Electrochemical strategies for N -cyanation of secondary amines and $\alpha \mathrm{C}$ cyanation of tertiary amines under transition metal-free conditions

Zhengjiang Fu* , a,b Yaping Fu, ${ }^{1, a}$ Jian Yin,,${ }^{1, a}$ Guangguo Hao, ${ }^{a}$ Xuezheng Yi, ${ }^{a}$ Tingting Zhong, ${ }^{a}$ Shengmei Guo ${ }^{\text {a }}$ and $\mathrm{Hu} \mathrm{Cai}{ }^{*}{ }^{\text {a }}$
${ }^{a}$ College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330031, China.
${ }^{b}$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
*Corresponding authors: fuzhengjiang@ncu.edu.cn; caihu@ncu.edu.cn
${ }^{1}$ These two authors contributed equally to this work.

Contents	Page Number
1) General considerations	S 2
2) Experimental procedures	$\mathrm{S} 2-\mathrm{S} 15$
3) Synthesis of cathepsin K inhibitor 29ap	S 15
4) Scale-up synthesis of 1ap and 1np	S 16
5) General procedure for cyclic voltammetry	S 17
6) Hydrogen detection experiment	S 18
7) References	S 18
8) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ spectra	$\mathrm{S} 19-\mathrm{S} 74$

General considerations

The substrates of 7a-8a and 11a were brought from commercial suppliers as hydrochloride and were simply disposed with base before adding into reactions, ${ }^{1}$ the compounds of $\mathbf{1 n} \mathbf{- 1 9 n},{ }^{2} \mathbf{2 2 n}^{2}$ and $\mathbf{1 7 - 1 8} \mathbf{n}^{3}$ were prepared following literature procedures, ${ }^{2,3}$ all other reagents were commercially available and were used as received unless otherwise noted. The instrument for electrolysis is Adjustable DC Power Supply (DP3005B) (made in China). Column chromatography was performed on silica gel 300400 mesh. The yields reported are the isolated yields and the average of two runs. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds were recorded at 400 and 100 MHz with CDCl_{3} as solvent respectively. All coupling constants (J values) were reported in Hertz (Hz). HRMS (10-11ap, 13np, 18np and 22np) were performed by Analysis and Testing Center of Nanchang University, HRMS (2ap, 4ap, 5-6ap, 8-9ap, 29ap, 6np, 12np and 17np) were performed by Analysis and Testing Center of Nanjing University. Cyclic voltammograms were obtained on a IVIUMSTAT potentiostat. The amount of electrocatalytic hydrogen evolution was measured on a gas chromatography (Kexiao, GC-1690 China) (TCD detector, 13X molecular sieve column, N_{2} gas carrier).

2. Experimental procedures

General procedure for metal-free electrocatalytic \boldsymbol{N}-cyanation of secondary amines (procedure A): secondary amine (0.2 mmol), TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv), TBAB ($161 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5$ equiv), $\mathrm{KF}(46.5 \mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv) and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ were combined and added into oven-dried three-necked flask $(25 \mathrm{~mL})$ with a stir bar. The flask was equipped with glassy carbon $(\mathrm{d}=5 \mathrm{~mm})$ as the anode and platinum electrodes $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode. The reaction mixture was stirred and electrolyzed under room temperature at a constant current of 5 mA under aerobic conditions for 3 h . When the reaction was finished, the reaction mixtures were diluted with EtOAc and filtered through a short plug of silica gel that was then washed with EtOAc. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel to provide corresponding product.

General procedure for metal-free electrocatalytic α-C-cyanation of aromatic tertiary amines (procedure B): tertiary amine (0.2 mmol), $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2 equiv), TBAB ($161 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5$ equiv), $\mathrm{KF}(46.5 \mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv) and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ were combined and added into oven-dried three-necked flask (25 mL) with a stir bar. The flask was equipped with graphite felts $\left(15 \times 15 \times 0.4 \mathrm{~mm}^{3}\right)$ as the anode and platinum electrodes $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode. The reaction mixture was stirred and electrolyzed under room temperature at a constant current of 5 mA under N_{2} atmosphere for 3 h . When the reaction was finished, the reaction mixtures were diluted with EtOAc and filtered through a short plug of silica gel that was then washed with EtOAc. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel to provide corresponding product.

3,4-Dihydro-2(1H)-isoquinolinecarbonitrile (1ap)

Procedure A was followed using 1,2,3,4-tetrahydroisoquinoline ($26.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN $(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford 27.2 $\mathrm{mg}(86 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1$ H), $7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2$ H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.6,130.8,129.2,127.2,126.7,126.0,118.0$, 50.0, 46.8, 27.7.

6-Methoxy-3,4-dihydroisoquinoline-2(1H)-carbonitrile (2ap)

Procedure A was followed using 6-methoxy-1,2,3,4-tetrahydroisoquinoline (32.6 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $30.3 \mathrm{mg}(80 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6,133.9,127.1,122.9,118.2,113.9,113.1,55.4,49.7,46.7$, 28.0. HRMS (ESI-Orbitrap MS) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ON}_{2}$: 189.10224; found: 189.10182.

