; full spectrum (top); zoom of $[\mathbf{8} + H]^+$ and $[\mathbf{8} + Na]^+$ (bottom).

Figure S2.4.9: HR-MS analysis in ESI+ mode of 9; full spectrum (top); zoom of $[9 + H]^+$ (bottom-left), and zoom of $[9 + Na]^+$ (bottom-right).

Figure S2.4.10: HR-MS analysis in ESI+ mode of 10; full spectrum (top); zoom of $[10 + H]^+$ (bottom-left), and zoom of $[10 + Na]^+$ (bottom-right).

1*10 3

Molar mass [Da]

2 5*10

3

5*10

1*10 4

S2.5 Gel permeation chromatography (GPC):

Figure S2.5.1: GPC chromatogram complementary to Table 3, entry 5.

Figure S2.6.1: TGA plot complementary to Table 3, entry 3.

Figure S2.6.2: TGA plot complementary to Table 3, entry 4.

Figure S2.6.3: TGA plot complementary to Table 3, entry 5.

S2.7 Differential Scanning Calorimetry (DSC):

Figure S2.7.1: DSC plot complementary to Table 3, entry 3.

Figure S2.7.2: DSC plot complementary to Table 3, entry 4.

Figure S2.7.3: DSC plot complementary to Table 3, entry 5.