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Figure S1. Electron microscopic characterization and Ru 3p spectra of fresh 3.3Ru NPs catalyst.  

(a) TEM image. (b) HAADF-STEM image and the corresponding EDX element mapping. (c) Ru 

3p spectra.
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Figure S2. Catalytic performance of 3.3Ru NPs catalyst. (a) Selectivity; (b) TOF of C2H4 and STY 

of 3-pentanone. Reaction conditions: 1.5 g catalyst, 150 °C, 2000 mL gcat.
-1 h-1, 2 MPa and C2H4/CO/ 

H2=2:1:1.
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Figure S3. Fourier-transform EXAFS spectra of the spent Ru SA catalyst.

Figure S4 Electron microscopic characterization of spent Ru SA catalyst. (a) AC-HADDF-STEM 
image. (b) HAADF-STEM image and the corresponding EDX element mapping.
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Figure S5 H2-TPR results of fresh 1.1Ru SA and 3.3Ru NPs
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Figure S6. Ethylene adsorption study. a) In-situ DRIFTS spectra of ethylene adsorption collected 

after ethylene adsorption and vacuum desorption (30 min) at 50 °C. b) C2H4 temperature 

programmed desorption (C2H4-TPD).
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Figure S7 Dependence of conversion rate on partial pressure of H2 over Ru SA and Ru NPs. 

Reaction conditions: 2 MPa, 150 °C, 12000 mL gcat.
-1 h-1.

C1
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Figure S8. Transition state structures for 3-pentanone formation on Ru SA and Ru NPs catalysts. 

Ru NPs modeled by the Ru (101) slab model. Ru, O, H, C in AC and C in 3- pentanone are blue, 

red, white, gray and orange, respectively. The C in the C2H5CO* was marked as C1, and the C in 

the C2H5* was marked as C2. 
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Table S1. Textural properties of various catalysts.

Samples
SBET 

a

(m2/g)

Smicro
b

(m2/g)

Smicro/SBET

(%)

VT
 c

(cm3/g)

Vmicro
b

(cm3/g)

Vmicro/VT

(%)

Pore size

(nm)

Ru loading

(wt%) d

AC 1275 725 56.9 0.67 0.38 56.7 2.1 -

Ru SA 1258 731 58.1 0.66 0.38 57.6 2.1 1.1

a SBET is the specific surface area calculated by the Brunauer–Emmett–Teller (BET) method.

b Micropore area (Smicro) and micropore volume (Vmicro) were determined according to the t-plot method. 

c Total pore volume calculated as the amount of nitrogen adsorbed at a relative pressure (P/P0) of 0.99.

d Measured by ICP-OES.
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Table S2 Comparison of catalytic performance for 3-pentanone formation via heterogeneous 
ethylene hydroformylation over various supported catalysts. 

Catalysts

metal 

loading

(wt%)

T

(℃)

P

(MPa)
C2H4/CO/H2

Activity

(10-6 mol·min-1·molmetal
-1)

Selectivity

(%)
References

Ru SA 1.1 150 2.0 2:1:1 99049 71.1 This work

Co/AC 10.0 120 3.0 1:1:1 16914 55.1 [1]

NiMo/carbon 13.1(Total) 290 1.0 1:1:1 80218 / [2]

Ir/carbon 12.9 290 1.0 1:1:1 69541 / [2]

Rh/AC 1.0 120 1.0 1:1:1 5145 / [3]

Rh/AC 2.0 120 1.0 1:1:1 4116 / [4-6]

Rh/AC 2.0 120 0.1 1:1:1 4116 / [7]

Rh/AC 2.0 150 2.0 1:1:1 19 a / [8]

NiMo/Al2O3 11.9(Total) 290 1.0 1:1:1 Trace / [9]

2-Rh-PPh3/SiO2 2.0 110 0.5 1:1:1 / 3.7 [10]

Rh/C(C) 7.7 110 0.5 1:1:1 / 15 [10]

Rh/fibre 3.0 100 0.5 1:1:1 / 0.1 [10]

Rh/C(C) 5.0 173 0.5 1:1:1 / trace [11]

Co/ZnO 0.84 160 8.0 1:1:1 / 4 [12]

Co/La2O3 0.75 160 8.0 1:1:1 / 0.2 [12]

Co/MgO 0.96 160 8.0 1:1:1 / 0 [12]

Ru3(CO)9(TPPMS)3 b / 100 5.0 4.7:1:1 / 52.7 c [13]

Rh/2.9ReOx-Al2O3 0.23 120 0.1 1:1:1 / 0 [14]

5%Rh/Al2O3 5.0 205 2.0 1:1:1 / 0 [15]

0.5%Rh-0.5%Co/Al2O3 1.0(Total) 205 2.0 1:1:1 / 0 [15]

Rh1Co3/MCM-41 2.72(Total) 180 0.1 1:1:1 / 0 [16]

0.6Rh0.23Co/SiO2 0.83 180 1.0 1:1:1 / 0 [17]

Rh/SiO2 5 150 0.1 1:1:1 / 0 [18]

Ru-Co/SiO2 2.7(Total) 150 0.1 1:1:1 / 0 [19]

5-Co(A)/SiO2 5.2 163 0.5 1:1:1 / 0 [20]

Rh/SiO2 4.0 115 0.1 1:1:1 / 0 [21]

a: TOF:10-3 min-1. b: Homogeneous catalytic system. c: Yield. 