6,7-Dimethoxy-3,4-dihydroisoquinoline-2(1H)-carbonitrile (3ap)

Procedure A was followed using 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (38.6 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (80:20, petroleum ether: EtOAc) to afford $32.9 \mathrm{mg}(75 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.49$ (s, 1 H), 4.31 (s, 2 H), 3.82 (d, $J=5.3 \mathrm{~Hz}, 6 \mathrm{H}$), 3.43 (t, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.85 (t, $J=5.8$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.2,148.0,124.6,122.6,118.1,111.8$, 108.6, 56.0, 56.0, 49.8, 46.9, 27.2.

6-Bromo-3,4-dihydroisoquinoline-2(1H)-carbonitrile (4ap)

Procedure A was followed using 6-bromo-1,2,3,4-tetrahydroisoquinoline (42.4 mg , 0.2 mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $38.9 \mathrm{mg}(82 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{td}, J=1.8,6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.92(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.9,132.1,129.9,129.8$, 127.7, 120.9, 117.7, 49.8, 46.5, 27.5. HRMS (ESI-Orbitrap MS) m/z: [M+H] Calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}_{2}$: 237.00219; found: 237.00165.

7-Bromo-3,4-dihydroisoquinoline-2(1H)-carbonitrile (5ap)

Procedure A was followed using 7-bromo-1,2,3,4-tetrahydroisoquinoline $(42.4 \mathrm{mg}$, 0.2 mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $39.8 \mathrm{mg}(84 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{dd}$, $J=1.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.89(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.9,131.6$, 130.9, 130.4, 128.9, 120.3, 117.6, 49.6, 46.6, 27.2. HRMS (ESI-Orbitrap MS) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}_{2}$: 237.00219; found: 237.00186.

6-Chloro-3,4-dihydroisoquinoline-2(1H)-carbonitrile (6ap)

Procedure A was followed using 6-chloro-1,2,3,4-tetrahydroisoquinoline (33.5 mg , 0.2 mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $29.6 \mathrm{mg}(77 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17$ 7.11 (m, 2 H), 6.96 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (s, 2 H), 3.44 (t, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91$ (t, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.5,132.8,129.2,129.0,127.4$, 126.9, 117.7, 49.6, 46.4, 27.5. HRMS (ESI-Orbitrap MS) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClN}_{2}$: 193.05270; found: 193.05264 .

6-Fluoro-3,4-dihydroisoquinoline-2(1H)-carbonitrile (7ap)

Procedure A was followed using 6-fluoro-1,2,3,4-tetrahydroisoquinoline (30.2 mg , 0.2 mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified
by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $27.8 \mathrm{mg}(79 \%)$ of the product as a yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.99$ (dd, $J=5.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.89(\mathrm{td}, J=2.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=2.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.92(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.6$ (d, $J=$ $245 \mathrm{~Hz}), 134.8(\mathrm{~d}, J=7 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=8 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=3 \mathrm{~Hz}), 117.8,115.6(\mathrm{~d}$, $J=21 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=22 \mathrm{~Hz}), 49.6,46.4,27.7(\mathrm{~d}, J=1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, CDCl_{3}): δ-115.0.

5-(Trifluoromethyl)-3,4-dihydroisoquinoline-2(1H)-carbonitrile (8ap)

Procedure A was followed using 5-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline ($40.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $36.4 \mathrm{mg}(80 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (s, 2 H), $3.48(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.6,131.5(\mathrm{q}, J=1.7 \mathrm{~Hz}), 129.9(\mathrm{q}, J=1.5 \mathrm{~Hz}), 129.0(\mathrm{q}, J=30 \mathrm{~Hz}), 124.1(\mathrm{q}, J=$ $272 \mathrm{~Hz}), 126.5,125.0(\mathrm{q}, ~ J=5.7 \mathrm{~Hz}), 117.4,50.1,46.1,24.4(\mathrm{q}, J=2 \mathrm{~Hz})$. HRMS (ESI-Orbitrap MS) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2}$: 227.07906; found: 227.07866.

3,4-Dihydro-1-methyl-2(1H)-isoquinolinecarbonitrile (9ap)

Procedure A was followed using 1-methyl-1,2,3,4-tetrahydroisoquinoline (29.4 mg , 0.2 mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $28.6 \mathrm{mg}(83 \%)$ of the product as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-$ 7.19 (m, 2 H), $7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.48$ - $3.42(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 136.1,132.4,129.2,127.1,126.8,126.2,117.5,54.4,44.7,28.2,21.4$. HRMS (ESI-Orbitrap MS) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2}$: 173.10732; found: 173.10707.

1-Phenyl-3,4-dihydroisoquinoline-2(1H)-carbonitrile (10ap)

Procedure A was followed using 1-phenyl-1,2,3,4-tetrahydroisoquinoline (41.8 mg , 0.2 mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $17.5 \mathrm{mg}(37 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-$ $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (s, 1 H), 3.59-3.43(m, 2 H), 3.07-3.01 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 140.0, 133.8, 133.1, 129.1, 128.9, 128.8, 128.4, 127.6, 126.8, 117.5, 63.2, 44.8, 28.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2}$: 235.1230; found: 235.1238

7,8-Dihydro-1,6-naphthyridine-6(5H)-carbonitrile (11ap)

Procedure A was followed using 5,6,7,8-tetrahydro-1,6-naphthyridine ($26.8 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (50:50, petroleum ether: EtOAc) to afford $14.9 \mathrm{mg}(47 \%)$ of the product as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.48$ (d,
$J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=4.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, $3.60(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 152.7, 148.6, 134.2, 126.7, 122.1, 117.6, 49.6, 47.1, 30.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3}$: 160.0869; found: 160.0873 .

Pyrrolidine-1-carbonitrile (12ap)

Procedure A was followed using pyrrolidine ($14.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN (54 $\mu \mathrm{L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($60: 40$, petroleum ether: EtOAc) to afford 11.7 mg (61%) of the product as a light brown oil. Exhibited spectral data in accordance with previous report. ${ }^{5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.36-3.33(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 117.9,50.5,25.7$.

2-Phenylpyrrolidine-1-carbonitrile (13ap)

Procedure A was followed using 2-phenylpyrrolidine ($29.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($70: 30$, petroleum ether: EtOAc) to afford $27.9 \mathrm{mg}(82 \%)$ of the product as a orange oil. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 4.62$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.90(m, 2 H), 1.86-1.77 (m, 1 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.7$, 128.7, 128.1, 126.3, 116.9, 65.8, 51.4, 35.5, 24.7.

2-(Pyridin-3-yl)pyrrolidine-1-carbonitrile (14ap)

Procedure A was followed using 3-(pyrrolidin-2-yl)pyridine ($29.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (EtOAc) to afford 31.4 mg (91%) of the product as a yellow oil. Exhibited spectral data in accordance with previous report. ${ }^{5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H})$, $4.69(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dq}, J=8.4$, $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,148.1,135.2,133.8,123.6,116.3,63.5,51.4,35.3,24.7$.

Piperidine-1-carbonitrile (15ap)

Procedure A was followed using piperidine ($17.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN (54 $\mu \mathrm{L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($70: 30$, petroleum ether: EtOAc) to afford $14.1 \mathrm{mg}(64 \%)$ of the product as a colorless liquid. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.15-3.12(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.59$ $-1.51(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 118.6,50.2,24.6,23.0$.

4-Methylpiperidine-1-carbonitrile (16ap)

Procedure A was followed using 4-methylpiperidine ($19.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column
chromatography on silica gel ($60: 40$, petroleum ether: EtOAc) to afford $17.0 \mathrm{mg}(69 \%)$ of the product as a colorless liquid. Exhibited spectral data in accordance with previous report. ${ }^{6}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.32(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.93 (td, $J=2.8$, $12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{qd}, J=4.4,12.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 118.5,49.6,32.7$, 29.6, 21.7.

1,4-Dioxa-8-azaspiro[4.5]decane-8-carbonitrile (17ap)

Procedure A was followed using 1,4-dioxa-8-azaspiro[4.5]decane ($28.6 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($75: 25$, petroleum ether: EtOAc) to afford $24.7 \mathrm{mg}(74 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.92(\mathrm{~s}, 4 \mathrm{H})$, 3.30-3.27 (m, 4 H), 1.76-1.73 (m, 4 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 118.0,105.4,64.6,48.0,34.1$.

Ethyl 1-cyanopiperidine-4-carboxylate (18ap)

Procedure A was followed using ethyl piperidine-4-carboxylate ($31.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($75: 25$, petroleum ether: EtOAc) to afford 36.0 $\mathrm{mg}(99 \%)$ of the product as a yellow oil. Exhibited spectral data in accordance with previous report. ${ }^{5}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.37$ (m, 2 H), 3.07-3.01 (m, 2 H), 2.43-2.36(m, 2 H), 1.97-1.90 (m, 2 H), 1.84-1.75 $(\mathrm{m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.5,118.0,60.9$, 48.7, 39.5, 26.8, 14.2.

4-Phenylpiperidine-1-carbonitrile (19ap)

Procedure A was followed using 4-phenylpiperidine ($32.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $34.2 \mathrm{mg}(92 \%)$ of the product as a off-white solid. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.53$ - 3.48 (m, 2 H), 3.16-3.09 (m, 2 H), 2.62-2.55 (m, 1 H), 1.85-1.80 (m, 4 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 144.6,128.7,126.8,126.6,50.1,41.3,32.0$.

4-Benzylpiperidine-1-carbonitrile (20ap)

Procedure A was followed using 4-benzylpiperidine ($35.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford 31.6 mg (79%) of the product as a yellow oil. Exhibited spectral data in accordance with previous report. ${ }^{5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1$ H), 7.11 (d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.37 (d, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.97-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.54$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 139.3,129.0,128.4,126.2,118.5,49.7,42.8,36.8,30.7$.

Morpholine-4-carbonitrile (21ap)

Procedure A was followed using morpholine ($17.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN (54 $\mu \mathrm{L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($60: 40$, petroleum ether: EtOAc) to afford $13.5 \mathrm{mg}(60 \%)$ of the product as a light brown oil. Exhibited spectral data in accordance with previous report. ${ }^{5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.21-3.19(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 117.2,65.6,48.8$.

Thiomorpholine-4-carbonitrile (22ap)

Procedure A was followed using thiomorpholine ($20.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN $(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($75: 25$, petroleum ether: EtOAc) to afford $19.8 \mathrm{mg}(77 \%)$ of the product as a off-white solid. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.45-3.43(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.67(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 117.4,50.9,26.2$.