As shown in Table S2, the reported Ru SA catalyst in this work almost exhibited 
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the highest activity and selectivity than the state-of-the-art heterogeneous catalysts. It 

should be noted that most of the reported heterogeneous ethylene hydroformylation 

catalysts shows trace or negligible 3-pentanone selectivity.

Table S3. Catalytic performance comparison of various activated carbon supported catalysts.

Selectivity (C%)

Catalysts

C2H4

 Conv.

(%) 
Propanal a 3-Pentanone Ethane Aldol cond. b Olig.c

STY d

(mol molRu
-1 h-1)

Ru SA 7.7 7.1 71.1 15.7 1.8 4.3 5.9

Rh/AC 5.1 0.8 42.4 46.2 8.8 1.9 0.5

Rh/AC e 8.7 5.8 45.4 32.1 16.2 0.4 1.9

Co/AC 1.2 0 0 85.7 0 14.3 0

Reaction conditions: 150 °C, 2 MPa, 2000 mL gcat.
-1 h-1, C2H4/CO/H2=2:1:1 without reduction treatment. 

a Propanal: propanal and propanol; b Aldol cond.: Aldol condensation of propanal, mainly including 2-

methyl-2-pentenal, 2-methylvaleraldehyde, 2-methyl-1-pentanol and propyl propionate; c Olig.: Ethylene 

oligomers and the possible isomerization and hydrogenation products. d The STY was calculated as the 

molar amount of 3-pentanone produced per mole of Ru per hour. e C2H4/CO/H2=1:1:1.

Table S4. Comparison of catalytic performance for various supported Ru-based catalysts.

Selectivity (C%)

Catalysts

C2H4

 Conv.

(%) 
Propanal a 3-Pentanone Ethane Aldol cond. b Olig.c

STY d

(mol molRu
-1 h-1)

Ru SA 9.6 4.9 56.0 31.3 0.9 7.0 4.9

Ru/Al2O3 1.3 61.8 16.0 17.0 0.0 5.1 0.1

Ru/SiO2 4.1 37.6 21.8 38.1 0.9 1.7 0.5

Reaction conditions: 150 °C, 2 MPa, 2628 mL gcat.
-1 h-1, C2H4/CO/H2=1:2.5:2.5 without reduction 

treatment. a Propanal: propanal and propanol; b Aldol cond.: Aldol condensation of propanal, mainly 

including 2-methyl-2-pentenal, 2-methylvaleraldehyde, 2-methyl-1-pentanol and propyl propionate; c 

Olig.: Ethylene oligomers and the possible isomerization and hydrogenation products. d The STY was 
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calculated as the molar amount of 3-pentanone produced per mole of Ru per hour.

Table S5. XANES analysis and EXAFS fitting results of spent Ru SA catalyst.

Coordination CN R(Å) σ210-3(Å2) E(eV) R-factor
Ru-O/C 3.3 2.14 3.2 14.0
Ru-Ru 3.4 2.63 9.0 4.7

0.95%

R: distance; CN: coordination umber; σ2: Debye-Waller factor; E: correction to the photoelectron 

energy origin.

Table S6 The results of chemical information between the calculated species and catalytic sites.

Sample Species
rC1Ru 

(Å)
rC2Ru 

(Å)
rORu (Å) rC1C2 (Å) ∠C1RuC2 (º)

IS 2.052 2.221 2.732 2.638 76.1

TS 2.013 2.485 2.618 2.142 55.7Ru SA

FS 2.228 3.305 2.135 1.51 22.5

IS 3.119 3.472 3.231 4.975 97.9

TS 2.102 2.224 2.896 2.789 80.2Ru NPs

FS 2.18 3.2 2.169 1.52 24.6

r: distance; ∠: bond angle.

For the DFT calculation, the C atom in C2H5CO* is denoted as C1, and C atom 

in C2H5* is denoted as C2. As for Ru SA, the C2H5CO* and C2H5* are simultaneously 

adsorbed on the Ru atom. The distance for C1-Ru, C2-Ru and C1-C2 is 2.052Å,  

2.221Å, and 2.638Å, respectively. After the formation of 3-pentanone, the C1 atom 

and the O atom are simultaneously coordinated to the Ru atom. The bond length for 

C1-Ru is 2.228 Å and that for O-Ru is 2.135 Å, respectively, and the C1-C2 bond 

length is 1.510 Å. The distance of C1-C2 for the transition state structure is 2.142Å.

The active site of NPs catalysts is composed of 5 Ru atoms. After 3-pentanone 

is formed, it is coordinated on the central Ru atom. Before reaction, C2H5CO* and 

C2H5* are adsorbed on the Ru atoms on both sides, respectively. The distance of C1-

Ru, C2-Ru and C1-C2 is 3.119Å, 3.472Å and 4.975Å, respectively. After the 

formation of 3-pentanone, the C1 atom is coordinated to the middle Ru atom with 

2.180Å of the bond length, and the C1-C2 bond length is 1.520Å. The distance of 

C1-C2 for the transition state structure is 2.789Å.
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