1-(Pyridin-4-yl)piperazine-1-carbonitrile (23ap)

Procedure A was followed using 1-(pyridin-4-yl)piperazine ($32.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (20:10:1, petroleum ether: EtOAc: triethylamine) to afford $30.5 \mathrm{mg}(81 \%)$ of the product as a yellowish solid. Exhibited spectral data in accordance with previous report. ${ }^{7}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.26(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, 2 H), 6.62 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.40-3.30(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.4, 150.5, 117.0, 109.0, 48.4, 45.4.

N, N-diallylcyanamide (24ap)

Procedure A was followed using diallylamine ($19.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN (54 $\mu \mathrm{L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $17.1 \mathrm{mg}(81 \%)$ of the product as a colorless liquid. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.89-5.78(\mathrm{~m}, 2 \mathrm{H}), 5.34-5.29(\mathrm{~m}, 4 \mathrm{H}), 3.63$ $-3.60(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.0,120.7,117.7,53.5$.

Benzylmethylcyanamide (25ap)

Procedure A was followed using N-methylbenzylamine ($24.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($75: 25$, petroleum ether: EtOAc) to afford 21.2 mg (72\%) of the product as a colorless liquid. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.31(\mathrm{~m}, 5 \mathrm{H}$), 4.15 (s, 2 H), 2.77 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.4,129.0,128.7,128.5,118.9,57.2,37.9$.

N-methyl- N-phenethylcyanamide (26ap)

Procedure A was followed using N-methyl-phenethylamine ($27.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($75: 25$, petroleum ether: EtOAc) to afford 27.9 mg (87%) of the product as a colorless liquid. Exhibited spectral data in accordance with previous report. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 3.21$ $-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.4, 128.6, 126.8, 118.2, 54.2, 39.1, 33.8 .

N, N-Dibutylcyanamide (27ap)

Procedure A was followed using dibutylamine ($25.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN (54 $\mu \mathrm{L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (80:20, petroleum ether: EtOAc) to afford $19.7 \mathrm{mg}(64 \%)$ of the product as a red oil. Exhibited spectral data in accordance with previous report. ${ }^{5}$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), $1.61-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{dq}$, $J=7.2,15.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 117.9$, 51.2, 29.7, 19.7, 13.6.

2-Cyano-1,1,3,3-tetramethylguanidine (28ap)

Procedure A was followed using 1,1,3,3-tetramethylguanidine ($23.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (20:10:1, petroleum ether: EtOAc:triethylamine) to afford $20.2 \mathrm{mg}(72 \%)$ of the product as a yellow liquid. Exhibited spectral data in accordance with previous report. ${ }^{7} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.94(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,117.8,40.1$.

2-Phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (1np)

Procedure B was followed using 2-phenyl-1,2,3,4-tetrahydroisoquinoline (41.8 mg , 0.2 mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $38.4 \mathrm{mg}(82 \%)$ of the product as a slightly yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.21-7.11 (m, 4 H), 6.98 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H})$, $3.69-3.63$ (m, 1 H), 3.37 (ddd, $J=4.1,10.7,12.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.08-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.85$ (dt, $J=3.6,16.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.4,134.6,129.6,129.4$, 128.8, 127.1, 126.9, 121.9, 117.8, 117.6, 53.2, 44.2, 28.5.

2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2np)

Procedure B was followed using 2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (44.7 mg , $0.2 \mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $38.8 \mathrm{mg}(78 \%)$ of the product as a slightly yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.20(\mathrm{~m}, 4 \mathrm{H})$, 7.15 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (ddd, $J=4.1,11.0,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=3.4,16.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,134.6,131.9,130.2,129.7,129.5$, 128.8, 127.2, 126.9, 118.4, 117.8, 54.2, 44.5, 28.7, 20.7.

2-(o-Tolyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (3np)

Procedure B was followed using 2-(o-tolyl)-1,2,3,4-tetrahydroisoquinoline (44.7 mg , $0.2 \mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $31.2 \mathrm{mg}(63 \%)$ of the product as a slightly yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{9}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.22(\mathrm{~m}, 7 \mathrm{H})$, $7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{td}, J=3.9,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{ddt}, J=1.7$, $6.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.22-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.91$ (ddd, $J=1.8,3.9,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 148.0, 134.6, 133.4, 131.3, 130.1, 129.8, 128.7, 127.3, 127.1, 126.7, 125.5, 122.1, 117.7, 55.1, 46.1, 29.1, 17.7.

2-(2,4-Dimethylphenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (4np)

Procedure B was followed using 2-(2,4-dimethylphenyl)-1,2,3,4tetrahydroisoquinoline ($47.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2 equiv). The reaction mixture was purified by flash column chromatography on silica gel (98:2, petroleum ether: EtOAc) to afford $44.6 \mathrm{mg}(85 \%)$ of the product as a slightly yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{10}{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}$, 1 H), 3.65 (td, $J=3.9,11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (ddt, $J=1.7,6.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.19$ (m, 1 H), 2.96 (ddd, $J=1.8,3.9,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.5,134.9,134.5,133.2,131.9,130.1,129.7,128.6,127.7$, 127.0, 126.5, 121.8, 117.8, 55.2, 46.1, 29.1, 20.9, 17.5.

2-(4-(tert-Butyl)phenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (5np)

Procedure B was followed using 2-(4-(tert-butyl)phenyl)-1,2,3,4tetrahydroisoquinoline ($53.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (99:1, petroleum ether: EtOAc) to afford $43.2 \mathrm{mg}(74 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{11}{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.50$ (s, 1 H), 3.77-3.72 (m, 1 H), 3.46 (ddd, $J=4.0,10.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1$ H), 2.94 (dt, $J=3.4,16.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.0$, 144.8, 134.6, 129.7, 129.4, 128.7, 127.1, 126.8, 126.4, 117.9, 117.6, 53.6, 44.3, 34.2, 31.5, 28.6.

2-(4-(Benzyloxy)phenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (6np)

Procedure B was followed using 2-(4-(benzyloxy)phenyl)-1,2,3,4tetrahydroisoquinoline ($63.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2 equiv). The reaction mixture was purified by flash column chromatography on silica gel (98:2, petroleum ether: EtOAc) to afford $31.6 \mathrm{mg}(46 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.97(\mathrm{~m}$, $2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}$,

1 H), 3.11-3.02 (m, 1 H), 2.86-2.81 (m, 1 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9$, $142.8,137.1,134.4,129.8,129.5,128.7$, 128.7, 128.1, 127.6, 127.2, 126.8, 120.9, 117.7, 115.9, 70.5, 55.4, 44.9, 28.7. HRMS (ESI-Orbitrap MS) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ON}_{2}$: 341.16484; found: 341.16394 .

2-(4-Bromophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (7np)

Procedure B was followed using 2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinoline ($57.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $54.1 \mathrm{mg}(78 \%)$ of the product as a slightly yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{12}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43$ - 7.41 (m, 2 H), $7.29-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.66$ (m, 1 H), 3.43 (td, $J=4.1,11.6,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dt}, J=3.8$, $16.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.5,134.5,132.5,129.5,129.3,129.0$, 127.1, 127.1, 119.1, 117.6, 114.4, 52.9, 44.3, 28.5.

2-(4-Chlorophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (8np)

Procedure B was followed using 2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline ($48.7 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $44.1 \mathrm{mg}(82 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.21(\mathrm{~m}, 5$ H), 7.23-7.21 (m, 1 H), 7.00-6.97 (m, 2 H), $5.44(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.47$ - $3.40\left(\mathrm{~m}, 1 \mathrm{H}\right.$), 3.17-3.08 (m, 1 H), $2.95(\mathrm{dt}, J=3.7,16.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.1,134.5,129.6,129.5,129.3,129.0,127.1,127.09,127.07,118.9$, 117.6, 53.2, 44.4, 28.5.

2-(4-Fluorophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (9np)

Procedure B was followed using 2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline $(45.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (98:2, petroleum ether: EtOAc) to afford $39.8 \mathrm{mg}(79 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{12}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.26(\mathrm{~m}, 2$ H), $7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.48$ - $3.41(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8(\mathrm{~d}, J=241 \mathrm{~Hz}), 145.2,134.4,129.6,129.5,128.9,127.2,127.0,120.6(\mathrm{~d}, J=$ $8 \mathrm{~Hz}), 117.5,116.3(\mathrm{~d}, J=23 \mathrm{~Hz}), 54.9,44.9,28.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ 120.7--120.8 (m).

2-(2-Fluorophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (10np)

Procedure B was followed using 2-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline $(45.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (98:2, petroleum ether: EtOAc) to afford $36.1 \mathrm{mg}(71 \%)$ of the product as a white solid. Exhibited spectral data
in accordance with previous report. ${ }^{12}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-7.16(\mathrm{~m}, 4$ H), $7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.19$ $-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1(\mathrm{~d}, J=245$ $\mathrm{Hz}), 136.9,136.8,134.0,129.6,129.3,128.7,127.1,126.8,125.1(\mathrm{t}, J=3.5 \mathrm{~Hz}), 121.5$ (d, $J=3 \mathrm{~Hz}$), 117.5, $116.5(\mathrm{~d}, J=22 \mathrm{~Hz}), 53.9(\mathrm{~d}, J=5 \mathrm{~Hz}), 44.8,28.6 .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-122.5--122.6(\mathrm{~m})$.

2-(3-Fluorophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (11np)

Procedure B was followed using 2-(3-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline $(45.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $40.5 \mathrm{mg}(80 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{11}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22-7.10(\mathrm{~m}, 5$ H), $6.71-6.53(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.03$ $-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.8(\mathrm{~d}, J=243$ $\mathrm{Hz}), 149.8(\mathrm{~d}, J=9 \mathrm{~Hz}), 134.6,130.8,130.7$, 129.3, 129.2, 129.0, 127.1 ($\mathrm{d}, J=2 \mathrm{~Hz}$), 117.7, 112.1 (t, $J=2 \mathrm{~Hz}$), 107.9 (d, $J=18 \mathrm{~Hz}$), $104.0(\mathrm{~d}, J=25 \mathrm{~Hz}), 52.1,44.0$, 28.3. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-111.1--111.2(\mathrm{~m})$.

2-(2,4-Difluorophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (12np)

Procedure B was followed using 2-(2,4-difluorophenyl)-1,2,3,4tetrahydroisoquinoline ($49.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (98:2, petroleum ether: EtOAc) to afford $34.0 \mathrm{mg}(63 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.77(\mathrm{~m}$, 2 H), $5.28(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.5$ (dd, $J=12 \mathrm{~Hz}$), 156.3 (dd, $J=12 \mathrm{~Hz}$), 133.9, 133.4 (dd, $J=3 \mathrm{~Hz}$), 129.1, 128.4 (d, $J=251 \mathrm{~Hz}$), $127.8(\mathrm{~d}, J=200 \mathrm{~Hz}), 122.7(\mathrm{dd}, J=6$ $\mathrm{Hz}), 117.4,111.7$ (dd, $J=4 \mathrm{~Hz}$), $105.1(\mathrm{dd}, J=24 \mathrm{~Hz}), 54.3(\mathrm{~d}, J=5 \mathrm{~Hz}), 45.1,28.6$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-114.9--115.0(\mathrm{~m}),-118.1--118.2(\mathrm{~m})$. HRMS (ESIOrbitrap MS) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}_{2}$: 271.10413; found: 271.10349.

2-(2-Fluoro-4-methylphenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile(13np)

Procedure B was followed using 2-(2-fluoro-4-methylphenyl)-1,2,3,4tetrahydroisoquinoline ($48.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, 2 equiv). The reaction mixture was purified by flash column chromatography on silica gel (98:2, petroleum ether: EtOAc) to afford $34 \mathrm{mg}(64 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}$, $2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.33$ (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.2$ (d, $J=245 \mathrm{~Hz}$), 135.6 (d, $J=8 \mathrm{~Hz}$), $134.3(J=10 \mathrm{~Hz}), 134.1,129.6,129.5,128.7,127.2,126.8,125.5(\mathrm{~d}, J=3 \mathrm{~Hz}), 121.5$ (d, $J=3 \mathrm{~Hz}), 117.6,117.1(\mathrm{~d}, J=20 \mathrm{~Hz}), 54.2(\mathrm{~d}, J=5 \mathrm{~Hz}), 44.9(\mathrm{~d}, J=1 \mathrm{~Hz}), 28.7$, $20.8(\mathrm{~d}, J=2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-128.4(\mathrm{t}, J=10.9 \mathrm{~Hz}$). HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FN}_{2}$: 267.1292; found: 267.1304 .

2-(4-(Trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (14np)

Procedure B was followed using 2-(4-(trifluoromethyl)phenyl)-1,2,3,4tetrahydroisoquinoline ($55.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). With stirring, the reaction mixture was performed for 6 h instead of 3 h . The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $30.6 \mathrm{mg}(51 \%)$ of the product as a slightly yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}$, $1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.01(\mathrm{~m}, 1$ H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.5,134.7,129.4,129.3,129.2,127.3,127.2$, $127.0(\mathrm{q}, J=3.5 \mathrm{~Hz}), 122.67(\mathrm{q}, J=34 \mathrm{~Hz}), 117.6,115.5,51.4,44.1,28.5$.

2-(Naphthalen-2-yl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (15np)

Procedure B was followed using 2-(naphthalen-2-yl)-1,2,3,4-tetrahydroisoquinoline $(51.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (99:1, petroleum ether: EtOAc) to afford $42.0 \mathrm{mg}(70 \%)$ of the product as a white solid. Exhibited spectral data in accordance with previous report. ${ }^{10}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85-7.78(\mathrm{~m}, 3$ H), $7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.95$ $-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=3.4,16.4 \mathrm{~Hz}, 1$ H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.0,134.6,134.4,129.6,129.55,129.52,129.5$, $128.9,127.6,127.23,127.18,127.0,126.7,124.5,119.4,117.8,112.9,53.3,44.5,28.6$.

6,7-Dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (16np)

Procedure B was followed using 6,7-dimethoxy-2-phenyl-1,2,3,4tetrahydroisoquinoline ($53.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (80:20, petroleum ether: EtOAc) to afford $48.2 \mathrm{mg}(82 \%)$ of the product as a slightly yellow solid. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (td, $J=4.0,11.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=3.4,16.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 149.4,148.4,148.1,129.5,126.9,121.9,121.1,117.9$, $117.7,111.5,109.4,56.1,56.0,53.0,44.2,28.1$.

2-Methyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (17np)

Procedure B was followed using 2-Methyl-1,2,3,4-tetrahydroisoquinoline $(29.5 \mathrm{mg}$, $0.2 \mathrm{mmol})$ and $\mathrm{TMSCN}(54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($90: 10$, petroleum ether: EtOAc) to afford $13.4 \mathrm{mg}(39 \%)$ of the product as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-$ $7.14(\mathrm{~m}, 4 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.09-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}$, $2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.9,129.6,129.5,128.6,127.2$,
126.6, 116.6, 56.9, 48.4, 43.8, 28.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}$: 173.10732; found: 173.10686.

2-Allyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (18np)

Procedure B was followed using 1-Allyl-1,2,3,4-tetrahydroquinoline ($34.6 \mathrm{mg}, 0.2$ mmol) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($95: 5$, petroleum ether: EtOAc) to afford 16 $\mathrm{mg}(40 \%)$ of the product as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.22$ $(\mathrm{m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.42$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.29(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{qd}, J=13.2,5.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.07-3.01 (m, 2 H), 2.83-2.76 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 134.4, 133.6, 129.6, 129.5, 128.6, 127.4, 126.6, 119.9, 116.60, 58.8, 54.5, 46.6, 28.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}$: 199.1235; found: 199.1230 .

1-Phenyl-1,2,3,4-tetrahydroquinoline-2-carbonitrile (19np)

Procedure B was followed using 1-phenyl-1,2,3,4-tetrahydroquinoline ($41.8 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (99:1, petroleum ether: EtOAc) to afford $10.7 \mathrm{mg}(23 \%)$ of the product as a yellow oil. Exhibited spectral data in accordance with previous report. ${ }^{131} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34$ (m, 2 H), 7.33-7.29 (m, 1 H), $7.11(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{td}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.66(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.94$ (dt, $J=16 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40-2.34 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.5,142.1$, 130.3, 129.6, 127.2, 127.1, 126.7, 121.7, 119.7, 119.1, 115.6, 52.0, 25.7, 24.4.

1-Phenylpyrrolidine-2-carbonitrile (20np)

Procedure B was followed using 1-phenylpyrrolidine ($29.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford 18.8 mg (55%) of the product as a brown oil. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1$ H), $2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.3$, 129.5, 119.4, 118.3, 112.8, 49.1, 47.5, 31.6, 24.0.

1-Phenylpiperidine-2-carbonitrile (21np)

Procedure B was followed using 1-phenylpiperidine ($32.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel (99:1, petroleum ether: EtOAc) to afford 23.9 mg (64%) of the product as a brown oil. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 3 \mathrm{H}), 4.63$ $(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{td}, J=2.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.8,129.4,122.2,118.4,117.3,52.1,46.7,29.3,25.2,20.3$.

4-Methyl-1-phenylpiperidine-2-carbonitrile (22np)

Procedure B was followed using 4-methyl-1-phenylpiperidine ($35.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford 16.4 mg (41%) of the product as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.29(\mathrm{~m}, 2$ H), $7.02-6.97(\mathrm{~m}, 3 \mathrm{H}), 4.66-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{td}, J=4,12$ $\mathrm{Hz}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,129.5,122.2$, 118.4, 117.5, 52.0, 46.4, 37.2, 33.8, 27.1, 21.5. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}$: 201.1386; found: 201.1399 .

2-(Methyl(phenyl)amino)acetonitrile (23np)

Procedure B was followed using N, N-dimethylaniline ($24.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford 15.5 mg (53%) of the product as a yellow oil. Exhibited spectral data in accordance with previous report. ${ }^{8}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1$ H), 6.88 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.18 (s, 2 H), $3.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.9,129.6,120.4,115.6,115.0,42.5,39.4$.

2-(Methyl(p-tolyl)amino)acetonitrile (24np)

Procedure B was followed using N, N-dimethyl- p-toluidine ($27.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). With stirring, the reaction mixture was performed for 6 h instead of 3 h . The reaction mixture was purified by flash column chromatography on silica gel ($98: 2$, petroleum ether: EtOAc) to afford $15.1 \mathrm{mg}(47 \%)$ of the product as a yellow oil. Exhibited spectral data in accordance with previous report. ${ }^{1{ }^{1}}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 4.14$ (s, 2 H), 2.97 (s, 3 H), 2.29 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.8$, 130.1, 130.1, 115.6, 43.0, 39.6, 20.5.

3. Synthesis of cathepsin K inhibitor 29ap

Procedure A was followed using tert-butyl pyrrolidine-2-carboxylate ($34.2 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and TMSCN ($54 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv). The reaction mixture was purified by flash column chromatography on silica gel ($75: 25$, petroleum ether: EtOAc) to afford $36.0 \mathrm{mg}(92 \%)$ of the product 29ap as a colorless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.99(\mathrm{q}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 1 \mathrm{H})$, 2.15-2.06(m, 1 H), 1.99-1.91 (m, 1 H$), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.2,117.1,80.0,55.8,50.5,48.6,31.6,28.3$. HRMS (ESI-Orbitrap MS) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{2}$: 197.12845; found: 197.12810.

4. Scale-up synthesis of 3,4-dihydroisoquinoline-2(1H)-carbonitrile (1ap)

1,2,3,4-Tetrahydroisoquinoline (4 mmol), TMSCN ($8 \mathrm{mmol}, 2$ equiv), TBAB (10 mmol, 2.5 equiv), $\mathrm{KF}\left(16 \mathrm{mmol}, 4\right.$ equiv) and $\mathrm{CH}_{3} \mathrm{CN}(200 \mathrm{~mL})$ were combined and added into an oven-dried undivided three-necked bottle (500 mL) equipped with a stir bar. The bottle was equipped with glassy carbon $(\mathrm{d}=5 \mathrm{~mm})$ as the anode and platinum electrodes $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode. The reaction mixture was stirred and electrolyzed under room temperature at a constant current of 5 mA (The dual display potentiostat was operating in constant current mode) under aerobic conditions for 36 h . When the reaction was finished, the solution was filtered and washed with EtOAc. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel ($9: 1$, petroleum ether: EtOAc) to afford 0.484 g (76\%) of the 1ap.

Scale-up synthesis of 2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (1np)
2-Phenyl-1,2,3,4-tetrahydroisoquinoline (4 mmol), TMSCN ($8 \mathrm{mmol}, 2$ equiv), TBAB ($10 \mathrm{mmol}, 2.5$ equiv), KF ($16 \mathrm{mmol}, 4$ equiv) and $\mathrm{CH}_{3} \mathrm{CN}(200 \mathrm{~mL}$) were combined and added into an oven-dried undivided three-necked bottle (500 mL) equipped with a stir bar. The bottle was equipped with graphite felts $\left(15 \times 15 \times 0.4 \mathrm{~mm}^{3}\right)$ as the anode and platinum electrodes $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode. The reaction mixture was stirred and electrolyzed under room temperature at a constant current of 5 mA (The dual display potentiostat was operating in constant current mode) under N_{2} atmosphere for 36 h . When the reaction was finished, the solution was filtered and washed with EtOAc. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel (98:2, petroleum ether: EtOAc) to afford $0.655 \mathrm{~g}(70 \%)$ of the $\mathbf{1 n p}$.

5. General procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line under room temperature. Glassy carbon electrode was used as working electrode, and platinum wire was employed as counter electrode. $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode was submerged in saturated aqueous KCl solution and separated from reaction by a salt bridge. The mixture of acetonitrile (10 mL) containing $0.1 \mathrm{M} \mathrm{LiClO}_{4}$ was poured into the electrochemical cell in all experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$ ranging from 0 to 3.0 V .

Figure 1. Cyclic voltammograms of reactants and the mixtures in 0.1 M $\mathrm{LiClO}_{4} / \mathrm{CH}_{3} \mathrm{CN}$ using a glassy carbon as working electrode, Pt wire as counter, $\mathrm{Ag} / \mathrm{AgCl}$ as reference electrode, at $100 \mathrm{mV} / \mathrm{s}$ scan rate: background $\left(\mathrm{LiClO}_{4} 0.1 \mathrm{M}\right.$ in $\mathrm{MeCN})$; TBAB $(0.03 \mathrm{M})$; tetrahydroisoquinoline 1a $(0.05 \mathrm{M})$; TMSCN $(0.05 \mathrm{M})$; TBAB (0.03 M) + TMSCN (0.05 M).

6. Hydrogen detection experiment

Figure 2. The observation of H_{2} gas liberation on cathode was confirmed via GC (KeXiao GC1690) during electrolysis.

7. References

1 M. Huang, J. Dai, X. Cheng, M. Ding, Org. Lett., 2019, 21, 7759.
2 M. Brzozowski, J. A. Forni, G. P. Savage, A. Polyzos, Chem. Commun., 2014, 51, 334.

3 W. Luo, J.-D. Yang, J.-P. Cheng, iScience, 2020, 23, 100851
4 F. Teng, J.-T. Yu, Y. Jiang, H. Yang, J. Cheng, Chem. Commun., 2014, 50, 8412.
5 J. N. Ayres, K. B. Ling, L. C. Morrill, Org. Lett., 2016, 18, 5528.
6 H. Liang, L. Bao, D. Yao, Y. Zhang, S. Pang, C. Sun, Synlett, 2017, 28, 2675.
7 F. Teng, J.-T. Yu, Z. Zhou, H. Chu, J. Cheng, J. Org. Chem., 2015, 80, 2822.
8 A. M. Nauth, N. Otto, T. Opatz, Adv. Synth. Catal., 2015, 357, 3424.
9 I. Takafumi, S. Kazunori, E. Hiromichi, H. Yoshitaka, Tetrahedron Lett., 2018, 59, 3258.

10 M. Rueping, S. Zhu, R. M. Koenigs, Chem. Commun., 2011, 47, 12709.
11 H. Wang, W. Lu, Z. Sun, A. Wang, W. Zhou, M. He, Q. Chen, Asian J. Org. Chem., 2020, 9, 1769.
12 B. Yi, N. Yan, N. Yi, Y. Xie, X. Wen, C.-T. Au, D. Lan, RSC Adv., 2019, 9, 29721.
13 G. Spadoni, A. Bedini, S. Lucarini, M. Mari, S. Rivara, J. Med. Chem., 2015, 58, 7512.

8．${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ spectra

 笑穴筞

$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	 		$\begin{aligned} & \text { No웅 } \\ & \text { Bripg gi } \end{aligned}$

10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30		,
					150	140	130	120	110	f1 (ppm)	90	80	70	60	50	40	30	20	10

入永灾。

10	190	180	170	160	150	140	130	120	110	${ }_{100}^{10}$	${ }_{90}$	80	10	60	50	${ }_{40}$	30	20	10
10				160	150	140		120	10	fl （ppm）	90								10


```
へテ八テ分灾
```


N゙N

GO
g
G

$\stackrel{\%}{\sim}$

7ap

7ap

 ヘ-

9ap

皆

11ap

운)

-

12ap

ラig

운ํㅜํํํํ․
 ヘNN八N分

 へ

25ap

${ }^{n} \mathrm{Bu}{\underset{N}{N}}^{N^{n}} \mathrm{Bu}$
27ap
CN

ద్ష

2np

3np

8np

9np

	1						'1				1		11		1								
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

正

N్우ㄷㅜㅜN

둔둔둑둑

11np

12np

Юす

12np

12np

$\underbrace{\circ}$

Il

$\begin{array}{lllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & 100 \\ (\mathrm{ppm})\end{array}$

CN

20 np

[^0]

N
21 np

190	180	170	${ }_{160}$	150	${ }_{140}$	${ }_{130}$	120	110	${ }_{100}$	90	80	${ }_{70}$	60	50	${ }_{40}$	30	${ }_{20}$	10
									10									

Concen

[^1]

23np

23np

24np

[^2]
[^0]:

[^1]: $\begin{array}{llllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

[^2]:

